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hemodynamic effects mediated through pulse wave velocity is the
important pathophysiological factor. Furthermore, the issue still
remains whether this phenomenon acts either as a primary deter-
minant of adverse outcomes or simply as a biomarker of systemic
disease. The increase in ascending aortic diameter (decreasing pulse
wave velocity) and increase in regional length (increasing transit
time at a given pulse wave velocity) with very little change in other
segments, as reported by Hickson et al. (1) (their Fig. 4), would
have a significant effect on the relative timing of any reflected pressure
wave within the cardiac cycle and therefore on central blood pressure.
The net influence of these changes would be to delay return of any
reflected wave; although these could be seen as compensatory changes,
they apparently generally fail, as aging is associated with earlier
(systolic) pressure augmentation. It therefore remains uncertain
whether the established deleterious effect of aortic stiffening (age or
disease related) is mediated by the effect of local changes in
mechanics and geometry as has been suggested (5), secondary
effects related to suboptimal hemodynamic coupling, or whether
increased aortic stiffening is merely acting as a biomarker of a
progressive systemic condition (e.g., ageing, atherosclerosis,
arteriosclerosis).

The influence of aortic diameter as opposed to wave reflection
and pulse wave velocity in determining cardiovascular risk have
been debated, and we would suggest that the most relevant issue is
how these factors are related to central blood pressure. The work by
Hickson et al. (1) offers further insight into these issues and, equally
relevant, highlights the potential for cardiac magnetic resonance to
individualize cardiovascular risk prediction and management.
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We thank Dr. Nelson and colleagues for their interest in our recent

work concerning the effect of age on the biomechanical properties
f the human aorta (1). We observed the greatest age-related
ifference in the aortic pulse wave velocity in the distal abdominal
orta, and the least in the aortic arch, suggesting that the distal
orta stiffened most with age. As we noted in our discussion, and as
r. Nelson and colleagues reiterate, others have reported the

onverse, that is, that the ascending aorta stiffens most with age
2,3). No doubt, there are several explanations for these discrepant
bservations, not least the very small sample sizes reported by some
uthors (2,3), the use of differing techniques to estimate regional
tiffness, methodological issues such as the use of nonsimultaneous,
eripheral pressure when calculating distensibility/compliance (3),
nd technical issues such as inaccurate edge detection with cardiac
agnetic resonance with varying sequences (4). Interestingly, a

ecent postmortem analysis of a relatively large collection of human
ortae suggests that the abdominal aorta may indeed stiffen most
ith age (5). However, further carefully conducted studies employ-

ng large sample sizes, with prospective in vivo observations are
equired.

We would agree with Dr. Nelson and colleagues that it is unclear
ow changes in aortic stiffness alter cardiovascular risk. However,
e believe that changes in aortic pressure probably play an impor-

ant role. Although the ascending aorta may stiffen less with age,
hanges in the stiffness of the first part of the aorta are likely to have
more profound effect on aortic pressure than do changes in the
ore distal parts. This is because most of the volume buffering (or
indkessel effect) occurs in the first part of the aorta. Therefore, we
ypothesized that dilation of the aorta helps to offset the detrimen-
al effect of aortic stiffening on peak systolic pressure by increasing
he capacitance of the aorta. Despite this potential protective effect,
tiffening and dilation will still lead to a loss of elastic recoil and fall
n diastolic pressure. Since coronary perfusion occurs mainly in
iastole, such an effect is likely to be detrimental to the myocar-
ium. Unfortunately, we did not assess the windkessel effect in our
riginal study because of the limitation of the cardiac magnetic
esonance technique we employed with respect to accurate edge
etection, but this could be done with alternative approaches.

Finally, we believe that determining which part of the aorta
tiffens most with age remains an important question, because the
tructure of the aorta changes considerably along its length. Thus,
e may have a better knowledge of the processes involved in

ge-related stiffening, or arteriosclerosis, if we can first define the
egion of the aorta this affects most, and then relate stiffness of the
tructural and biochemical changes at this and other locations,
hich some authors have already attempted to do. Ultimately, these
ata may help provide targets for future antiarteriosclerotic inter-
entions.
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