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Abstract 

We present a homogenized nonlinear filter for multi-timescale systems, which allows the reduction of the dimension 
of filtering equation. We prove that the actual nonlinear filter converges to our homogenized filter. This is achieved 
by a suitable asymptotic expansion of the dual of the Zakai equation, and probabilistically representing the correction 
terms with the help of backward doubly-stochastic differential equations. This homogenized filter provides a rigorous 
mathematical basis for the development of reduced-dimension nonlinear filters for multiscale systems. A filtering 
scheme, based on the homogenized filtering equation and the technique of importance sampling, is applied to a 
chaotic multiscale system in Lingala et al. [1]. 
 
© 2012 Published by Elsevier Ltd. Peer-review under responsibility of Takashi Hikihara and Tsutomu Kambe 
 
Keywords: nonlinear filtering; dimensional reduction; homogenization; particle filter; asymptotic expansion; SPDE; BDSDE 

1. Introduction 

An important aspect in the study of random dynamical systems is the estimation of state variables, 
which are often hidden, based on available observations. The optimal estimate based on observation data, 
called the filter, is given by the conditional expectation that can be generated by a recursive equation 
driven by the observation process. Formally, the filter is a conditional expectation  
for a rich enough class of functions , where  is the partially observed state (or signal) and 

 is the (filtration of) observation process that is a function of the signal corrupted by noise. The 
filtering problem involves characterizing the optimal filter , which is accomplished in Zakai [2] and 
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Fujisaki et al. [3] through the evolution of the conditional distribution in the space of probability measures 
(see, for example, Bain and Crisan [4],  Kallianpur [5], or Liptser and Shiryaev [6] for details).  

Another aspect of dynamical systems that is of interest in this paper is multiscale (multiple timescales) 
dynamics that are inherent in a wide range of scientific studies and engineering applications. For example, 
climate evolution is governed by atmospheric (fast) and oceanic (slow) dynamics, and state dynamics in 
electric power systems consists of rapidly- and slowly-varying elements. Nonlinearities of the physical 
processes in multiscale phenomena allow energy transfer between different time scales, resulting in 
complex behavior. The main challenge is to recognize how information interacts within these complex 
structures and scales. In this paper, we are interested in the multiscale filtering problem, which we address 
by taking advantage of scale interaction to appropriately reduce the dimensions of the problem. 

For the implementation of the optimal filter in applications, the particle filter is a well-established 
method for nonlinear systems (see, for example, Doucet et al. [7] and Arulampalam et al. [8] for 
comprehensive insight). However, for implementation in high-dimensional systems, dimensionality issues 
arise when trying to represent the signal density using a high number of particles (see, for example, 
Snyder et al. [9]). This is the motivation for addressing the multiscale (and high-dimensional) filtering 
problem. We have established a rigorous theoretical basis for the development of reduced-dimension 
nonlinear filtering methods for multiscale systems. 

The main result can be summarized as follows. We assume the signal is given as solution of the two 
time scale stochastic differential equations (SDEs) 

,                               (1) 
,      .                                      (2) 

Here,  is the timescale separation parameter, so  is the slow component and  is the fast 
component. W and V are, respectively, l- and k-dimensional independent standard Brownian motions, 
independent of the random initial conditions  and . We assume that for every fixed x, the solution  of 
(2) is ergodic and converges rapidly to its unique stationary distribution. In this case, it is well known that 

 converges in distribution to a homogenized diffusion process  governed by an SDE 

,      ,                    (3) 

for appropriately averaged  and . In other words, a stochastically averaged model provides a 
qualitatively useful approximation to the actual multiscale system. It is usually the state of the slow, or 
“coarse-grained”, process that is of concern in the study of multiscale phenomena, so it is a good idea to 
make use of this homogenized  for estimation. Specifically,  can be used to construct an averaged, 
or homogenized, filter  to approximate the x-marginal, , of the optimal filter .  

The main result is that under the assumptions stated in Section 4.3, there exists a metric d on the space 
of probability measures such that for every there exists  such that  

     . 

In other words, the x-marginal of the optimal filter  converges to the homogenized filter  in the space 
of probability measures as the time scale separation between the fast and slow components becomes 
infinitely large (separation parameter ). Hence, the homogenized filter is an appropriate measure to 
use in place of the actual  for estimating the “coarse-grained” dynamics  in a setting with wide 
timescale separation.  

In terms of filtering applications,  presents the advantage of not requiring exact knowledge of the 
fast dynamics for estimating the “coarse-grained” dynamics. Only knowledge of the invariant measure of 

 is required (discussed in sections that follow) so, by applying appropriate multiscale homogenization 
numerical schemes, computation and information storage for the fast dynamics can be reduced. By 
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combining the result presented here with the importance sampling framework, a particle filtering scheme 
for state estimation of a large scale chaotic multiscale system is formulated in Lingala et al. [1]. 

2.  Formulation of multi-scale nonlinear filtering problems 

Let  be a filtered probability space that supports a standard Brownian motion . 
Let the signal  be a two time scale diffusion process governed by the SDEs (1) and (2). Functions 
f, g, b, and  are assumed to be Borel-measurable. For fixed , define  as the dynamics of  
with , i.e. the fast component dynamics with the slow component held constant. We assume that 
for all ,  is ergodic and converges rapidly towards its stationary measure . The -
dimensional observation is given by 

  

with Borel-measurable .  is assumed to be a -dimensional standard Brownian motion, independent of 
 and . Define the -algebra generated by the observation as , where  are 

the -negligible sets.  
The aim of the filtering problem is to calculate the (normalized) filter , 

where   is a finite measure on  and  is a bounded measurable function on . Define  to be 
a new measure related to  by the Girsanov transform, which removes the observation process drift, 

         (4) 

Under , the observation process  is a Brownian motion independent of .   is related to the 
un-normalized filter, , by the Girsanov transform as follows:  

      

The un-normalized filter  satisfies the Zakai equation (see, for example, Bain and Crisan [4]): 

,      .  

Here,  is the differential operator associated to , with 

     , 

     ,    

where ·* denotes the transpose of a matrix or vector. Denote  as the -marginal of .  
The theory of stochastic averaging (see, for example, Papanicolaou et al. [10]) tells us that under 

suitable conditions,  converges in law to  as , where  is the solution of an SDE of the form 
(3). So, as long as we are only interested in estimating the slow component, i.e. the “coarse-grained” 
dynamics, we want to take advantage of this fact. Specifically, we want to find a homogenized (un-
normalized) filter  that satisfies  

,      .   

such that for small , the x-marginal of , ,x, is close to 0. We let the generator  of X0 be defined as 
but with coefficients  and , i.e. the drift and 
diffusion coefficients of (1) averaged with respect to the stationary measure of . Also, define  
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similarly for the sensor function Note that the homogenized filter is still driven by the real observation 
, not by a “homogenized observation” . This is practical for implementation of the homogenized 

filter in applications since such  is usually not available. Even if  was available, using it would lead 
to loss of information for estimating the signal compared to using the actual observation. 

Define the homogenized and optimal x-marginal filters  and  in terms of 0 and  as  was in 
terms of  . This paper presents the convergence result of the actual filter to the averaged filter: For 
every , there exists  such that 

 ,     i.e.      for any   ,         (5) 

where  denotes a suitable distance on the space of probability measures that generates the topology of 
weak convergence. Park et al. [11] shows this convergence result for a two-dimensional multiscale signal 
process with no drift in the fast component SDE. The results presented here are extensions to an -
dimensional signal process with drift and diffusion coefficients of the fast and slow components SDEs 
dependent on both components. The proof of Park et al. [11] is based on representing the slow component 
as a time-changed Brownian motion under a suitable measure, which cannot be extended easily to the 
multidimensional setting we assume here. 

In order to show the desired convergence, we follow Pardoux [12] in introducing the dual 
representations of  and : 

,      .  

 is the measure under which  and  are governed by the same dynamics as under  , but  

  and  stays in  and  until time .  
 is defined as the Girsanov transform (4) but with 

limits of integration  to  while  is the Girsanov transform using the averaged sensor function, i.e. 

     . 

 provides the change of measure to , under which  is a Brownian, for the diffusion process 
that started at .  is the filtration generated by the observation 
over , minus the observation history up to 

From the Markov property of , it follows that  

                          (6)

Note that the homogenized and un-homogenized processes have the same starting distribution, i.e. 
. Now fix T and and write In introducing the dual 

process, we are representing the conditional expectation  at time  by a conditional expectation  
that is run backwards in time from  to . To construct , fix a starting point  at  and 
determine all possible trajectories  . Then, the quantity  is ran backwards in time from all the 
possible  that started from  to obtain . Integrating  over  indicates averaging over 
all possible starting points , hence giving . Similarly for the representation  of .  

Using (6), we obtain 

.                             (7) 

So,  will also be small as long as   is well behaved. Then, (7) will lead to 
(5). Therefore, the goal now is to show that for nice test functions , the quantity is 
small. The reason for the introduction of the dual processes is that they solve backward stochastic partial 
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differential equations (BSPDEs), which are function-valued rather than measure-valued and depend on 
the generators  and  instead of their adjoints (see Section 3).  

3. Formal expansions of the filtering equations 

For large parts of the remainder of this paper, we will only work with , and under ,    is a 
Brownian motion that is independent of . Therefore from now on we write  instead of  
and  instead of .  

The key point is that  and  satisfy BSPDEs (  denotes the backward Itô integral): 

  
                                                           (8) 

We formally expand  as  
     

Note that technically, this does not make sense. Firstly, if , then , so we cannot 
definitively set terminal conditions for the equations defined so far. Secondly, the stochastic integrals 

, , a priori do not make sense for since ’s are adapted to  but  
 as . However, we perform such an expansion formally. Then,  satisfies (8) and  and 

 satisfy 

                        (9) 

                       (10) 

respectively, with terminal conditions . By the existence and uniqueness of the 
solutions to these linear equations, we can apply superposition so that indeed,  
       
Thus,  is the first order approximation of ,  is the correction due to the first order approximation, 
and  represents the remaining higher order terms.  Therefore, the problem of showing -convergence 
of  to  reduces to showing -convergence of the corrector plus remainder, ( ), to . 

4. Statement of the main result 

4.1. Assumptions 

We adopt some smoothness assumptions for proving our results. For a bounded function 
 with partial derivatives in  up to order  bounded, write . For 

the coefficients of (1) and (2) and the sensor function , we assume that, for  to be specified later,  

, ,  
, , and .  

For the existence and uniqueness of the stationary distribution , we also assume that the 
vector field  pulls  strongly enough back to the origin and  is uniformly elliptic: There exists 

  such that  for all , and there are  such 
that . 
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4.2. Notations 

We introduce some notations for the operations that follow: 
o For averaging over , the density of that started at  at time , we introduce the 

notations  and . 

o For , we define the differential operator   

o For , we define the norm ,  is the usual sup norm. 

4.3. Statement of main result 

Theorem 4.1. Assume the conditions in Section 4.1 and that the initial distribution  has finite 
moments of every order. Then for every  and , there exists , such that for every 

.

In particular, there exists a metric d on the space of probability measures, such that d generates the 
topology of weak convergence, and such that for every , there exists , such that 

      

In particular, we can use Borel-Cantelli to conclude that if  converges quickly enough to , then   
will a.s. converge weakly to .  

Our method of proof is as follows: We represent the BSPDEs (8), (9) and (10) by finite-dimensional 
stochastic equations (these will be BDSDEs). The diffusion operators get replaced by the associated 
diffusions and we are able to give explicit estimates of the finite dimensional equations in terms of the 
transition function of the fast diffusion. Pardoux and Veretennikov [13] proved very precise estimates for 
this transition function. Applying those estimates allows us to obtain the desired convergence of  
to  and the convergence of Theorem 4.1 results from the convergence of  to .  

While the ideas are simple, the precise formulation and the actual proofs are quite technical. The 
methods and results are described concisely in the following sections. The precise statements and detailed 
proofs are presented in the longer, more rigorous version of the homogenization results in Imkeller et al. 
[14]. The study of homogenization in the nonlinear filtering problem framework is also done by 
Bensoussan et al. [15] and Ichihara [16] using similar approach.  

5. Proof of the main result 

5.1. Probabilistic representation of SPDEs 

A general form of the BSPDEs (8) and (9) can be written as 

,       (11) 
         ,  

where  is a d-dimensional standard Brownian motion under a measure  and  is a 
differential operator. Let us fix  and a starting point at  at .  runs backwards in time and 
is driven by  that generates a filtration . Simultaneously, it is acted upon by the diffusion operator  
with an associated forward diffusion process driven by a Brownian motion, say  that generates a 
filtration . Hence, roughly, the probabilistic representation of the SPDE (11) should thus involve an 
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equation that is “doubly-stochastic”. For our proof of the main result, we represent equations of the form 
(11) in terms of BDSDEs as introduced by Pardoux and Peng [17]. Define a BDSDE as follows: 

,                                (12) 
    ,  

where  is a diffusion process, driven by Brownian motion W, associated with the generator . The 
superscript indicates that  stays at x up to time t. The solution  will be -measurable. 
This gives a finite-dimensional probabilistic representation for (11). In particular, the unique classical 
solution of (11) is given by , where  is the unique solution of (12) (The case we 
consider is not completely covered by Pardoux and Peng [17] since we have unbounded, random 
coefficients and we do not assume a smooth diffusion coefficient. We do not present the existence and 
uniqueness proof of this representation here, but it is given in Section 4 of Imkeller et al. [14]). Such 
BDSDE representation of SPDEs allows us to apply Gronwall's lemma in the proof of our main results.  

5.2. Preliminary estimate 

We state a preliminary estimate from a result from Pardoux and Veretennikov [13] in Proposition 5.1 
and moment bounds for  and  in Proposition 5.2: 

Proposition 5.1. Let  and assume the conditions in Section 4.1 with . If  
is centered, i.e.  for all , then for every , there exist C1, q1 > 0, 
such that  

   for every .  

The proof is a simple application of results from Pardoux and Veretennikov [13] (presented in 
Proposition 5.2 of Imkeller et al. [14]). Proposition 5.1 states that for a centered function on , its 
average (and derivatives of the average) with respect to the transition function of the fast process, over all 
time, grows at most polynomially in . Solution of the BDSDE representation of  is expressed in terms 
of the transition function of , hence Proposition 5.1 allows us to obtain precise estimates for them.  

Proposition 5.2. Assume the conditions in Section 4.1 and that the coefficients of (1) and (2) are 
bounded and globally Lipschitz continuous. Then for any  and , there exists 

 such that 

, and 
.  

Through a rescaling of time for the diffusion , the moment bound for  is obtained as in Lemma 1 
of Veretennikov [18] (presented in Proposition 5.3 of Imkeller et al. [14]). The moment bound on  
follows from the boundedness of coefficients of (1). Proposition 5.2 gives polynomial growth estimate on 
the moments of  and . The moments are with respect to , the measure of the diffusion process 
that started at , and they arise in estimating the remainder .  

5.3. Proof of the main result 

Based on the formal expansion of  in Section 3, the first task in proving the main result of Theorem 
4.1 is to prove that the corrector, , and the remainder, ,  as . This is achieved by representing 
the solutions ,  of BSPDEs (9), (10) in terms of BDSDEs as described in Section 5.1. The BDSDE 
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solutions are obtained in terms of the transition function of the diffusion process, so we can apply the 
estimates from Section 5.3. This gives estimates of  and  that are appropriately bounded by  such that 

 as . Using these estimates, we obtain an estimate on , which can be 
used to track back to obtain the estimate for the main result.  

From (9) and (10), we see that  is forced by , and  is forced by , hence we first need an estimate 
on . We present bounds on  and its derivatives in terms of the test function  in Lemma 5.1. The 
convergence rates for  and  are then given in terms of  and its derivatives in Lemmas 5.2 and 5.3. 

Lemma 5.1. Let  and assume , and . Then, for any , there exist 
, such that for all : 

  

Proof. By the existence and uniqueness of solutions to BSPDEs of the type (11), we can also obtain 
polynomial growth on derivatives of the solutions. Lemma 5.1 follows by noting that equation (8) for  
is of the type (11) with  and .  

Lemma 5.2. Let . Assume the conditions in Section 4.1. Also assume 
 and that all its partial derivatives in up to order grow at most polynomially  Finally 

assume that . Then, for any , there exist , such that for any 
and any : 

.  

Proof.  solves the BSPDE (9), which is of the form (11). By the probabilistic representation of 
SPDEs described in Section 5.1, the solution of (9) is given by , where  

  
                        ,                                                                                                      (13) 

with . Here, , , is the solution of the SDE (2) that remains at  up to time . 
For brevity of notations, we will write  for ,  and  for . 

 that solves the BSPDE (9) runs backwards in time and is driven by , so  is -
measurable (i.e. given the filtration generated by  over , we know the statistics of the random 
quantity , ). Hence, so is . Then, the conditional expectation of  (conditioned on 

) is the quantity itself, i.e. . Taking advantage of this fact allows us to eliminate the 
stochastic integral term over . Since  and  are independent, therefore  is a standard Brownian 
motion in the larger filtration . So, when we take the conditional expectation with 
respect to  of the solution to the BDSDE (13), the stochastic integral over  vanishes by the tower 
property. Conditional expectation of the solution of the BDSDE of  is 

 

(13) 
We can first interchange the order of integration over time and averaging over the conditional density 

for the first term (a) in (13).  is the solution of SPDE (8), which is driven by , so  is -
measurable. The random quantity  in the diffusion operator  is independent of B, so the conditional 
expectation becomes expectation over the density . The fast component dynamics is of 
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order -1, so we perform a time-shift  for the time integral. We now have the (a) in terms 
of the transition function of , so the first-order derivative term in (a) of (13) becomes: 

.  

The polynomial growth estimate is by Proposition 5.1, since  is centered. Repeating the 
same procedure for the second derivative term, we have the following estimate for (a): 

  

    .           (14) 

We can again interchange order of integration for (b) and using the same arguments as for (a), arrive at an 
expression in terms of . Consider the -moment of (b): 

                             
                   (15) 

The first inequality is by the Burkholder-Davis-Gundy inequality. The second is by applying Proposition 
5.1 after rewriting the quadratic variation as a time integral and performing a time-shift as for (a). 
Combining (14) and (15) gives the -moment estimate for : 

    

The estimate for the first order derivative of  is obtained by first interchanging the order of ordinary 
differentiation and integration twice and then applying the same procedure as for . Note that by the 
assumption on  in Section 4.1, we can also interchange the order of ordinary differentiation and 
stochastic integration (see, for example, Karandikar [19]). We then obtain a polynomial growth estimate 
on the first order derivative of . Iterating the procedure for the higher order derivatives gives us 

 

Lemma 5.3. Let . Assume the conditions in Section 4.1. Also assume 
 and that all its partial derivatives in  up to order ( ) grow at most polynomially. 

Then, for any , there exist , such that for any ,  and : 

  

Proof. Again, by the probabilistic representation of SPDEs, the solution  of (10) is given by 
, the solution to the BDSDE 

  
                       ,  

         . 

We will write  for   and  for  as before.  
By the same arguments as for ,  is -measurable, hence so is  and the stochastic 

integrals over dV and dW vanish when we take conditional expectation with respect to  as in the proof 
of Lemma 5.2. Write  as a conditional expectation and consider the -moment: 
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                         .                      (16) 

We consider each term in (16) separately. For (a), note that the unconditioned quantity is at least equal 
to the conditional expectation. So we will just consider the -moment of the time integral in (a). 
Application of Hölder’s inequality allows us to transfer the -exponentiation onto the integrand and then 
interchange the order of time integration and expectation. Coefficients ,  of  are bounded by their 
respective -norms by the boundedness assumptions in Section 4.1, therefore,

  

     
   .                                                                                         (17) 

For (b), Jensen’s inequality allows us to interchange the -exponentiation and conditional expectation. 
Application of the tower property leaves us with the -moment of the stochastic integral. We can then 
apply the Burkholder-Davis-Gundy inequality to get 

  

                                                                         .                             (18) 

The second inequality results from applying Hölder’s inequality to transfer the -exponentiation into the 
time integral, which allows us to interchange the order of integrations, as for (a).  
By the same steps, we have, for (c): 

                     (19) 

We make a remark on the growth of the -moments of  and its derivatives, which emerge in (17) 
and (18). Note that ,  are -measurable,  is -measurable, and  and  are independent. 
Then, we can write the expected value in (17) as  

.       (20) 

The inner expectation in (20) is the -moment of an -order derivative of , which grows 
at most polynomially in  and , by Lemmas 5.2 and 5.1. Taking the outer expectation leads to the -
moments of  and , which also grow at most exponentially by Proposition 5.2. Therefore, by (20), we 
have a polynomial growth bound on (a) in  and , and similarly for (b). 

Now, combining (17), (18) and (19), we get the following estimate for : 

. 

So by Gronwall’s lemma, since the first term on the right hand side is non-decreasing, 

  

      , 
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where we choose  such that the inequality holds for every  By the same time-shift as in 
Lemma 5.3 and the moments bound argument for expected values of the form (20), we get that the -
moment of  grows at most  polynomially in  and . 

Combining Lemmas 5.1, 5.2 and 5.3, we can obtain a convergence result for  to . Note that all the 
calculations so far are under the changed measure , but we will transfer the results for  to the original 
measure . Backtracking from Lemma 5.3, we obtain that under the conditions in Section 4.1 with 

 and with , we have that for any , there exist  such that 

                                              (20) 

The estimate with respect to the original measure  is obtained by an application of the Cauchy-Schwarz 
inequality in combination with Gronwall's lemma. Combining (20) and (7), we obtain for : 

  

The convergence of the actual filter, i.e. of   to  using the above estimate now follows exactly as in 
Chapter 9.4 of Bain and Crisan [3]. 

6. Conclusion 

We have presented the theoretical basis for the development of a reduced-dimension nonlinear filtering 
algorithm for state estimation in multiscale systems. To this end, we combined stochastic homogenization 
with nonlinear filtering theory to construct a homogenized SPDE that characterizes a reduced-dimension 
(homogenized) nonlinear filter for the “coarse-grained” process. Convergence of the optimal filter of the 
slow process to the solution of the homogenized SPDE is shown using BSDEs and asymptotic techniques. 
The extended version of this paper that contains more detailed statements and extensive proofs is 
presented in Imkeller et al. [14].  

The homogenized SPDE presented here can be used as the basis for an efficient multiscale nonlinear 
filtering algorithm for estimating the slow dynamics of the system, without directly accounting for the 
fast dynamics. Such filtering scheme will indirectly address the dimensionality issues mentioned in 
Section 1, by avoiding the need for a sample size large enough to represent both the fast and slow 
components. A basic homogenized particle filter based on the results shown here is presented in Park et al. 
[20]. A version of the homogenized filter adapted to state estimation for chaotic systems is presented in 
Lingala et al. [1], where the Lorenz '96 model (see Lorenz [21]), with two time-scale simplified ordinary 
differential equations describing advection,  is considered as a nontrivial example of an atmospheric 
dynamics model. Lingala et al. [1] estimated the self-contained description of the coarse-grained 
dynamics without fully resolving the dynamics described in the fast scale. The results from several data 
assimilation experiments on the Lorenz '96 model are also discussed. 
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