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This workis dedicated to Jaap Seidel who made many contributions to algebraic combinatorics. Like many of
us, he was happiest when the key to a problem turned out to be a matrix, whose eigenvalues and multiplicities
had to be found. Although he never worked on chromatic polynomials, we think he would have liked the
algebra described below.

Abstract

In this paper we discuss the chromatic polynomial of a ‘bracelet’, when the base graph is a
complde graphKy and arlitrary links L between the consecutive copies are allowed. If there are
n copiesof the base graph the resulting graph will be denoted hgb). We show hat the chromatic
polynomial ofLp(b) canbewritten in the form

b
P(Ln(b); k) =Y Y mz(otr (NT)".
£=0mkt

Here the notatiomr + ¢ means thatr is a partition of¢, andmy (k) is a polynomial that does not
depend ori.. The guare maix N has size(?)n,,, whereny is the degree of the representatigh
of Symy, associated withr .

We derive arexplicit formula for m; (k) and describe a method for calculating the matrNﬁs
Examples are given. Finally, we discuss the application of these results to the problem of locating
the chomatic zeros.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The chromatic polynomials considered in this paper are associated with graphs, which
we call bracelets constructed in the following way. Take copies of abase graphand
join certain vertices in théth copy to certain vertices in thé + 1)th copy, the joins
being the same for eadh andn + 1 = 1 by convention. Although this may appear
to be a rather special construction, it doesehimportant applications. That is because
the partition functions of models studied byetiretical physicists are analogues of the
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chromatic polynomial, and their models arased on infinite graphs with a lattice-like
structure. Our bracelets can be regardedigise approximations to such graphs, and by
considering the behaviour agends to infinity we can obtain useful insights into physical
phenomena. An additional bonus is the fact that the explicit formulae obtained here are
well-adapted to the methods of complex function theory, so that results about the locations
of the zeros of the polynomials can be deduced.

A relatively simple case occurs when we take the base graph to be the complete graph
Kp, and the joins to be the matching in which each vertex in one cop{§,a$ joined to the
same vertex in the next copy. This gives a bracelet that we denoBg {y). The chromaic
polynomials ofB,(2) and B, (3) were first calculated in 19727] and 1999 B], and the
result for B,(4) has recently been obtained by two different methd@l®]. For the sake
of illustration, and in order to convince the reader that the problem is not quite trivial, we
give in full the formula for the number df-colourings ofB,(4):

(73— 84k + 41Kk% — 10k3 + k*)"
+ (k — 1)((73— 50k + 12k? — k3" + 3(21 — 22k + 8k? — k3"
+ k(k — 3)/2((31— 11k + k?)" + 3(11— 7k + k&))" 4 2(7 — 5k + k?)")
+ (k—1)(k —2)/2(3(21— 9k + k®)" + 3(5 — 5k + k?)")
+kk — 1)k —5)/6((7— K"+ 33—-kM
+k—-Dk—-2(k—-3)/6((L-K"+35-kM
+kk—2)(k—4)/3B6-K"+2(4-K"+32-k"M
+ k* — 10k3 + 29K? — 24k + 1.

This formula suggests that the terms occur in ‘levels’, the terms atdébaihg of the form
(Pdynomial of degreé) x (Integej(Pdynomial of degred — £)",

whereb = 4 in this xample. The mia result of [] is that,for all b, the terms at level
correspond to the partitions of £. Specifically, the representatioR™ of Sym, associated
with 7 gives rise 6 a mdrix N™ with the following property: each ‘polynomial of degree
b — ¢’ is an eigewalue of N™ and the associated ‘integer’ is its multiplicity. For example,
whenb = 4 and¢ = 3 the marix N2U has eigemalues 6— k, 4 — k, 2 — k, with
multiplicities 3, 2, 3 respectively. The corpnding terms are visiblin the penultimate
line of the famula displayed above.

This paper beginsSection 2 with an outline of a theoretical framework that justifies the
existence of formulae like the one displayed above. An explicit formula for the ‘polynomial
of degree?’ is obtained inSection 3 These results were suggested by the approach
described in 14], although the proofs do not depend on the presentation in that paper. In
the rest of the paper we describe techniques for calculating the complete set of polynomials
that occur in the formula, using methods based on recent work in a specialbi.aéée
shall also explain briefly how this framework can be used to study the limiting behaviour
of the zeros of chromatic polynomials.
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2. Thetheoretical framework

We onsiderthe situation when the base graph is a complete gigphbut abitrary
links between the apies are allowed. The set of links between successive copiksg of
will be denoted byL, a sibset ofV x V, wherevw € L if and only if the vertexv in
one copy igoined to the vertexw in the next copy. The resulting graph will be denoted by
Ln(b). Thus the graph8,(b) correspond to the choide= B = {11, 22, ..., bb}.

The following basic result will be proved in this section.

Theorem 1. The chomatic polynomial of L(b) can be written in the form

b
P(La(b): k) =>" > my(kotr (NO". O

£=0 7+t

Here the notationr - ¢ means that is a partition of¢, andm,, (k) is apolynomial that
does not depend dn. The guare méix N has size(?)nn, wheren,, is the degree of the
represetation R* of Sym, associated withr.

Comparing this formula with the terminology used in the Introduction, we see that
m,; (K) must be the ‘polynomial of degréeé this will be referred to as global multiplicity.
The trace of(N])" is a sumof the form )" uiAl', wherey; is the multiplicity of the
eigenvaluer; of N, so uj must be theihteger’: this will be referred to as kocal
multiplicity. It is worth noting that only in favourable cases will each individualbe
a ‘polynomial of degreeb — ¢’, although the situation can be rescued by collecting
algebraically conjugate sets of eigenvalues.

Let the vertex-set oKy beV = {1,2,...,b}. For allk > b let I'k(b) denote the set
of k-colourings ofKy, (that is,injections fromV to {1, 2, ..., k}) and letVx be the vector
space of complex-valued functions defined Bx(b). The canonical basis fd¥ is the set
of functions[«] (« € I'k(b)) such hat[«](8) = 1 if B = «, and O otherwise.

Two colouringse, 8 € Ik(b) are said to beompatiblewith a given linking setL if
a(v) # B(w) wheneveww € L. Thecompatibility operator T= T (k) is defined (with
respect to the canonical basis}) by the matix whose entries are

T 1 if « andg are compatible with.;
“¥ =10 otherwise.

It follows from a simple argument] that P(L(b); k), the number ofk-colourings of
Ln(b), is equal to the trace of (k)".

The elements of the séi (b) are just orderet-tuples of distinct elements of the set of
colours, and the symmetric group Syeicts in the obvious way on this set. In other words
Vk is aCSym-module, the actiors being defined by

S(w)[a] = [wa] (w € Symy).
Clearly, if« andg are compatible with, then so area andwg, so that
TL(KS) = S(@)TL(k)  forallw € Sym,.

This means that| (k) belongs to the centralizer algebra®ffor any linking setL.
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The decomposition o6 can be deduced from the standard works on representations
of the symmetric groupl3, Sections 4 and 14]. The irreducible submodulesSoére
in bijective correspondence with the partitionf k that satisfyr > yxpn, where the
relation > is the dominane order, andxp is the partition(k — b, 1°). The condition
T > ykp Means that, for somg (0 < ¢ < b), r is a partition in which the largest part is
k — ¢ and the remaining parts form a partitianof £. Thedegree (that is, dimension) of
the mrresponding submodule is equal to the numbeof standard tableaux of shape
and its multiplicity is equal tc(e)n,,

For our purposes it is convenient to reverse the correspondence betwared its
‘truncation’ . Givensr suchthatzr - ¢ and?¢ < b <k, letthe @rtsber; > np > --- >
¢, Wwhere dlthe terns exceptr; can be zero. Then we definé to be the corresponding
7, tha is the partition of k with partsk — £ > 71 > 72 > --- > 7y, andwrite m, (k)
instead ofn_«.

Since T (k) centralizesS, its action on}x decomposes in the same way as thaspf
with the degree and multiplicity interchanged (see, for examgl#@).[ Thus T (k) can
be represented by a matrix in which there is a diagonal block for eachi;paiy with
7 k€ < b, this block consisting ofn,; (k) maticesN[” of size(?)nn. It follows that

b
P(Ln(b); k) =tr (TL(k)" =D > my (Kt (NT)"

£=0 mH¢
This completes the proof dtheorem 1

3. A formulafor the global multiplicities

For a given partitionr of £, thereis a strictly decreasing partition of %E(@ + 1), with

¢non-zeropartsgivenhy =7 +¢ —i (1 <i <¢). Let
X o' g X1X X
== = X1X2...X¢.
" =i — o) "

It is a standard resultlp] that g, is a divisor of ¢!, the quotient being the number
of standard tableaux associated with which is also the degree, of the irreducibe
represetation R™.

Theorem 2. If = + ¢, the global multiplicity m (k) is givenby the formula
My (K) = g7 (K — o) (K — 02) -+ (K — o).

Proof. According to the theory described$ection 2theglobd multiplicity m, (k) is the
number of standard tableaux associated with the augmented partitfoof k, which has
partsk — ¢ > w1 > 72 > --- > 7. Forthis partition, denote by * the associated strictly
decreasing partition of /2k(k + 1) with k parts, and let

o*!

[1j-i(o =)
so that the requéd number ik!/g.+. It is easy to check by elementary algebra that

Yi = Oo* = Y1¥2... Yk,
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k!
(k—opk—02) - (k—o0p)’
Vi = Xi_1 2<i<t+1); yi=1 L+2<i<k.
Thus

Y1

ki k! (k=0 (k—02) - (K—0p)
Oor  Y1V2...Yk X1X2 -+ Xg

1
= g—(k—dl)(k—ffz)---(k—ae)- O

T

For the partitions [¢] and [1¢], associated with the principal and alternating
representations of Symthe famula gives

K K k—1
Mpri(K) = mey(K) = (Z) — (Z - 1), Mait(K) = Mge;(k) = < ¢ )

4. Theseveprinciple

The practical problem of finding the constituent matribifscan be solved by a method
based on the sieve principle. This enables us to define a set of opeggttns such hat
eachT_ (k) can be expressed as a linear combination ofSh€k). Theseoperators are
related to a method based on coherent algelitdls &nd there are atslinks with the
theory of Temperley—Lieb algebrak]].

Our method involes a new basis fd#, defined in he following way. LetP be a subset
of V and let9 be ak-colouring of the subgraph df,, induced byP. For anyx € I'k(b),
denote byxp the restriction ofx to P. We defind P | 6] to be the element dfx given by

[Pl61= )" [al.

ap=0
In other words[P | 0] is the function that takes the valdeon the caburings that agree
with 6 on P, and O othewise. Theweight of [P | 6] is defined to bed (P)| (trivially this
is equal to| P| when the base graph is complete).
LetM C V x V be amatding: equivalently, M is a triple(M1, M2, 1) with M1 C V,
M2 C V andu : M1 — M3 a bijedion. DefineSy (k) : Vk — Vk by the rule

SvK[a] = [Mz | ap™t].

Given awy linking setL € V x V, condder the bipartite graph formed by two copies\of
with edges dfined byL, and letM (L) denote the set of matchings in this graph. In other
words, the matchingM is in M (L) if M is a subset ofL.

The following theorem is a generalization of the result provedjmapdused in B].

Theorem 3. Suppose that b, k, and L are given, and lgt(K) be the associated
compatibility operator. Then

Tk= Y HMsuk).
MeM(L)
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Proof. For anywa, B € I'k(b) we shall fiow that

TLIB) = Y )Msu®Iial@).
MeM(L)

By definition[M2 | e ~11(B) = 1, if and only ifapu =t = Bm, for anyM e M(L). Let
W(B) = {w e V | B(w) = a(v) for somev suchthat(v, w) € L}.

Then,M> ¢ W(B) implies [M2 | apn~1(B) = 0. On the other hand, suppose that
M, < W(B). Then the conditionap™! = Bm, implies that thee exists a unique
M e M(L) suchthat[M> | ap=11(B) = 1. Let

MP(L) ={M e ML) | Mz |ap (B) =1}
then fa everyM, € W(pB) there exist exatly oneM = (Mg, My, u) € MP(L) and

> EOMsu@ay = Y M
MeM(L) MeMA(L)

If (o, B) is compatible withL, W(B) is empty. SoM# (L) has just one term, corresponding
to M2 = ¢, and the regltis 1. On the other hand, i, 8) is not compatible with_, W(8)
is not empty and the sum d + (—1))W®I = 0. The result follows. [

5. Theconstituent matrices

Theorem 3ays that th effect of T on a typical elemeritP | 6] is given by
TPlo1= Y  (~HMsulP 6]
MeM(L)
Further aalysis gimilar to that used in€]]) leads to the fdowing results.

Theorem 4. For any matching M, @[P | 6] can be written as a linear combination of
terms[Q | ¢] with ¢ (Q) < 6(P). Consequently, if we fix a set of colours C, the set of all
[P | 6] with6(P) € C gans a subspadé(C) of Vi that is invariant under everyyp, and
thus invariant under . O

Theorem 5. Suppose thap (Q) C 0(P). Then he coefficient ofQ | ¢]in Su[P | 0] is
non-zero provided that:

(i) n(PNM1) S QC Mg, and
(i) 6(v) = ¢(w) wherever (v, w) € (P x Q)N M.

When these coiitibns hold the coefficient is

(—1)QI=IPOMl £ 5y (b k) where
fsb,k)=(K—-9Sps=(k—-8)(k—-s—1)...(k—=b+1). O
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We proceed to examine the implications of these results. There is no loss of generality

in takingC = {1, 2, ..., £}. Then wecan represent the action §f; on/(C) by a matrix

Su, where tie entry

(SWiP611Q1 91
is the coefficient otAQ | p]in Su[P | #]. By listing the termg P | 8] in order of their weight

|6(P)|, the marix Sy is partitioned into submatricddy s defined by the intersection
of the rows of weight with columns of weight, and thesewsbmatrices are zero when
s > r. We shall focus o the sibmatrixUw ¢ ¢, Sincethe eigenvalues of this matrix are

also eigenvalues oy and Sy. For thetime being¢ will be fixed and we shall write

Um =Um e

Given ay two ¢-subsets oV, sayP andQ, the rows[P | 8] and the column§Q | ¢]
of Uy define a submatri)U,C;Q, of size ¢! x ¢!. A simple ctange of notation leads to
an explicit formula forU,\FA’Q. Since P is a aibset ofV = {1, 2,..., b} we can write

P ={p1, p2,..., pe}, Whereps < p2 < --- < p¢, andgiven the ijectiond : P — C,
we can defie a pernatation o in Sym, by

ci)=0(p) (=12...0.

Clearly the correspondence betwekando is a bijection,so wecan denotéP | 6]

by [P, o], and[Q | ¢] by [Q, 7], for sutableo, T € Sym,. Furthermore, w can consider

U,\';Q as a matrix whose rows and columns correspond to the members of Bgnernries

being

UP D5 = UMip.oia.o-

If M does not satisfy condition (i) ofTheorem 5U,\';Q is the zero matrix. On the other

hand, suppose that condition (i) is satisfied; in particular this meang Bhat M1| =
(P x Q) N M|. Then, translating conditio(ii) into a condition ono andz we obtain

(=D IPOMl £ ooy (b, k) if o (i) = (j) whenever

UG, = (pi,q)) € (P x Q) NM;
0 otherwise

Let X(p) be the permtation matrix representing in the regular representation of Sym
onitself; that is,X (p),. is 1 if o = tp and 0 otherwise. Define

Fuo=1{p € Sym | (p.g)) € (P x QNM=>p(i) = j}.
PQ

SinceF,, ~ is a coset of the pointwise stabiliser of a set of §i2en My, it follows that

|F,\';Q| = (L — |P N Mq)!. The famula forU,\F,,’Q when condition (i) holds can now be

written as

UGS = D PMIf oy k) Y X(p).

PQ
pEFy
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Denote byUy, the matrk obtained fromJy when X(p) is replaced byR™ (p). ThusUp,
is partitioned into blocksu,\’jl)PQ, of sizen, x n, defined by

(=D P fipumy (0, K) X, pee RT (o) if (PN M)
UiPe = C Q< My
0 otherwise.

It can be shown that every eigenvectoktf; with eigenvalue. can be lifted ta, linearly
independent eigenvectorsdf, with the same eigenvalue (se& Theorem 3]). A simple
counting argument now shows that every eigenvalugygfis an eigenvalue of somgy, .

The constituents of the compatibility matrfx can now be defined by the analogue of
the formulaobtained inTheorem 3

F= > (nMup.
MeM(L)

It will be seen that, for a giveh andL, and a given leved, the procedure requires a non-
trivial amount of calculation. Fortunately, in some cases explicit formulae can be obtained,
and examples are given in the following section. For the sake of orientation, we can deal
with the cas¢ = 0O diredly. In this case/(9) is the one-dimensiohapace spanned by
the element that takes the value 1 onemy colouring. Simple direct arguments show that
Sv (K)(u) = km (K)u, wherekm (k) is the nunber of 8 € I'k(b) suchthata(v) = B(w)
whenever(v, w) € M. In fact

km(K) = (kK = [IMDp—jm = fim (b, k),
which agrees with the generalrfaula given abve. Sinilarly

TLw= Y HMsum ) =rku,
MeM(L)

whererp (k) = Y (—=1)MIfy (b, k) is the nunber of 8 suchthata andg are compatible
with L. Clearlyx (k) is the ungue eigenvalue dtevel Q.

6. Thecaseb = 3 with arbitrary links

Whenb = 3 thenumber of matching® (as defined irBection 3 with M| =0, 1,2, 3
is 1,9, 18, 6 respectively. In this section we shall determine the matdiges: U ¢, for
all these matchings and dll< 3. The results are sufficient to give the constituelfs of
T, for any linking setL. Two typical examples will be given.

Atlevel ¢ = 0, 1, 2, 3 the marix Um ¢, has size 13, 6, 6, and the bIockSJ,C;Q are of
size 11, 2, 6. Notethat if M| < ¢ the conditionQ € M> cannot hold, and all the blocks
are zero.

Level 0. As explained at the end dbection 5when|M| = 0, 1, 2, 3 respectively Uy, is
the 1x 1 matrix

kk—1k-2, (k-Dk-2, (-2, L
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There is only the principal representation and hemﬁ{é =Upm.

Level 1. HereUy is zero. WherfM| > 1, Uy is the 3x 3 matrk with entries(Um) pq =
U,\';Q, P = {p}, Q = {q}. Condtion (i) of Theorem Shecomes

gqe M2 and peMi=(p,q) € M.

Condition (ii) is automatically satisfied, 5" = Sym, = {id}. Thus the matriUy is
given by

(kK= [MD3—mj if g € M2, and(p, q) € M;
(Um)pg = —(k—=IM[—=D2-v ifge Mz andp¢ Mu;
0 if g ¢ M2orpe Mjpand(p, q) ¢ M.

As in the prevous case we have only the principal representation and hﬂzﬁ&e: Um.
For example

/=D k-2 0 0 | ke2 0 0
ui=( -®«-2 o of., u¥,=| o k-2 o],

—(k-2 00 -1 -1 0
_ 1 00
pri
Ul12033=(0 1 0OF.
0 0 1
Level 2. HereUy is a 6x 6 matrix partitioned into bIock*s.J,\F,l’Q of size 2x 2. Each block
is either the all-zero matri©0, or amultiple of I or J — I, whereJ is the all-one matrix.

All blocks areO if [M| < 2. AssumeP = {p1, p2} with p1 < pz andQ = {qs, gz} with
01 < 0. For|M| > 2 let

if (p1,0q1) € M or(pz, g2) € M;

I
Fm (P, Q)Z{J_| if (P1.02) € M or(p2, 1) € M.

Then the entries dfly, are given by

(K—=IMD3_m; Fm(P, Q) if Q € MpandP € My andu(P) = Q;
u,%={-Fu(P,Q if Q< MpandP ¢ My;
o] if Q¢ Maor P € Myandu(P) # Q.

For example

k-2 O O (@] —1 (@]
U11,22=( -1 @) O), U11,33=(O k=2l O),
-J-1 O O (@] —1 (@]
(@]
(@]
|

| O
Uiz 2233=| O | .

O O
Here we have the principal and alternating representation of, Sy the matrice'sl,ﬁ),lri

andU2" are obtained as follows. Fat’r' we replace iUy the matriced , J — | andO
by 1,1andO. FoI:J,"\",lIt we replace ity the matriced, J — | andO by 1,—1 andO.
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Level 3. The only non-zero cases are whdm| = 3. In these casddy is a 6 x 6 matrix

with a single blockJ PQ, corresponding td® = Q = {123}. Condition (i) is automatically
satisfied, and it igasy 6 show hat F7 @ = {1}, soUw = X(u). ThusUZ, = R™(u).

Here, apart from the praipal and alternating representations we have the representation
corresponding to the partitidi21], andufy' = 1, Ut = sign(u), while Ul2Y is a 2x 2
matiix.

Example 1. The graphd®,(b) are obtained when the linking setBs= {11, 22, ..., bb}.
The chromatic polynomial oB,(3) was first calculated in 19998], and many terms for
Bn(b) in general are now knownd]. The basicequation is

Te =S — (S1+ S22+ S3) + (S, 22+ Si11,33 + S2.33) — S11,22 33

from which itfollows that
g =Uj — (U} + U+ Uz + (Ufy o+ Ul 33+ U35 39) — Ul 22 33

At Level Owe get he 1x 1 matrix

NE™ = k(k — 1)(k — 2) — 3(k — 1)(k — 2) + 3(k — 2) — 1,
and thus the eigenvalé — 6k? + 14k — 13. At Level 1we get he 3x 3 matrix

, —k? + 5k — 7 k-3 k—3
NG = k—3 —k%2+5k—7 k-3
k-3 k-3 —k%4+5k—7

with eigenvalues-k? + 7k — 13 and—k? + 4k — 4 (twice). At Level 2we get he 3x 3
matiices

(k=3 -1 -1 k=3 -1 1
NE'=] -1 k-3 -1 and  Ng'=| -1 k-3 -1
-1 -1 k-3 1 -1 k-3

with respective eigenvaluds— 5 andk — 2 (twice), andk — 1 andk — 4 (twice). At
Level 3we haveF,Cl’Q = {id} and hence the eigenvaluel with local multiplicity 1, 1 and
2 corresponding to the three representations.

The global multiplicitiean,; (k) are:

/4 =0 (=1 (=2 =3

(e 1 k—1 kk-3)/2 k(k —1)(k — 5)/6

1 - - k-Dk-2/2 *k-D1Hk-2(k-23)/6
[21] - - - k(k—2)(k—4)/3

Example 2. When the Ihking set isH = {12, 13,21, 23, 31, 32}, the resulting graph
Hn(3) is acyclic octahedronThe name is suggested by the fact that in the case 2
the graph reduces to eéhregular octahedronKy 2 2. The calculations forHn(3) were
done byad hocmethods in 8], and here we shall describe how the results fit into our



N.L. Biggs et al. / European Journal of Combinatorics 25 (2004) 147-160 157

general framework. There are 1, 6, 9, 2 matchiMyse M(H) with [M| = 0,1,2,3
respectively. Taking the apppriate alternating sum dtevel Owe get he 1x 1 matrix

NEri =k(k—1Dk—-2—6k—Dk—-2)+9k—-2) — 2,

and thus the eigenvalué — 9k2 + 2% — 32. At Level 1we get he 3x 3 matrix NP/
with entries X — 6 on the diagonal and-k? + 7k — 13 elsewhere. The eigenvalues are
—2(k — 4)? andk? — 5k + 7 (twice). At Level 2we get he 3x 3 matices

~ [(k—4 k-5 k-5

Nﬁ{':(k—s k—4 k—S) and
k-5 k—5 k—4
k—4 —k-3 k-3

Nﬂ'tz(—(k—3) k—4 —(k—3))
k=3 —k-3 k-4

with respective eigenvaluek3- 14 and 1 (twice), antt — 2 and—2k — 7 (twice). At

Level 3 we get the 6 6 matrix —(X (123 + X(132), and cdlapsed matricet,", NA"
andNZY, of size 1x 1, 1x 1 and 2« 2 resfectively. The first two matrices are just2), so

—2 is an dgenvalue with local multiplicity 1 in each case. The mamgl] is the identity

matrix of size 2, so it has eigenvalue 1 (twice). The respective global multiplicities do not
depend orL and hence are equal to the ones given in the previous example. These results
imply that the chromatic polynomial d,(3) is

P(Hn(3); k) = (k3 — 9k? + 2% — 32"
+ k= D((—=2(k — HAH" + 2(k? — 5k + 7))
+ (1/2)kk — 3)((3k — 14" + 2)
+ (1/2)(k— Dk —2((k—2"+2(=2k+ 7"
+ (1/6)k(k — 1)(k — 5)(—2)"
+ (1/6)(k — D) (k — 2)(k — 3)(—2)"
+ (1/3)kk — 2)(k — 4)(2).

7. Location of chromatic zeros

BecauseP (G; k) is a polynomial function of, it is usual toconsider it as a function
of a complex variable. This is particularlyppropriate in stistical mechanics, where
the foas is on thethermodynamic limilimn_ o, P(Gn; 2)¥/"", v, being the number of
vertices ofGp. The thermodynamic limit is generally not analytic in the entire complex
plane, and its singularities depend dretlimiting behaviour of the zeros d?(Gp; 2)
asn — oo. The framework described in this paper vegell-adapted for investigating
this behaiour.

An elementary result about the location of the zeros is Resdheorem 15, p. 218].

For example consider the roots oP(Hp(3); z) = 0. There are B roots and their sum



158 N.L. Biggs et al. / European Journal of Combinatorics 25 (2004) 147-160

is 9n, so thecentroid is at the point 3 and it is convenient to pu& z — 3. The chromatic
polynomial reduces to

w3+ 2w + 1" + Qn(w),

where Qn(w) is a polynomial of degree 2 + 1. The zeros ofw® + 2w + 1 are
(approximately)

—0.4534 0.2267+ 1.4671, 0.2267— 1.4671,

which lie in the discjw| < 1.4852. It follows from Rouch’s theorem that all the zeros

of (w® + 2w + 1™ + Qn(w) lie in the disc|w| < R, provided thatR > 1.4852 and

|lw3 + 2w + 1" > |Qn(w)| on the drcle jw| = R. Sincethe degree o (w) is 2n + 1,

it is clear that a suitable value & can be found: for examplR = 3 suffices. Thus all the

rootslie in the disc|z| < 6, where the relevance of the number 6 is that it is the degree of

Hnh(3). The important general result of Sokalf] gives a weaker conclusion in this case.
More detailed information about the roots follows from the theorem of Beraha ét.al. |

Their result says that the limit points of the zeros of a sequence of polynomials of the form

S
Pa@ =) m@x@",
i=1
are the pointg lying on the curves where two of the termg¢) are of equal modulus and
dominate the other terms (together with some isolated points, which need not concern us).
Inthe case of the cyclic octahedra, the polynomials (expressed as functions af-3)
are

)LAzw?’—i—Zw—i—l, )LB=—2(w—1)2, AC=w2+w+1,
Ap=3w-—-5 Aig=w+1l Ip=-2w+1l Iig=-2, iyg=1

In fact, one of the three eigenvalugg, Ag, Ap always dominates the other five. This
means that the limiting behaviour of the roots is determined by these three.

Denote byI'ag the curvedefined by the equatiofia| = |Ag|, and soon. Thenl'ag
and'sp are simple closed curves intersecting in two points

t, =0.9971...+1.6284...i.

I'ap is another simple closed curve, which necessarily contaarsdi.

The portions of these curves that satisfy the domination condition are the &fgrof
that joinst andt and lies entirely in the half-plane Re > 0, and the arcs afag and/'sp
that joint andt and do not lie entirely in the half-plane Re> 0. Notethat these arcs all
lie in the half-plane Re > 0.

These arcs divide the complex plane into three regions: a crescent-shaped region
containingw = 0, in which Ap dominates; another crescent-shaped region contiguous
with the first, in whichig dominates, and the remainder of the complex plane, in which
Aa dominates. Apart from some isolated points, suclzas 0 (w = —3), thelimit
points of the chromatic roots of the grapHg(3) lie on the parts of 'ag, I'ap, I'sp that
bound these regions.
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Although all the discussion here has concerned the case when the base graph is
complete, similar results and methods hold more generally. For example, the proof of
Theorem Femains viid when the base graph and the linking set satisfy the following
condition: for eachw € V the set ofv € V suchthat(v, w) € L is a cmomplete subgraph
of G. This observation covers many of the results obtained by Shrock and his colleagues
(see O] and the reérences given there). We end with one example.

This condition stated above holds for the family génerdised dodeahedra 0.
Here G is a path with vertex-se¥ = {1, 2, 3,4} (1 and 4 being the end-vertices), and
L = {11, 32 44}. In this case the resulting graph is a cubic grdph with 4n vertices,
and in particulaDs is the graph of the regular dodecahedron. The chromatic polynomial
P (Dp; k) wasobtained in full by Changd]. It can be written in the form

tr (To(k)" + (kK — Dtr (T1(K)" + (K% — 3k + Dtr (Ta(k)" + (k% — 6k% + 8k — 1),

where thesquare matrice3, (k) (¢ = 0, 1, 2) have size 36, 4 resgectively. Chang’s result
can also be obtained by the algebraic methods described here, and the Ze¢@s, ok)
can be investigated by techniques bagedhe Beraha—Kahane—Weiss theorém |
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