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This workis dedicated to Jaap Seidel who made many contributions to algebraic combinatorics. Like many of
us, he was happiest when the key to a problem turned out to be a matrix, whose eigenvalues and multiplicities

had to be found. Although he never worked on chromatic polynomials, we think he would have liked the
algebra described below.

Abstract

In this paper we discuss the chromatic polynomial of a ‘bracelet’, when the base graph is a
complete graphKb and arbitrary links L between the consecutive copies are allowed. If there are
n copiesof the base graph the resulting graph will be denoted byLn(b). We show that the chromatic
polynomial ofLn(b) canbewritten in the form

P(Ln(b); k) =
b∑

�=0

∑
π��

mπ (k)tr (Nπ
L )n.

Here the notationπ � � means thatπ is a partition of�, andmπ (k) is a polynomial that does not
depend onL . The square matrix Nπ

L has size
(b
�

)
nπ , wherenπ is the degree of the representationRπ

of Sym� associated withπ .
We derive anexplicit formula for mπ (k) and describe a method for calculating the matricesNπ

L .
Examples are given. Finally, we discuss the application of these results to the problem of locating
the chromatic zeros.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The chromatic polynomials considered in this paper are associated with graphs, which
we call bracelets, constructed in the following way. Taken copies of abase graph, and
join certain vertices in thei th copy to certain vertices in the(i + 1)th copy, the joins
being the same for eachi , and n + 1 = 1 by convention. Although this may appear
to be a rather special construction, it does have important applications. That is because
the partition functions of models studied by theoretical physicists are analogues of the
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chromatic polynomial, and their models are based on infinite graphs with a lattice-like
structure. Our bracelets can be regarded asfinite approximations to such graphs, and by
considering the behaviour asn tends to infinity we can obtain useful insights into physical
phenomena. An additional bonus is the fact that the explicit formulae obtained here are
well-adapted to the methods of complex function theory, so that results about the locations
of the zeros of the polynomials can be deduced.

A relatively simple case occurs when we take the base graph to be the complete graph
Kb, and the joins to be the matching in which each vertex in one copy ofKb is joined to the
same vertex in the next copy. This gives a bracelet that we denote byBn(b). The chromatic
polynomials ofBn(2) and Bn(3) were first calculated in 1972 [7] and 1999 [8], and the
result forBn(4) has recently been obtained by two different methods [6, 9]. For the sake
of illustration, and in order to convince the reader that the problem is not quite trivial, we
give in full the formula for the number ofk-colourings ofBn(4):

(73− 84k + 41k2 − 10k3 + k4)n

+ (k − 1)((73− 50k + 12k2 − k3)n + 3(21− 22k + 8k2 − k3)n)

+ k(k − 3)/2((31− 11k + k2)n + 3(11− 7k + k2)n + 2(7 − 5k + k2)n)

+ (k − 1)(k − 2)/2(3(21− 9k + k2)n + 3(5 − 5k + k2)n)

+ k(k − 1)(k − 5)/6((7− k)n + 3(3 − k)n)

+ (k − 1)(k − 2)(k − 3)/6((1 − k)n + 3(5 − k)n)

+ k(k − 2)(k − 4)/3(3(6− k)n + 2(4 − k)n + 3(2 − k)n)

+ k4 − 10k3 + 29k2 − 24k + 1.

This formula suggests that the terms occur in ‘levels’, the terms at level� being of the form

(Polynomial of degree�) × (Integer)(Polynomial of degreeb − �)n,

whereb = 4 in this example. The main result of [6] is that,for all b, the terms at level�
correspond to the partitionsπ of �. Specifically, the representationRπ of Sym� associated
with π gives rise to a matrix Nπ with the following property: each ‘polynomial of degree
b − �’ is an eigenvalue ofNπ and the associated ‘integer’ is its multiplicity. For example,
when b = 4 and� = 3 the matrix N[21] has eigenvalues 6− k, 4 − k, 2 − k, with
multiplicities 3, 2, 3 respectively. The corresponding terms are visible in the penultimate
line of the formula displayed above.

This paper begins (Section 2) with an outline of a theoretical framework that justifies the
existence of formulae like the one displayed above. An explicit formula for the ‘polynomial
of degree�’ is obtained inSection 3. These results were suggested by the approach
described in [14], although the proofs do not depend on the presentation in that paper. In
the rest of the paper we describe techniques for calculating the complete set of polynomials
that occur in the formula, using methods based on recent work in a special case [6]. We
shall also explain briefly how this framework can be used to study the limiting behaviour
of the zeros of chromatic polynomials.
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2. The theoretical framework

We considerthe situation when the base graph is a complete graphKb, but arbitrary
links between the copies are allowed. The set of links between successive copies ofKb

will be denoted byL, a subset ofV × V , wherevw ∈ L if and only if the vertexv in
one copy isjoined to the vertexw in the next copy. The resulting graph will be denoted by
Ln(b). Thus the graphsBn(b) correspond to the choiceL = B = {11, 22, . . . , bb}.

The following basic result will be proved in this section.

Theorem 1. The chromatic polynomial of Ln(b) can be written in the form

P(Ln(b); k) =
b∑

�=0

∑
π��

mπ(k)tr (Nπ
L )n. �

Here the notationπ � � means thatπ is a partition of�, andmπ(k) is apolynomial that
does not depend onL. The square matrix Nπ

L has size
(b
�

)
nπ , wherenπ is the degree of the

representation Rπ of Sym� associated withπ .
Comparing this formula with the terminology used in the Introduction, we see that

mπ(k) must be the ‘polynomial of degree�’; this will be referred to as aglobal multiplicity.
The trace of(Nπ

L )n is a sumof the form
∑

µi λ
n
i , whereµi is the multiplicity of the

eigenvalueλi of Nπ
L , so µi must be the ‘integer’: this will be referred to as alocal

multiplicity. It is worth noting that only in favourable cases will each individualλi be
a ‘polynomial of degreeb − �’, although the situation can be rescued by collecting
algebraically conjugate sets of eigenvalues.

Let the vertex-set ofKb be V = {1, 2, . . . , b}. For all k ≥ b let Γk(b) denote the set
of k-colourings ofKb (that is,injections fromV to {1, 2, . . . , k}) and letVk be the vector
space of complex-valued functions defined onΓk(b). The canonical basis forVk is the set
of functions[α] (α ∈ Γk(b)) such that[α](β) = 1 if β = α, and 0 otherwise.

Two colouringsα, β ∈ Γk(b) are said to becompatiblewith a given linking setL if
α(v) �= β(w) whenevervw ∈ L. Thecompatibility operator T= TL(k) is defined (with
respect to the canonical basis ofVk) by the matrix whose entries are

Tαβ =
{

1 if α andβ are compatible withL;
0 otherwise.

It follows from a simple argument [2] that P(Ln(b); k), the number ofk-colourings of
Ln(b), is equal to the trace ofTL(k)n.

The elements of the setΓk(b) are just orderedb-tuples of distinct elements of the set of
colours, and the symmetric group Symk acts in the obvious way on this set. In other words
Vk is aCSymk-module, the actionSbeing defined by

S(ω)[α] = [ωα] (ω ∈ Symk).

Clearly, if α andβ are compatible withL, then so areωα andωβ, so that

TL(k)S(ω) = S(ω)TL(k) for all ω ∈ Symk.

This means thatTL(k) belongs to the centralizer algebra ofS, for any linking setL.
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The decomposition ofS can be deduced from the standard works on representations
of the symmetric group [13, Sections 4 and 14]. The irreducible submodules ofS are
in bijective correspondence with the partitionsτ of k that satisfyτ � γk,b, where the
relation � is the dominance order, andγk,b is the partition(k − b, 1b). The condition
τ � γk,b means that, for some�, (0 ≤ � ≤ b), τ is a partition in which the largest part is
k − � and the remaining parts form a partitionπ of �. Thedegree (that is, dimension) of
the corresponding submodule is equal to the numbernτ of standard tableaux of shapeτ ,
and its multiplicity is equal to

(b
�

)
nπ .

For our purposes it is convenient to reverse the correspondence betweenτ and its
‘truncation’π . Givenπ suchthatπ � � and� ≤ b ≤ k, let the parts beπ1 ≥ π2 ≥ · · · ≥
π�, where all the terms exceptπ1 can be zero. Then we defineπk to be the corresponding
τ , that is the partition of k with partsk − � ≥ π1 ≥ π2 ≥ · · · ≥ π�, andwrite mπ(k)

instead ofnπk .
SinceTL(k) centralizesS, its action onVk decomposes in the same way as that ofS,

with the degree and multiplicity interchanged (see, for example, [12]). Thus TL(k) can
be represented by a matrix in which there is a diagonal block for each pair(π, �) with
π � � ≤ b, this block consisting ofmπ(k) matricesNπ

L of size
(b
�

)
nπ . It follows that

P(Ln(b); k) = tr (TL(k))n =
b∑

�=0

∑
π��

mπ(k)tr (Nπ
L )n.

This completes the proof ofTheorem 1.

3. A formula for the global multiplicities

For a given partitionπ of �, there is a strictly decreasing partitionσ of 1
2�(� + 1), with

� non-zero parts given byσi = πi + � − i (1 ≤ i ≤ �). Let

xi = σi !∏
j >i (σi − σ j )

, gπ = x1x2 . . . x�.

It is a standard result [13] that gπ is a divisor of �!, the quotient being the number
of standard tableaux associated withπ , which is also the degreenπ of the irreducible
representation Rπ .

Theorem 2. If π � �, the global multiplicity mπ(k) is givenby the formula

mπ (k) = g−1
π (k − σ1)(k − σ2) · · · (k − σ�).

Proof. According to the theory described inSection 2, theglobal multiplicity mπ(k) is the
number of standard tableaux associated with the augmented partitionπk of k, which has
partsk − � ≥ π1 ≥ π2 ≥ · · · ≥ π�. For this partition, denote byσ ∗ the associated strictly
decreasing partition of 1/2k(k + 1) with k parts, and let

yi = σ ∗
i !∏

j >i (σ
∗
i − σ ∗

j )
, gσ ∗ = y1y2 . . . yk,

so that the required number isk!/gσ ∗ . It is easy to check by elementary algebra that



N.L. Biggs et al. / European Journal of Combinatorics 25 (2004) 147–160 151

y1 = k!
(k − σ1)(k − σ2) · · · (k − σ�)

;
yi = xi−1 (2 ≤ i ≤ � + 1); yi = 1 (� + 2 ≤ i ≤ k).

Thus
k!

gσ ∗
= k!

y1y2 . . . yk
= (k − σ1)(k − σ2) · · · (k − σ�)

x1x2 · · · x�

= 1

gπ

(k − σ1)(k − σ2) · · · (k − σ�). �

For the partitions [�] and [1�], associated with the principal and alternating
representations of Sym�, the formula gives

mpri(k) = m[�](k) =
(

k

�

)
−

(
k

� − 1

)
, malt(k) = m[1�](k) =

(
k − 1

�

)
.

4. The sieve principle

The practical problem of finding the constituent matricesNπ
L can be solved by a method

based on the sieve principle. This enables us to define a set of operatorsSM (k), such that
eachTL(k) can be expressed as a linear combination of theSM (k). Theseoperators are
related to a method based on coherent algebras [14], and there are also links with the
theory of Temperley–Lieb algebras [11].

Our method involves a new basis forVk, defined in the following way. LetP be a subset
of V and letθ be ak-colouring of the subgraph ofKb induced byP. For anyα ∈ Γk(b),
denote byαP the restriction ofα to P. We define[P | θ ] to be the element ofVk given by

[P | θ ] =
∑

αP=θ

[α].

In other words,[P | θ ] is the function that takes the value1 on the colourings that agree
with θ on P, and 0 otherwise. Theweight of [P | θ ] is defined to be|θ(P)| (trivially this
is equal to|P| when the base graph is complete).

Let M ⊆ V × V be amatching: equivalently, M is a triple(M1, M2, µ) with M1 ⊆ V ,
M2 ⊆ V andµ : M1 → M2 a bijection. DefineSM (k) : Vk → Vk by the rule

SM (k)[α] = [M2 | αµ−1].
Given any linking setL ⊆ V × V , consider the bipartite graph formed by two copies ofV ,
with edges defined byL, and letM(L) denote the set of matchings in this graph. In other
words, the matchingM is in M(L) if M is a subset ofL.

The following theorem is a generalization of the result proved in [4] andused in [6].

Theorem 3. Suppose that b, k, and L are given, and let TL(k) be the associated
compatibility operator. Then

TL(k) =
∑

M∈M(L)

(−1)|M |SM (k).
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Proof. For anyα, β ∈ Γk(b) we shall show that

TL(k)[α](β) =
∑

M∈M(L)

(−1)|M |SM (k)[α](β).

By definition[M2 | αµ−1](β) = 1, if and only ifαµ−1 = βM2 for anyM ∈ M(L). Let

W(β) = {w ∈ V | β(w) = α(v) for somev suchthat(v,w) ∈ L}.
Then, M2 � W(β) implies [M2 | αµ−1](β) = 0. On the other hand, suppose that
M2 ⊆ W(β). Then the condition αµ−1 = βM2 implies that there exists a unique
M ∈ M(L) suchthat[M2 | αµ−1](β) = 1. Let

Mβ(L) = {M ∈ M(L) | [M2 | αµ−1](β) = 1};
then for everyM2 ⊆ W(β) there exists exactly oneM = (M1, M2, µ) ∈ Mβ(L) and

∑
M∈M(L)

(−1)|M |SM (k)[α](β) =
∑

M∈Mβ(L)

(−1)|M |.

If (α, β) is compatible withL, W(β) is empty. SoMβ(L) has just one term, corresponding
to M2 = ∅, and the result is 1. On the other hand, if(α, β) is not compatible withL, W(β)

is not empty and the sum is(1 + (−1))|W(β)| = 0. The result follows. �

5. The constituent matrices

Theorem 3says that the effect ofTL on a typical element[P | θ ] is given by

TL [P | θ ] =
∑

M∈M(L)

(−1)|M |SM [P | θ ].

Further analysis (similar to that used in [6]) leads to the following results.

Theorem 4. For any matching M, SM [P | θ ] can be written as a linear combination of
terms[Q | φ] with φ(Q) ⊆ θ(P). Consequently, if we fix a set of colours C, the set of all
[P | θ ] with θ(P) ⊆ C spans a subspaceU(C) ofVk that is invariant under every SM , and
thus invariant under TL. �

Theorem 5. Suppose thatφ(Q) ⊆ θ(P). Then the coefficient of[Q | φ] in SM [P | θ ] is
non-zero provided that:

(i) µ(P ∩ M1) ⊆ Q ⊆ M2, and

(ii) θ(v) = φ(w) whenever (v,w) ∈ (P × Q) ∩ M.

When these conditionshold the coefficient is

(−1)|Q|−|P∩M1| f|P∪M1|(b, k) where

fs(b, k) = (k − s)b−s = (k − s)(k − s − 1) . . . (k − b + 1). �
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We proceed to examine the implications of these results. There is no loss of generality
in takingC = {1, 2, . . . , �}. Then wecan represent the action ofSM onU(C) by a matrix
ŜM , where the entry

(ŜM )[P | θ],[Q | φ]

is the coefficient of[Q | φ] in SM [P | θ ]. By listing the terms[P | θ ] in order of their weight
|θ(P)|, the matrix ŜM is partitioned into submatricesUM,r,s defined by the intersection
of the rows of weightr with columns of weights, and these submatrices are zero when
s > r . We shall focus on the submatrixUM,�,�, sincethe eigenvalues of this matrix are
also eigenvalues of̂SM and SM . For thetime being� will be fixed and we shall write
UM = UM,�,�.

Given any two �-subsets ofV , sayP andQ, the rows[P | θ ] and the columns[Q | φ]
of UM define a submatrixU PQ

M , of size�! × �!. A simple change of notation leads to

an explicit formula forU PQ
M . Since P is a subset ofV = {1, 2, . . . , b} we can write

P = {p1, p2, . . . , p�}, wherep1 < p2 < · · · < p�, andgiven the injectionθ : P → C,
we can define a permutation σ in Sym� by

σ(i ) = θ(pi ) (i = 1, 2, . . . , �).

Clearly the correspondence betweenθ andσ is a bijection,so wecan denote[P | θ ]
by [P, σ ], and[Q | φ] by [Q, τ ], for suitableσ, τ ∈ Sym�. Furthermore, we can consider
U PQ

M as a matrix whose rows and columns correspond to the members of Sym�, the entries
being

(U PQ
M )στ = (UM )[P,σ ][Q,τ ].

If M does not satisfy condition (i) ofTheorem 5, U PQ
M is the zero matrix. On the other

hand, suppose that condition (i) is satisfied; in particular this means that|P ∩ M1| =
|(P × Q) ∩ M|. Then, translating condition (ii) into a condition onσ andτ we obtain

(U PQ
M )στ =




(−1)�−|P∩M1| f|P∪M1|(b, k) if σ(i ) = τ ( j ) whenever
(pi , qj ) ∈ (P × Q) ∩ M;

0 otherwise.

Let X(ρ) be the permutation matrix representingρ in the regular representation of Sym�

on itself; that is,X(ρ)στ is 1 if σ = τρ and 0 otherwise. Define

F PQ
M = {ρ ∈ Sym� | (pi , qj ) ∈ (P × Q) ∩ M ρ(i ) = j }.

SinceF PQ
M is a coset of the pointwise stabiliser of a set of size|P ∩ M1|, it follows that

|F PQ
M | = (� − |P ∩ M1|)!. The formula forU PQ

M when condition (i) holds can now be
written as

U PQ
M = (−1)�−|P∩M1| f|P∪M1|(b, k)

∑
ρ∈F P Q

M

X(ρ).
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Denote byUπ
M the matrix obtained fromUM whenX(ρ) is replaced byRπ (ρ). ThusUπ

M
is partitioned into blocks(Uπ

M )PQ, of sizenπ × nπ , defined by

(Uπ
M )PQ =




(−1)�−|P∩M1| f|P∪M1|(b, k)
∑

ρ∈F P Q
M

Rπ (ρ) if µ(P ∩ M1)

⊆ Q ⊆ M2;
O otherwise.

It can be shown that every eigenvector ofUπ
M with eigenvalueλ can be lifted tonπ linearly

independent eigenvectors ofUM with the same eigenvalue (see [6, Theorem 3]). A simple
counting argument now shows that every eigenvalue ofUM is an eigenvalue of someUπ

M .
The constituents of the compatibility matrixTL can now be defined by the analogue of

the formulaobtained inTheorem 3:

Nπ
L =

∑
M∈M(L)

(−1)|M |Uπ
M .

It will be seen that, for a givenb andL, and a given level�, the procedure requires a non-
trivial amount of calculation. Fortunately, in some cases explicit formulae can be obtained,
and examples are given in the following section. For the sake of orientation, we can deal
with the case� = 0 directly. In this caseU(∅) is the one-dimensional space spanned by
the elementu that takes the value 1 on every colouring. Simple direct arguments show that
SM (k)(u) = κM (k)u, whereκM (k) is the number ofβ ∈ Γk(b) suchthatα(v) = β(w)

whenever(v,w) ∈ M. In fact

κM (k) = (k − |M|)b−|M | = f|M |(b, k),

which agrees with the general formula given above. Similarly

TL(u) =
∑

M∈M(L)

(−1)|M |SM (k)(u) = λL(k)u,

whereλL(k) = ∑
(−1)|M | f|M |(b, k) is the number ofβ suchthatα andβ are compatible

with L. ClearlyλL(k) is the unique eigenvalue atLevel 0.

6. The case b = 3 with arbitrary links

Whenb = 3 thenumber of matchingsM (as defined inSection 4) with |M| = 0, 1, 2, 3
is 1, 9, 18, 6 respectively. In this section we shall determine the matricesUM = UM,�,� for
all these matchings and all� ≤ 3. The results are sufficient to give the constituentsNπ

L of
TL , for any linking setL. Two typical examples will be given.

At level � = 0, 1, 2, 3 the matrix UM,�,� has size 1, 3, 6, 6, and the blocksU PQ
M are of

size 1, 1, 2, 6. Notethat if |M| < � the conditionQ ⊆ M2 cannot hold, and all the blocks
are zero.

Level 0. As explained at the end ofSection 5, when|M| = 0, 1, 2, 3 respectivelyUM is
the 1× 1 matrix

k(k − 1)(k − 2), (k − 1)(k − 2), (k − 2), 1.
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There is only the principal representation and henceUpri
M = UM .

Level 1. HereU∅ is zero. When|M| ≥ 1, UM is the 3× 3 matrix with entries(UM )pq =
U PQ

M , P = {p}, Q = {q}. Condition (i) of Theorem 5becomes

q ∈ M2 and p ∈ M1 (p, q) ∈ M.

Condition (ii) is automatically satisfied, soF pq
M = Sym1 = {id}. Thus the matrixUM is

given by

(UM )pq =



(k − |M|)3−|M | if q ∈ M2, and(p, q) ∈ M;
−(k − |M| − 1)2−|M | if q ∈ M2, and p /∈ M1;
0 if q /∈ M2 or p ∈ M1 and(p, q) /∈ M.

As in the previous case we have only the principal representation and henceUpri
M = UM .

For example

Upri
11 =


 (k − 1)(k − 2) 0 0

−(k − 2) 0 0
−(k − 2) 0 0


 , Upri

11, 22 =

 k − 2 0 0

0 k − 2 0
−1 −1 0


 ,

Upri
11, 22, 33 =


 1 0 0

0 1 0
0 0 1


 .

Level 2. HereUM is a 6× 6 matrix partitioned into blocksU PQ
M of size 2× 2. Each block

is either the all-zero matrixO, or a multiple of I or J − I , whereJ is the all-one matrix.
All blocks areO if |M| < 2. AssumeP = {p1, p2} with p1 < p2 andQ = {q1, q2} with
q1 < q2. For |M| ≥ 2 let

FM (P, Q) =
{

I if (p1, q1) ∈ M or (p2, q2) ∈ M;
J − I if (p1, q2) ∈ M or (p2, q1) ∈ M.

Then the entries ofUM are given by

U PQ
M =




(k − |M|)3−|M | FM (P, Q) if Q ⊆ M2 andP ⊆ M1 andµ(P) = Q;
−FM (P, Q) if Q ⊆ M2 andP � M1;
O if Q � M2 or P ⊆ M1 andµ(P) �= Q.

For example

U11, 22 =

 (k − 2)I O O

−I O O
−(J − I ) O O


 , U11, 33 =


 O −I O

O (k − 2)I O
O −I O


 ,

U11, 22, 33 =

 I O O

O I O
O O I


 .

Here we have the principal and alternating representation of Sym2 and the matricesUpri
M

andUalt
M are obtained as follows. ForUpri

M we replace inUM the matricesI , J − I andO
by 1, 1 and 0. ForUalt

M we replace inUM the matricesI , J − I andO by 1,−1 and0.
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Level 3. The only non-zero cases are when|M| = 3. In these casesUM is a 6× 6 matrix
with a single blockU PQ

M , corresponding toP = Q = {123}. Condition (i) is automatically

satisfied, and it iseasy to show that F PQ
M = {µ}, soUM = X(µ). ThusUπ

M = Rπ(µ).
Here, apart from the principal and alternating representations we have the representation
corresponding to the partition[21], andUpri

M = 1, Ualt
M = sign(µ), while U [21]

M is a 2× 2
matrix.

Example 1. The graphsBn(b) are obtained when the linking set isB = {11, 22, . . . , bb}.
The chromatic polynomial ofBn(3) was first calculated in 1999 [8], and many terms for
Bn(b) in general are now known [6]. The basicequation is

TB = S∅ − (S11 + S22 + S33) + (S11, 22 + S11, 33 + S22, 33) − S11, 22, 33

from which it follows that

Nπ
B = Uπ

∅ − (Uπ
11 + Uπ

22 + Uπ
33) + (Uπ

11, 22 + Uπ
11, 33 + Uπ

22, 33) − Uπ
11, 22, 33.

At Level 0we get the 1× 1 matrix

Npri
B = k(k − 1)(k − 2) − 3(k − 1)(k − 2) + 3(k − 2) − 1,

and thus the eigenvaluek3 − 6k2 + 14k − 13. At Level 1we get the 3× 3 matrix

Npri
B =


−k2 + 5k − 7 k − 3 k − 3

k − 3 −k2 + 5k − 7 k − 3
k − 3 k − 3 −k2 + 5k − 7




with eigenvalues−k2 + 7k − 13 and−k2 + 4k − 4 (twice). At Level 2we get the 3× 3
matrices

Npri
B =


 k − 3 −1 −1

−1 k − 3 −1
−1 −1 k − 3


 and Nalt

B =

 k − 3 −1 1

−1 k − 3 −1
1 −1 k − 3




with respective eigenvaluesk − 5 andk − 2 (twice), andk − 1 andk − 4 (twice). At
Level 3we haveF PQ

M = {id} and hence the eigenvalue−1 with local multiplicity 1, 1 and
2 corresponding to the three representations.

The global multiplicitiesmπ(k) are:

π � = 0 � = 1 � = 2 � = 3

[�] 1 k − 1 k(k − 3)/2 k(k − 1)(k − 5)/6
[1�] – – (k − 1)(k − 2)/2 (k − 1)(k − 2)(k − 3)/6
[21] – – – k(k − 2)(k − 4)/3

Example 2. When the linking set isH = {12, 13, 21, 23, 31, 32}, the resulting graph
Hn(3) is a cyclic octahedron. The name is suggested by the fact that in the casen = 2
the graph reduces to the regular octahedron,K2,2,2. The calculations forHn(3) were
done byad hocmethods in [3], and here we shall describe how the results fit into our
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general framework. There are 1, 6, 9, 2 matchingsM ∈ M(H ) with |M| = 0, 1, 2, 3
respectively. Taking the appropriate alternating sum atLevel 0we get the 1× 1 matrix

Npri
H = k(k − 1)(k − 2) − 6(k − 1)(k − 2) + 9(k − 2) − 2,

and thus the eigenvaluek3 − 9k2 + 29k − 32. At Level 1 we get the 3× 3 matrix Npri
H

with entries 2k − 6 on the diagonal and−k2 + 7k − 13 elsewhere. The eigenvalues are
−2(k − 4)2 andk2 − 5k + 7 (twice). At Level 2we get the 3× 3 matrices

Npri
H =


 k − 4 k − 5 k − 5

k − 5 k − 4 k − 5
k − 5 k − 5 k − 4


 and

Nalt
H =


 k − 4 −(k − 3) k − 3

−(k − 3) k − 4 −(k − 3)

k − 3 −(k − 3) k − 4




with respective eigenvalues 3k − 14 and 1 (twice), andk − 2 and−2k − 7 (twice). At
Level 3, we get the 6× 6 matrix−(X(123) + X(132)), and collapsed matricesNpri

H , Nalt
H

andN[21]
H , of size 1×1, 1×1 and 2×2 respectively. The first two matrices are just(−2), so

−2 is an eigenvalue with local multiplicity 1 in each case. The matrixN[21]
H is the identity

matrix of size 2, so it has eigenvalue 1 (twice). The respective global multiplicities do not
depend onL and hence are equal to the ones given in the previous example. These results
imply that the chromatic polynomial ofHn(3) is

P(Hn(3); k) = (k3 − 9k2 + 29k − 32)n

+ (k − 1)((−2(k − 4)2)n + 2(k2 − 5k + 7)n)

+ (1/2)k(k − 3)((3k − 14)n + 2)

+ (1/2)(k − 1)(k − 2)((k − 2)n + 2(−2k + 7)n)

+ (1/6)k(k − 1)(k − 5)(−2)n

+ (1/6)(k − 1)(k − 2)(k − 3)(−2)n

+ (1/3)k(k − 2)(k − 4)(2).

7. Location of chromatic zeros

BecauseP(G; k) is a polynomial function ofk, it is usual toconsider it as a function
of a complex variable. This is particularly appropriate in statistical mechanics, where
the focus is on thethermodynamic limitlimn→∞ P(Gn; z)1/vn, vn being the number of
vertices ofGn. The thermodynamic limit is generally not analytic in the entire complex
plane, and its singularities depend on the limiting behaviour of the zeros ofP(Gn; z)
as n → ∞. The framework described in this paper iswell-adapted for investigating
this behaviour.

An elementary result about the location of the zeros is Rouch´e’s theorem [15, p. 218].
For example, consider the roots ofP(Hn(3); z) = 0. There are 3n roots and their sum
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is 9n, so thecentroid is at the point 3 and it is convenient to putw = z− 3. The chromatic
polynomial reduces to

(w3 + 2w + 1)n + Qn(w),

where Qn(w) is a polynomial of degree 2n + 1. The zeros ofw3 + 2w + 1 are
(approximately)

−0.4534, 0.2267+ 1.4677i , 0.2267− 1.4677i ,

which lie in the disc|w| ≤ 1.4852. It follows from Rouch´e’s theorem that all the zeros
of (w3 + 2w + 1)n + Qn(w) lie in the disc|w| ≤ R, provided thatR > 1.4852 and
|w3 + 2w + 1|n ≥ |Qn(w)| on the circle |w| = R. Sincethe degree ofQn(w) is 2n + 1,
it is clear that a suitable value ofR can be found: for exampleR = 3 suffices. Thus all the
rootslie in the disc|z| ≤ 6, where the relevance of the number 6 is that it is the degree of
Hn(3). The important general result of Sokal [16] gives a weaker conclusion in this case.

More detailed information about the roots follows from the theorem of Beraha et al. [1].
Their result says that the limit points of the zeros of a sequence of polynomials of the form

Pn(z) =
s∑

i=1

mi (z)λi (z)
n,

are the pointsζ lying on the curves where two of the termsλi (ζ ) are of equal modulus and
dominate the other terms (together with some isolated points, which need not concern us).

In the case of the cyclic octahedra, the polynomials (expressed as functions ofw = z−3)
are

λA = w3 + 2w + 1, λB = −2(w − 1)2, λC = w2 + w + 1,

λD = 3w − 5, λE = w + 1, λF = −2w + 1, λG = −2, λH = 1.

In fact, one of the three eigenvaluesλA, λB, λD always dominates the other five. This
means that the limiting behaviour of the roots is determined by these three.

Denote byΓAB the curvedefined by the equation|λA| = |λB|, and soon. ThenΓAB

andΓB D are simple closed curves intersecting in two points

t, t̄ = 0.9971. . . ± 1.6284. . . i .

ΓAD is another simple closed curve, which necessarily containst andt̄ .
The portions of these curves that satisfy the domination condition are the arc ofΓAD

that joinst andt̄ and lies entirely in the half-plane Rew > 0, and the arcs ofΓAB andΓB D

that joint andt̄ and do not lie entirely in the half-plane Rew > 0. Notethat these arcs all
lie in the half-plane Rez > 0.

These arcs divide the complex plane into three regions: a crescent-shaped region
containingw = 0, in which λD dominates; another crescent-shaped region contiguous
with the first, in whichλB dominates, and the remainder of the complex plane, in which
λA dominates. Apart from some isolated points, such asz = 0 (w = −3), the limit
points of the chromatic roots of the graphsHn(3) lie on the parts ofΓAB,ΓAD,ΓB D that
bound these regions.
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Although all the discussion here has concerned the case when the base graph is
complete, similar results and methods hold more generally. For example, the proof of
Theorem 3remains valid when the base graphG and the linking setL satisfy the following
condition: for eachw ∈ V the set ofv ∈ V suchthat(v,w) ∈ L is a complete subgraph
of G. This observation covers many of the results obtained by Shrock and his colleagues
(see [10] and the references given there). We end with one example.

This condition stated above holds for the family ofgeneralised dodecahedra Dn.
HereG is a path with vertex-setV = {1, 2, 3, 4} (1 and 4 being the end-vertices), and
L = {11, 32, 44}. In this case the resulting graph is a cubic graphDn with 4n vertices,
and in particularD5 is the graph of the regular dodecahedron. The chromatic polynomial
P(Dn; k) wasobtained in full by Chang [9]. It can be written in the form

tr (T0(k))n + (k − 1)tr (T1(k))n + (k2 − 3k + 1)tr (T2(k))n + (k3 − 6k2 + 8k − 1),

where thesquare matricesT�(k) (� = 0, 1, 2) have size 3, 6, 4 respectively. Chang’s result
can also be obtained by the algebraic methods described here, and the zeros ofP(Dn; k)

can be investigated by techniques basedon the Beraha–Kahane–Weiss theorem [5].
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