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l. Let (sn) be a sequence of real numbers satisfying O<;s11 <; 1, 
(n= 1, 2, ... ).Let I(a,b)(x) denote the characteristic function ofthe interval 
(a, b), O<;a<b<;l. The sequence (sn) is said to be well distributed if 

1 n+p 

lim - L I(a,b)(Sk)=b-a 
p-+OO P k~n+l 

holds uniformly in n for every interval (a, b). 
We denote the fractional part of 8 by {8}, i.e. {8} = 8- [8], where [8] 

is the largest integer contained in 8. 
Let E be a subset of (0, 1) and let the density Ll(a, b) of E in the interval 

(a, b), O.;:;;;a<b< 1, be defined by the following relation 

A( b)= outer measure (En (a, b)) 
LJ a, lb-al . 

If E is of measure one, it is clear that Ll(a, b)= 1 for every interval (a, b); 
likewise if E is of measure 0, it is clear that L1 (a, b)= 0 for every interval 
(a, b). Sets having the same density for every interval in (0, 1) are called 
homogeneous. A necessary and sufficient condition for a measurable set 
to be homogeneous is that its measure be either zero or one. Moreover, 
if E is measurable, Ll(a, b);;;;.b>O for all intervals (a, b), then E is homo­
geneous and of measure one; (see KNOPP [2], p. 413, Satz 4). 

We now prove: 

Theorem 1. Let (n(k)) be a sequence of real numbers, 

n(k) 
n(k- 1) =r(k)>M>4, (k=2, 3, ... ) 

then, for almost all a, O<a<;l, the sequence {n(k)a} is not well distributed. 

*) This work has been supported, in part, by the Air Force Office of Scientific 
Research, (Office of Aerospace Research), U.S. Air Force, under contract no AF 
49 (638)-1401. 
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Proof: Let F(p) be the set of IX, 0<~X<;1, such that: 

{n(k)~X}<!, k=q+ 1, ... , q+p 

00 

for some q=q(IX), (p=1, 2, ... ).Then if IX E n F(p)=E, 
:~>=1 

and the sequence is not well distributed. We shall show that /l(F(p))= 1, 
(p = I, 2, ... ) and hence #(E)= 1, and this implies our result. 

Let Ek be the set of IX for which {n(k)IX}.;;; t. This set contains the first 
half of each of the intervals 

( 1 ) ( I 2 ) ([n(k)]-1 [n(k)]) 
O, n(k) ' n(k)' n(k) ' · · ·' -----n{k-) -' n(k) · 

Contained in the interval 

, ( r 2r+ I) 
J (r, n(k)) = n(k)' 2n(k) ' (r< [n(k)]-I} 

there will be at least [ fr( k + 1)]- I intervals of the form 

( r r+ I ) 
J(r,n(k+1))= n(k+ 1)' n(k+ 1) ; (r.;;;[n(k+I)]-1), 

for there can be at most two intervals of the form J(r, n(k+ 1)) which 
intersect J'(r, n(k)) but do not lie completely in J'(r, n(k)). Hence, the 
number of intervals of the form J'(r, n(k+ 1)) completely contained in 
Ek is at least 

([fr(k+ 1)]-1)[n(k)J>l(fr(k+ 1)-2) n(k), 

Each of the intervals J'(r, n(k+ I)) in turn contains at least [fr(k+2)]-1 
intervals of the form J'(r, n(k+2)). It follows that 

contains at least 

fn(k+1) (fr(k+2)-2) ... (tr(k+p)-2) 

intervals of the form J'(r, n(k+p)). This implies that 

( k+:~> ) n(k+1) 1 
ll n En >! (k ) (tr(k+2)-2) ... (fr(k+p)-2) 

n=k+l n +p 
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We have 

2 ~ 1 _ 2 M -4 _ 
r(k+s) < M' hence 2 r(k+s) > 2M (s -1, 2, ... , p) 

and 

( 
k+p ) (M _ 4)P-1 

fh n En >! 2M · 
n~k+l 

A similar calculation shows 

The criterion for homogeneous sets of measure one may be simplified 
slightly. If L1(a, b)>~>O for all intervals (a, b), O<,a<b< 1 then it is 
clear that L1(a, b)>~/2>0 for all intervals (a, b), O<,a<b<,l. Let (a, b) 
be an interval such that 0 <,a< b < 1; then if ko is sufficiently large, (a, b) 
will contain intervals of the form J(r, n(ko)), (r< [n(ko)] -1). In fact the 
number of such intervals wholly contained in (a, b) will exceed: 

[lb-aln(ko)]-1. 

This implies, using ( 1) 

{h(F(p) n (a, b))> fh ( C~cL En) n (a, b)) 

1 (M -4)p-l 
> ([lb-aln(ko)]-1) · 4n(ko) 2M 

(M- 4)p-l 2 (M- 4)p-l 
> ilb-al· 2M - 4n(ko) 2M · 

By choosing n(ko) sufficiently large 

( M 4)P-1 
{h(F(p) n (a, b))>llb-al 2_; 

and the density of F(p) in any interval is greater than l(M -4/2M)P-1. 
It is evident that F(p) is homogeneous and of measure one. The proof 
of our theorem is now complete. 

We can consider {n(k)1X}<,1-s and by a suitable choice of s prove in 
a manner similar to the above: 

Theorem 2. Let (n(k)) be a sequence of the real numbers 

n(k) 
n(k- 1) =r(k)>M>2 (k=2, 3, ... ) 

then, for almost all £X, 0<£X<, 1, the sequence {n(k)1X} is not well distributed. 
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We have not yet entirely resolved the conjecture in [5]: 

If (n(k)) is a sequence of real numbers such that 

n(k) 
n(k-1) =r(k)>1 (k=2, 3, ... ) 

then {n(k)lX} is not well distributed for almost all lX. 

Theorem A of [4] and a paper by MuRDOCH, [3] would seem to indicate 
that such an improvement is possible. The proof of Theorem 1 is in part 
taken from [1 ], but it was not possible to indicate the alterations without 
writing out the whole. 
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