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a b s t r a c t

Objective: Several studies have demonstrated that human dental pulp is a source of mes-

enchymal stem cells. To better understand the biological properties of these cells we

isolated and characterized stem cells from the dental pulp of EGFP transgenic mice.

Methods: The pulp tissue was gently separated from the roots of teeth extracted from C57BL/

6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light micros-

copy (staining for alkaline phosphatase) and immunofluorescence were used to investigate

the expression of stem cell markers. The presence of chromosomal abnormalities was

evaluated by G banding.

Results: The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-

adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform

shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were

positive for alkaline phosphatase. The karyotype was normal until the 5th passage. The

Pou5f1/Oct-4 and ZFP42/Rex-1, but not Nanog transcripts were detected in mDPSC. Flow

cytometry and fluorescence analyses revealed the presence of a heterogeneous population

positive for embryonic and mesenchymal cell markers. Adipogenic, chondrogenic and

osteogenic differentiation was achieved after two weeks of cell culture under chemically

defined in vitro conditions. In addition, some elongated cells spontaneously acquired a

contraction capacity.

Conclusions: Our results reinforce that the dental pulp is an important source of adult stem

cells and encourage studies on therapeutic potential of mDPSC in experimental disease

models.
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2.2. Isolation of mDPSC and cell culture
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1. Introduction

During the embryonic developmental stage, epithelial–mesen-

chymal interactions determine the formation of all the dental

components, including the pulp.1 The pulp is divided into four

layers: the external layer is constituted by odontoblasts which

produce the dentine. The dentine keeps and protects the inner

dental pulp chamber, comprised by the second layer, a zone

poor in cells and rich in extracellular matrix, and the third layer

containing compact connective tissue. The last layer is

infiltrated by a vascular area and a nervous plexus.2,3 The

presence of undifferentiated cells around the vessels, respon-

sible for the new dentine formation after dental injuries such as

cavities or mechanical trauma, has highlighted the dental pulp

as a source of mesenchymal stem cells.1,2 Of particular interest

is the fact that rodent incisors grow continually, unlike rodent

molars and human teeth. The apical part is responsible for the

enamel matrix production. This area contains epithelial stem

cells that originate the ameloblasts, stratum intermedium,

stellate reticulum and outer dental epithelium layers.4

The first identification and isolation of precursors of

functional odontoblasts known as human dental pulp stem cells

(DPSC) was reported in by Gronthos et al.5 These cells were

characterized by their highly proliferative capacity, the typical

fibroblast-like morphology, multipotent differentiation, the

expression of mesenchymal stem cells markers in vitro, as well

as by dentine regeneration induction in vivo.6 Several other

populations of human dental stem cells have been characterized,

such as stem cells obtained from deciduous teeth,6,7 apical

papilla,8 and periodontal ligament stem cells.9,10 Cell populations

obtained from rat dental pulp contain STRO-1 positive cells with

multilineage potential of differentiation in vitro.11 A recent study

demonstrated that erupted murine molars contain a population

of multipotent cells with osteogenic, adipogenic, and chondro-

genic differentiation abilities.12 Other reports have described the

gene expression pattern associated with the regulation of the

tooth germ morphogenesis in the mouse incisor.13,14

A study performed by Balic and Mina34 provided evidence

that dental pulp tissue obtained from unerupted and erupted

murine incisors contains a progenitor, but not a multipotent

mesenchymal stem cell population. In this work, we performed

a detailed description of stem cells from the incisor dental pulp

of continuous growth obtained from EGFP transgenic C57BL/6

mice with mesenchymal and embryonic characteristics. GFP

expression constitutes an important tool for the study of stem

cells in vitro and in vivo. The results confirm that mDPSC have

properties that effectively define them as stem cells.

2. Materials and methods

2.1. Mice

Specific-pathogen-free, 8-week-old male enhanced green

fluorescent protein (EGFP) transgenic C57BL/6 mice were

maintained at the animal facilities at the Gonçalo Moniz

Research Center-FIOCRUZ, Salvador, Bahia, Brazil, and pro-

vided with rodent diet and water ad libitum. The present study

was approved by the Institution’s Animal Ethics Committee.
The incisors teeth were dissected carefully from the mand-

ibles of male EGFP transgenic C57BL/6 mice after removal of

the heads under deep anaesthesia in the CO2 chamber. Special

care was taken to avoid contamination by adjacent tissues.

Whole dental pulp tissue was gently collected with the aid of a

stereotactic microscope (Olympus, Tokyo, Japan), washed

three times with sterile saline, and transferred into 24-well

plates (Nunc A/S, Roskilde, Denmark). The growth medium

consisted of Dulbecco’s Modified Eagle Medium – DMEM

medium supplemented with 10% foetal bovine serum (FBS;

Cultilab, Campinas, SP, Brazil), 23.8 mM sodium bicarbonate

(Sigma, St. Louis, MO, USA), 10 mM Hepes (Santa Cruz

Biotechnology, Santa Cruz, CA, USA), 1 mM sodium pyruvate

(Sigma), 2 mM L-glutamine (Sigma), 0.05 mM 2-mercaptoetha-

nol (Sigma), 50 mg/ml gentamycin (Sigma), and incubated at

37 8C with 5% CO2. Pieces of tissue explant were used to isolate

mDPSC. Culture medium was replaced every 3–4 days. After

confluence (usually after 15–20 days), the adherent cells were

released with 0.25% trypsin solution (Invitrogen/Molecular

Probes, Eugene, OR, USA) and re-plated (passages) or used in

experimental assays, as described below. For cryopreserva-

tion, cells were centrifuged and the pellet was resuspended in

DMEM medium supplemented with 10% FBS and 10%

dimethylsulfoxide (Sigma). Aliquots (5 � 106 cells/ml) were

transferred to cryogenic tubes and cooled slowly until �80 8C

and, after 24 h, the cryotubes were transferred to a liquid

nitrogen container for long-term storage. Cells of the same

isolate in different passages were used in the experiments.

2.3. Karyotype analysis

Cytogenetic analysis of mDPSC metaphases was taken in the

1st and 5th passages, after expansion in the growth medium

supplemented with 10% FBS (Cultilab). Cells undergoing active

cell division were blocked at metaphase by 0.3 mg/mL colcemid

(Cultilab), detached from the growth surface by 0.25% trypsin

solution (Invitrogen), and subsequently swollen by exposure

to 0.075 M KCl hypotonic solution (Merck). The cells were then

fixed in methanol/acetic acid solution (3:1) for slide prepara-

tion. Chromosomal analysis of metaphases cells was per-

formed by G banding.15 The images were captured on BX61

microscope (Olympus, Tokyo, Japan), Spectral Imaging Band

View software (Applied, Vista, CA, USA). For each passage, in

average fifteen to twenty cells were analysed.

2.4. Flow cytometric analysis

For detection of surface antigen, adherent cells were detached

with 0.25% trypsin solution (Invitrogen), washed with saline

and incubated at 4 8C for 30 min with following antibodies

diluted 1:100: biotin anti-mouse CD31 (BD Biosciences Phar-

mingen, San Diego, CA, USA), biotin anti-human stromal stem

cells – STRO-1 (R&D Systems, Minneapolis, MN, USA), PE anti-

mouse CD34 (Invitrogen), PE anti-mouse/human oct-4 (BD

Pharmingen), PE anti-mouse CD73 (BD Pharmingen), PE anti-

mouse CD90 (Invitrogen), PE anti-mouse CD11b (BD Pharmin-

gen), PE anti-mouse CD44 (BD Pharmingen), PE anti-mouse

CD117 (Invitrogen), APC anti-mouse CD45 (Invitrogen), PE-
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Cy5.5 anti-mouse stem cell antigen – Sca-1 (Invitrogen) or

0.5 mg/mL propidium iodide (BD Pharmingen). Excess antibody

was removed by washing. Streptavidin PE-Cy5.5 diluted 1:100

(BD Pharmingen) was used after biotin antibody. Cells were

fixed with 1% formaldehyde. Quantitative evaluation of the

exponential cell expansion was estimated by Carboxyfluor-

escein succinimidyl ester – CFSE assays (Invitrogen/Molecular

Probes). CFSE staining was performed according to methodol-

ogy previously described.16 The acquisition and analysis were

done using a FACScalibur cytometer (Becton Dickinson, San

Diego, CA, USA) with the CellQuest software. At least 50,000

events were collected.

2.5. Cytochemistry

Alkaline phosphatase expression was evaluated in mono-

layers of cells in the third passage cultivated in 24 well plates.

USP-1, a mouse embryonic stem cell line17 was used as a

positive control. Cultures were washed with PBS, fixed with 4%

paraformaldehyde (Sigma) in PBS, washed with rinse buffer,

and stained with a mix fast red violet (FRV) with naphthol

phosphate solution and water as described in the protocol of

the embryonic stem cell characterization kit (Millipore

Corporation, Billerica, MA). Positive alkaline phosphatase

expression was identified by red cell colonies visualized using

an inverted optic microscope (Olympus).

2.6. Immunofluorescence

For immunofluorescence analysis, 13-mm diameter glass

coverslips (Knittel, Braunschweig, Germany) were placed in

a 24-well plate and mDPSC (5 � 106) were added in each well.

Cells were washed in PBS 1�, fixed with 4% paraformaldehyde

and permeabilized with 0.1% triton X-100 for 10 min. After

blocking with PBS containing 5% BSA (Sigma), the cells were

incubated with primary antibodies diluted 1:100. The embry-

onic stem cell characterization kit (Chemicon, Temecula, CA,

USA) was used for detection of the following primary

antibodies: SSEA-1 (stage-specific embryonic antigen-1; IgM

monoclononal antibody), SSEA-4 (IgG monoclononal anti-

body), TRA-1-60 (keratin sulfate-associated antigens; IgM

monoclononal antibody). After washing, appropriate second-

ary antibodies goat anti-mouse IgG or IgM Alexa Fluor 568

(Invitrogen/Molecular Probes) diluted 1:200 were added in the

well. Incubations with both primary and secondary antibodies

were performed for 1 h at room temperature. The slides were

cover slipped using Vectashield mounting medium with 40,6-

diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlin-

game, CA, USA). Images were analysed in confocal microscope

Fluowiel 1000 (Olympus) using appropriate filters.

2.7. RT-PCR

Total RNA was isolated using Rneasy1 Mini Kit – Qiagen, USA.

Total RNA was eluted from the mini columns with 30 ml of

RNase-free water. RNA concentrations and purity were

measured with a spectrophotometer (NanoDrop Technolo-

gies, EUA). To remove any residual DNA, the purified RNA was

treated with DNase I, Amp Grade (Invitrogen). The cDNA was

synthetized with oligo dT (Invitrogen), following DTT 0.1 M
(Invitrogen) and enzyme Super Script II (Invitrogen) incubated

for 2 h at 42 8C. The enzyme was inactivated by heating at 70 8C

for 15 min. The following primers were used for amplification

by RT-PCR: ZFP42/Rex1, transcription factor, forward primer 50-

GGTGAGTTTTCYSAACCCA-30 and reverse primer 50-YGA-

WACGGCTTCTCTCC-30 (annealing temperature 60 8C); Nanog,

transcription factor, forward primer 50-GTCTKCTRCTGA-

GATGC-30 and reverse primer 50-ASTKGTTTTTCTGCCACC-30

(55 8C). Reverse transcriptase polymerase chain reaction (RT-

PCR) was carried out as described previously.7 RT-PCR

products were separated by electrophoreses in 2% agarose

gel, and visualized under UV-light after ethidium bromide

staining.

2.8. Differentiation assays

The potential of differentiation into osteogenic, chondrogenic

and adipogenic lineages was examined. To promote osteo-

genesis, the cells were incubated with DMEM supplemented

with 10 mM b-glycerol phosphate (Sigma), 0.05 mM ascorbate-

2-phosphate (Sigma) and 100 nM dexamethasone (Sigma). The

culture medium was changed twice a week for up to two

weeks. To calcium detection, the cells were fixed with

methanol for 10 min at room temperature and stained with

alizarin red (Sigma) with pH 4.0 for 5 min at room temperature

to evaluate the presence of calcium. For adipogenesis, the

cultured cells were incubated in adipogenic medium DMEM

supplemented with 60 mM indomethacin, 0.5 mM dexameth-

asone, and 0.5 mM isobutylmethylxanthine (Sigma). The

culture medium was changed two times per week for up to

three weeks. The cells then were fixed in methanol for 45 min

and stained with Oil Red (Sigma). Positive expression was

identified by cell stained with red colour visualized using an

inverted optic microscope (Olympus). To examine the poten-

tial of differentiation into chondrogenic lineages, mDPSC were

cultured with DMEM with high-glucose supplemented with

10% FBS (Cultilab), 100 mg/mL de sodium pyruvate (Sigma),

40 mg/mL proline (Sigma), 50 mg/mL L-ascorbic acid-2-phos-

phate (Sigma), 1 mg/mL bovine serum albumin (Sigma), 1�
insulin-transferrin-selenium plus (Sigma), 100 nM dexameth-

asone and 10 ng/mL TGFb3 (Sigma). Control cells were

cultured with growth medium. The culture medium was

changed twice a week for 21–28 days. To collagen detection,

the cells were fixed with paraformaldehyde 4% for 30 min at

room temperature, stained with acidic solution of Toluidine

Blue (Sigma) for 30 min at room temperature and washed

three times with hydrochloric acid 1 N and once with distilled

water. The clusters were visualized using an inverted optic

microscope.

3. Results

3.1. Morphological features of the mDPCS culture and
cytogenetic analysis

Dental pulp stem cells were isolated and expanded in vitro

from EGFP-transgenic mice. The cells are plastic-adherent and

showed rapid expansion and proliferation capacity in vitro

after isolation. Approximately 80% of the cells proliferated
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after 48 h of culture (Fig. 2). A polymorphic morphology was

observed in the cell populations obtained. Initially the cells

had rounded or fibroblastoid shapes (Fig. 1a). Cells with

fusiform (Fig. 1b) and stellate shapes (Fig. 1c) began to

appear amongst fibroblastoid cells after 20–28 days of

culture. Curiously, in one batch of cells, some elongated

cells acquired the contraction capacity (see supplemental

material). Proliferative mDPSC showed a normal karyotype

in the passages evaluated (Fig. 1d). In only one isolate,

tetraploidy was found in 40% of the cells in the sixth

passage (data not shown). The formation of cell clusters

in vitro was also observed (data not shown). More than 90%

of the cells expressed GFP (Figs. 2 and 3c). After long term

cryopreservation, mDPSC are capable of quickly restarting

proliferation in culture, in a manner similar to that of

recently isolated cells.

3.2. Flow cytometric, immunofluorescence, and
qualitative transcript analyses

To investigate the phenotypic characteristics of the mDPSC,

cell cultures were analysed using antibodies against several

cell surface and intracellular antigens. In the third passage,

flow cytometric analysis revealed the expression of cell

surface molecules that characterize mesenchymal stem cells,

such as CD90, CD73, STRO-1 and Ly6a/Sca-1 (Fig. 2). In

contrast, the percentage of hematopoietic cell markers was

low (CD117) or undetectable (CD34, CD11b, or CD45) in this

passage. The expression of hematopoietic stem cell markers

was detected only in the first passage (data not shown).

Approximately 80% of the cells were positive for the
Fig. 1 – Morphologic aspects of mDPSC. Adherent cells culture

contrast micrographs were taken on day 5 (a) and day 28 (b an

stellated (c) cell shapes can be observed. Normal karyotype wa
endothelial cell marker CD31 (Fig. 2). Similar results were

observed with cells cultured until the 18th passage (data not

shown). Cells were positive for alkaline phosphatase (Fig. 3a)

such as observed in the positive control, a culture of

embryonic stem cells (Fig. 3b). Curiously, the expression of

others embryonic stem cells markers, such as SSEA-1, was

strongly positive in mDPSC cultures (Fig. 3d), whereas SSEA-4

and TRA-1-60 markers were not detected by immunofluores-

cence analysis (Fig. 3e and f). The transcript ZFP42/Rex-1, but

not Nanog, was detected in undifferentiated stem cells by RT-

PCR analysis (Fig. 4). Flow cytometry analysis confirmed that

approximately 25% of the cells were positive for Pou5f1/Oct-4

(Fig. 2).

3.3. Adipogenic, chondrogenic and osteogenic
differentiation

Confluent monolayers of the mDPSC were submitted to

conditions known to promote osteogenesis, chondrogenesis

and adipogenesis. Control mDPSC were cultured only with

growth medium (Fig. 5b, d and f). Cultures of mDPSC in

osteoinductive medium had altered cell morphology with a

formation of mineral nodules after three weeks of culture.

Substantial calcium deposits were seen by Alizarin red-S

staining, which localized specifically in the mineral nodules

(Fig. 5a). Adipogenic differentiation appeared after two weeks

of incubation. Lipid-rich vesicles within the cytoplasm of the

cells were evidenced by positive Oil Red O staining (Fig. 5c). In

this same time, mDPSC displayed cartilage extracellular

matrix differentiation confirmed by the toluidine blue staining

(Fig. 5e).
d in vitro present heterogeneity in the morphology. Phase-

d c) of culture. Rounded or fusiform (a), elongated (b) and

s observed in mDPSC cultured in fifth passage (d).



Fig. 2 – Expression of mesenchymal and embryonic, but not hematopoietic stem cells markers in mDPSC. The expression of

the surface markers CD73, CD31, STRO-1, CD90, Sca-1, CD45, CD34, CD117, CFSE and oct-4 in mDPSC cultured at the third

passage was evaluated by flow cytometry. Histograms show isotype control (grey peaks) versus specific antibody (black

peaks) staining, and the percentages of cells positive for the selected molecules (a–l). Proliferative activity of mDPSC by CFSE

analysis (m). Results shown were obtained in one representative of three experiments performed.
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Fig. 3 – Analysis of cell surface markers by cytochemistry and fluorescence. Positivity for alkaline phosphatase staining was

evaluated in mDPSC (a) and mouse embryonic stem cells (b), as positive controls. GFP expression in mDPSC (c). The

expression of SSEA-1 was positive (red; d), whereas SSEA-4 (e) and TRA-1-60 (f) were not detected. DAPI-stained nuclei are

shown in blue. Results shown were obtained in one representative of two experiments performed. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of the article.)
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4. Discussion

Several studies have demonstrated that the human dental

pulp is a source of stem cells.1–7 These cells obtained from

deciduous or permanent teeth presents several mesenchymal

and embryonic markers, retain the capacity of expansion and

differentiation in diverse cell types under chemical defined

conditions in vitro and repair in vivo.5–7 Here we isolated,

characterized and differentiated stem cells obtained from

dental pulp of continuous growth of EGFP transgenic mice. For

the immunophenotyping we used similar methodologies

employed in the characterization of bone marrow and human

dental pulp stem cells (hDPSC),5,6,18 which have a typical

fibroblast-like morphology5–7 and present no changes in the

morphology during 25 passages.7 In contrast, in the present

study we observed morphology alterations of mDPSC accord-

ing to the culture time. Initially, rounded or fusiform shapes
were observed. The elongated and stellate cells began to

appear amongst fusiform cells after 28 days of culture. Distinct

cell shapes were also observed in other human and murine

mesenchymal stem cells, such as bone marrow derived17–18

and cord blood stem cells.19

For clinical applications, an adequate number of cells are

necessary and an extensive expansion ex vivo is required. In

the third passage, 80% of the mDPSC proliferated after 48 h of

culture. This data corroborates with Gronthos et al. data,5

which demonstrated that approximately 72% of the stem cells

obtained from adult human dental pulp proliferate after 24 h

of culture. This proliferation index was significantly higher

when compared with the stem cells obtained from bone

marrow. The authors explained this fact by the extensive

fibrous tissue amount in the dental pulp, whereas about 99% of

the cells in marrow aspirates are hematopoietic populations.5

In addition, the stem cells obtained from deciduous dental

pulp are more proliferative because of their immature profile.6



Fig. 4 – Expression of mRNA for pluripotent cell markers.

RT-PCR assay for levels of Nanog-1 and ZFP42/Rex-1 mRNA

in mDPSC and USP-1, a mouse embryonic stem cell line

was used as a positive control (ESC). Aldolase was used as

housekeeping gene.
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The proliferative rate can be associated with a progressive

chromosomal instability. Malignant transformation of mes-

enchymal stem cells after expansion in culture has been

reported in human and animal models.20–23 In this case,

cytogenetic analysis using G-banding is essential for detecting

numerical and structural chromosomal aberrations in stem

cell cultures.24 We verified that mDPSC had a normal

karyotype through the fifth passage. In only one isolate,

tetraploidy was found in 40% of the cells in the sixth passage. It

has been demonstrated that long-term culture and cryopres-

ervation of human embryonic stem cells can lead to a decrease

in pluripotency and acquisition of distinct aneuploidies such

as a gain of chromosome 17q and an occasional trisomy of

chromosome 12 in different passages of the cell cultures.21,23

Polyploidies and mosaicism produces micronucleation and

multinucleations in these cells.25 In addition, transplanted

nude mice with mouse mesenchymal stem cells from bone

marrow developed rapidly growing tumours at the injection

site after 4 weeks.26 Miura et al.27 associated these abnormali-

ties with a gradual increase in telomerase activity and c-myc

expression. Time and culture conditions are determinant

factors of in vitro selection, and it is possible that a clone of

cells showing tetraploidy was selectively maintained in

mDPSC by cell fusion, for example, resulting in 2n/4n

karyotype. This is a relevant aspect to be taken into

consideration for future studies using mDPSC in vivo and in

experimental models of diseases.
The mDPSC expressed Pou5f1/Oct-4 and ZFP42/Rex-1,

transcripts known to be required for self renewal and

pluripotency.28 In contrast, Nanog expression was not

detected. Pou5f1/Oct-4 and Sox2 participates directly of the

Nanog regulation. However, both Pou5f1/Oct-4 and Sox-2 are

present in the nuclei of Nanog-negative cells of the morula and

other precursors, indicating that other molecular signals are

required for expression of Nanog.29 We also report that mDPSC

express SSEA-1 and alkaline phosphatase, markers of undif-

ferentiated embryonic stem cells. These results confirm the

undifferentiated nature of the cells obtained of the mouse

dental pulp. Similar results were found in stem cells obtained

from human deciduous dental pulp, adipose tissue, bone

marrow, heart, and dermis.7,30 The mesenchymal stem cell

markers CD90, STRO-1, Sca-1, and CD73 were also found

expressed in mDPSC. In addition, a small percentage of

mDPSC expressed CD117. The low frequency of this marker is

also observed in the umbilical cord or bone marrow stem cells

populations.31–33 The expression of hematopoietic stem cell

markers was detected in the first passage. Several mesenchy-

mal stem cell lines present hematopoietic contaminants in the

initial passages of culture.31 Stem cells obtained from dental

pulp of adult rat incisors or isolated from human third molar

or deciduous teeth also express a high percentage of

mesenchymal cell markers,5–7,11 such as those observed here

in mDPSC. In contrast, a previous report showed that the

population of stem cells isolated from dental pulp of erupted

murine molars and incisors contains a high percentage of

CD45 and CD117 but a low percentage of CD90 and Sca-1

expression. The authors associate this lower expression to the

presence of extensive vascularization in the pulp of erupted

teeth.12,34

An additional property that effectively defines a stem cell is

the differentiation potential. The formation of lipid droplets in

the cytoplasm, mineral nodules and cartilage extracellular

matrix in the mDPSC culture after chemical defined conditions

confirmed the adipogenic, osteogenic and chondrogenic

differentiation potential, respectively. Not all the cells in

mDPSC cultures had the differentiation capability and, in fact,

a uniform induced differentiation free of non-responsive cells

is very difficult to achieve in mesenchymal stem cell

cultures.35 Interestingly, some elongated cells spontaneously

acquired a contractile capacity. In addition of the induced

differentiation described in this study, in one isolate it was

observed spontaneous differentiation in adipocyte lineage

(data not shown). These data indicate the high plasticity of the

mDPSC even in the absence of specific stimuli. Stem cells

obtained from human or rat dental pulp also exhibit extensive

capability of osteogenic, chondrogenic and adipogenic differ-

entiation.6,7,11 However, Balic and Mina34 demonstrated that

cultures derived from pulps of unerupted and erupted mouse

incisors were incapable of differentiating into adipocytes and

chondrocytes. The authors suggest that the differentiation in

these cell types may be masked by the significant number of

osteo/progenitor cells present in the culture which should be

investigated in experiments aiming to evaluate the differenti-

ation potential as in vivo transplantation assays. The time of

culture, the cell passage or medium used are other factors that

may have hampered the differentiation of the cell isolates

obtained by Balic and Mina.



Fig. 5 – Differentiation potential of mDPSC. The mDPSC cells in the third passage were cultured in appropriate media to

induce the differentiation into osteogenic (a), adipogenic (c) or chondrogenic (e) lineages. Deposition of a mineralized

extracellular matrix (red) was seen after alizarin red staining (a). Lipid vacuoles of differentiated cells are stained with oil

red (c). Production of cartilage extracellular matrix confirmed by toluidine blue staining (e). The control cultures in non-

inducing medium are shown in b, d and f. Results shown were obtained in one representative of two experiments

performed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the

article.)
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This study provides the description of stem cells obtained

from mouse dental pulp, generating cell lines positive for GFP

that can be used to track the fate of these cells when injected

into different mouse models of disease. The data presented

herein demonstrate that mDPSC comprise a morphologically

heterogeneous population of cells that exhibit some pheno-

typic and functional features of both embryonic and mesen-

chymal stem cells, such as observed in the human dental pulp.

The ability to expand and differentiate opens the futures

possibilities in the study of the cell therapies in animal

models.
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