NOTE

ON ANTIPODAL GRAPHS

R. ARAVAMUDHAN and B. RAJENDRAN*
Department of Mathematics, Thiagarajar College of Engineering, Madurai-625 015, India

Received 2 May 1983
Revised 14 June 1983

The antipodal graph of a graph G, denoted by $A(G)$, is the graph on the same vertices as of G, two vertices being adjacent if the distance between them is equal to the diameter of G. A graph is said to be antipodal if it is the antipodal graph $A(H)$ of some graph H. We give a necessary and sufficient condition for a graph to be an antipodal graph.

The next three statements were easily proved in [1].
Proposition 1. $A(G)=G$ if and only if G is complete.
Proposition 2. $A(G)=\bar{G}$ if and only if G is of diameter 2 or G is disconnected and the components of G are complete graphs.

Proposition 3. $A(G) \subseteq \bar{G}$ for any graph G other than the complete graph.
The next two assertions are also obvious.
Proposition 4. If both G and \bar{G} have diameter 3, then $A(G)$ and $A(\bar{G})$ are disconnected.

Proposition 5. If G is disconnected, then $A(G)$ is of diameter $\leqslant 2$ and the components of $\overline{\mathrm{A}(G)}$ are complete graphs.

We need the following lemmas for our main theorem.

Lemma 1. If \bar{G} is a disconnected graph with at least one noncomplete component, then G is not an antipodal graph.

[^0]Proof. Let us assume that there exists a graph H such that $A(H)=G$ and let d be the diameter of H. By Proposition 1, $d \neq 1$. Therefore $A(H) \subseteq \bar{H}$ by Proposition 3. That is $H \subseteq \bar{G}$. Now H cannot be connected as \bar{G} is disconnected. If H is disconnected then by Proposition 5, the components of $\overline{A(H)}$ are complete graphs, a contradiction.

Lemma 2. Let G and \bar{G} be of diameter 3. Then G is not an antipodal graph.
Proof. Let G be the antipodal graph of a graph H. Since both G and \bar{G} are of diameter 3, there exists at least a vertex say u with eccentricity 2 in G. Then the eccentricity of $u, e(u)$, in \bar{G} is 2 or 3 .

Let us suppose that $e(u)$ is 3 in \bar{G}. Let $\left\{N_{i}\right\}=\left\{v_{i} \in H \mid d_{H}\left(u, v_{i}\right)=i\right\}$, where $i=1,2, \ldots, d$. There exists at least a vertex say y which belongs to $\left\{N_{d}\right\}$ and adjacent to all the vertices of $\left\{N_{i}\right\}, i=1,2, \ldots, d-1$ as $e(u)$ is 3 in \bar{G}. Hence for every $v \notin\left\{N_{d}\right\}, d_{H}(y, v)=d$, a contradiction, as there exists at least a $v \notin\left\{N_{d}\right\}$ which lies on a d-path joining y and u.

If $e(u)$ is 2 in \bar{G}, then \bar{G} is of diameter 2, again a contradiction.
Lemma 3. $A(G)$ is of diameter 2 if and only if both G and \bar{G} are of diameter 2 or G is disconnected but not totally disconnected.

Proof. If G is disconnected which is not totally disconnected or if both G and \bar{G} are of diameter 2 then the diameter of $A(G)$ is obviously 2.

Conversely let $A(G)$ be of diameter 2 . Let d be the diameter of G. By Proposition 1, $d \neq 1$. Let $d=2$. Then $A(G)=\bar{G}$ by Proposition 2. If \bar{G} is of diameter not equal to 2 then we get a contradiction. Let G be connected and let $d \geqslant 3$. Consider a vertex $u \in G$. Since $d_{G}\left(v_{i}, v_{j}\right) \leqslant 2, d_{A(G)}\left(v_{i}, v_{j}\right)=2$ where $v_{i} \in$ $\{N(u)\}_{G}$, the set of all vertices adjacent to u in G such that $i \neq j$ and $i, j=$ $1,2, \ldots$, deg $_{G}(u)$. This implies there exists a vertex $x \notin\{N(u)\}_{G}$ such that u and its adjacent vertices $\{N(u)\}_{G}$ belong to $\{N(x)\}_{A(G)}$. That is $d_{G}(u, x)=d=d_{G}\left(x, v_{i}\right)$ which is a contradiction as all v_{i} 's are adjacent to u where $i=1,2, \ldots, \operatorname{deg}_{G}(u)$. If G is totally disconnected then $A(G)$ is complete, a contradiction. Hence either G is disconnected but not totally disconnected or both G and \bar{G} are of diameter 2.

Lemma 4. If \bar{G} is a connected graph of diameter >2, then G is not an antipodal graph.

Proof. Let there exist a graph H such that $A(H)=G$ and let d be the diameter of H.

Case (i). Let \bar{G} be a connected graph of diameter >3. Then G is of diameter 2 . By Lemma 3, either both H and \bar{H} are of diameter 2 or H is disconnected but not
totally disconnected. If $d=2$, then $A(H)=\bar{H}$ which implies $\bar{G}=H$, a contradiction. If H is disconnected, then the components of $\overline{A(H)}$ are complete graphs, again a contradiction.

Case (ii). Let \bar{G} be of diameter 3. If G is of diameter 2 then the proof follows as in Case (i). If G is of diameter 3 then by Lemma 2, G is not antipodal.

The proof of our main theorem now follows from Lemmas 1,2 and 4.
Theorem. A graph G is an antipodal graph if and only if it is the antipodal graph of its complement.

Acknowledgement

The authors thank the referee for the suggestions regarding the format of the article.

Reference

[1] R. Aravamudhan and B. Rajendran, Graph equations of antipodal graphs, Presented at the Seminar on Combinatorics and Applications held at ISI., Calcutta, India on 14-17 December, 1982.

[^0]: * Research supported by the Council of Scientific and Industrial Research, New Delhi. 0012-365X/84/\$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

