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We consider a Fisher-KPP equation with density-dependent diffusion and advection, arising
from a chemotaxis–growth model. We study its behavior as a small parameter, related
to the thickness of a diffuse interface, tends to zero. We analyze, for small times, the
emergence of transition layers induced by a balance between reaction and drift effects.
Then we investigate the propagation of the layers. Convergence to a free boundary limit
problem is proved and a sharp estimate of the thickness of the layers is provided.
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1. Introduction

In this paper we consider a Fisher-KPP equation with density-dependent diffusion and advection, namely

(
P ε

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = ε�
(
um) − ∇ · (u∇vε

) + 1

ε
u(1 − u) in (0,∞) × Ω,

∂(um)

∂ν
= 0 on (0,∞) × ∂Ω,

u(0, x) = u0(x) in Ω,

with ε > 0 a small parameter and vε(t, x) a smooth given function. Here Ω is a smooth bounded domain in R
N (N � 2),

ν is the Euclidian unit normal vector exterior to ∂Ω and m � 2. We are concerned with the behavior of the solutions
uε(t, x) as ε → 0.

Assumption 1.1 (Initial data). Throughout this paper, we make the following assumptions on the initial data.

(i) Let Ω0 be a nonempty open bounded set with a smooth boundary and such that Ω0 ⊂ Ω . Let ũ0 : Ω0 → R be C0 in Ω0
and C2 in Ω0, strictly positive on Ω0 and such that ũ0(x) = 0 for all x ∈ ∂Ω0. Define the map u0 : Ω → R by

u0(x) :=
{

ũ0(x) if x ∈ Ω0,

0 if x ∈ Ω \ Ω0.
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(ii) Ω0 is convex.
(iii) There exists δ > 0 such that, if n denotes the Euclidian unit normal vector exterior to the “initial interface” Γ0 := ∂Ω0,

then ∣∣∣∣∂ ũ0

∂n
(y)

∣∣∣∣ � δ for all y ∈ Γ0. (1.1)

Remark 1.2. Note that the comparison principle allows to relax the regularity assumption on ũ0. See [2] for details.

Assumption 1.3 (Structure of vε). We assume that

vε(t, x) = v(t, x) + εvε
1(t, x), (1.2)

with v and vε
1 smooth functions on [0,∞) × Ω . We assume that, for all T > 0, there exists C > 0 such that, for all ε > 0

small enough, it holds that ‖vε
1‖C1,2([0,T ]×Ω) � C . Finally we assume

∂vε

∂ν
= 0 on (0,∞) × ∂Ω. (1.3)

Remark 1.4. In the sequel we smoothly extend v(t, x) in time and space on the whole of R × R
N , as well as vε

1(t, x) in
space on [0,∞) × R

N . Moreover since we are investigating local in time phenomena we will assume in the sequel, without
loss of generality, that the extensions v(t, x) and vε

1(t, x) vanish outside of a large time–space ball.

Problem (P ε) is a simpler version of a chemotaxis–growth system with logistic nonlinearity, where vε(t, x) is not a
given function but is coupled to u either through the parabolic equation εvt = �v + u −γ v or through the elliptic equation
0 = �v + u − γ v , supplemented with the Neumann boundary condition (1.3) (see e.g. [21]). Note that, in the case of linear
diffusion (corresponding to m = 1) and a bistable nonlinearity, the asymptotic behavior of the corresponding system as
ε → 0 has been studied using Green’s function associated to the homogeneous Neumann boundary value problem on Ω for
the operator −� + γ (see [8] and [1]).

Motivation and biological background
Before describing our results, let us briefly comment about the relevance of (P ε) in population dynamics models. The

evolution equation in Problem (P ε) combines logistic growth, chemotaxis and degenerate diffusion. We recall below how
these terms appear in mathematical models that attempt to capture remarkable biological features.

Reaction–diffusion equations with a logistic nonlinearity were introduced in the pioneering works [12,18]. The simplest
equation reads

ut = �u + u(1 − u),

and has been widely used to model phenomena arising in population genetics [12] or in biological invasions [22]. Its main
mathematical property is to sustain travelling wave solutions with a semi-infinite interval of admissible wave speeds, with
the minimal one having a crucial biological interpretation.

Chemotaxis, i.e. the tendency of biological individuals to direct their movements according to certain chemicals in their
environment, is induced in (P ε) by the advection term −∇ · (u∇vε): the population, whose density is u(t, x), has an
oriented motion in the direction of a positive gradient of the chemotactic substance, whose concentration is vε(t, x). The
first PDE model to describe such movements was proposed in [17] and involves linear diffusion for u and a parabolic
equation coupling v to u. The Keller–Segel model has received considerable attention in mathematical literature, particularly
focusing on the finite-time blow-up of solutions (see [16] for a recent review). This provides a mathematical tool to analyze
aggregation phenomena as observed in bacteria colonies. Chemotaxis systems involving linear diffusion and a growth term,
either logistic or bistable, have later been considered in, e.g., [21,8,1,24].

Variants of the Fisher-KPP equation involving a degenerate diffusion have been proposed in order to take into account
population density pressure. Actually one can introduce density-dependent birth or death rates as an attempt to control
the size of a population. Nevertheless as shown in [13], the introduction of a nonlinearity into the dispersal behavior of a
species, which behaves in an otherwise linear way, may lead, in an inhomogeneous environment, to a similar regulatory
effect. Moreover this assumption is consistent with ecological observations as reported for instance in [9], where it is shown
that arctic ground squirrels migrate from densely populated areas into sparsely populated areas, even when the latter is
less favorable (due to reduced availability of burrow sites or exposure to intensive predation). For such species, migration to
avoid crowding, rather than random motion, is the primary cause of dispersal. To describe such movements, the authors in
[22] and [13] use the directed motion model where individuals can only stay put or move down the population gradient;
this model yields the degenerate equation

ut = �
(
u2) + G(x)u, (1.4)
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in which the population regulates its size below the carrying capacity set by the supply of nutrients. Later in [14] a larger
class of equations with degenerate diffusion and nonlinear reaction was considered, namely

ut = �
(
um) + f (u), m � 2. (1.5)

Note that in the absence of f (u), Eq. (1.5) reduces to the so-called porous medium equation

ut = �
(
um)

, (1.6)

which has been extensively investigated in the literature. We refer to the book [23] and the references therein. The main
feature of this equation is that it is degenerate at the points where u = 0. As a consequence, a loss of regularity of solutions
occurs and disturbances propagate with finite speed, a property which has a relevant interpretation in a biological context
(see for instance [6]).

Formal asymptotic analysis
Problem (P ε) possesses a unique solution uε(t, x) in a sense that is explained in Section 3. As ε → 0, the qualitative

behavior of this solution is the following. In the very early stage, the nonlinear diffusion term ε�(um) is negligible compared
with the drift term −∇u · ∇vε and the reaction term ε−1u(1 − u). Hence, in some sense, the equation is well approximated
by a coupling between the transport equation ut + ∇u · ∇vε = 0 and the ordinary differential equation ut = ε−1u(1 − u).
Therefore, as suggested by the analysis in [2], uε quickly approaches the values 0 or 1, and an interface is formed between
the regions {uε ≈ 0} and {uε ≈ 1} (emergence of the layers). Note that, in this very early stage, the balance of the transport
equation and the ordinary differential equation will generate an interface not exactly around Γ0 but in a slightly drifted
place. Once such an interface is developed, the diffusion term becomes large near the interface, and comes to balance with
the drift and the reaction terms so that the interface starts to propagate, on a much slower time scale (propagation of the
front).

Our goal in this paper is to provide a rigorous analysis that supports this formal approach and makes it more precise.
To study the interfacial behavior, we consider the asymptotic limit of (P ε) as ε → 0. Then the limit solution will be a step
function ũ(t, x) taking the value 1 on one side of a moving interface, and 0 on the other side. We show that this sharp
interface, which we will denote by Γt , obeys the law of motion

(
P 0) ⎧⎨⎩ Vn = c∗ + ∂v

∂n
on Γt,

Γt |t=0 = Γ0,

where Vn is the normal velocity of Γt in the exterior direction, c∗ the minimal speed of travelling waves solutions of a
related degenerate one-dimensional problem (see Section 5 for details) and n the outward normal vector on Γt .

Plan
The organization of this paper is as follows. We present our results in Section 2. In Section 3, we briefly recall known

results concerning the well-posedness of Problem (P ε); in particular, it admits a comparison principle so that the sub- and
super-solutions method can be used to investigate the behavior of the solutions uε . In Section 4, we prove a generation of
interface property for Problem (P ε). In Section 5 we investigate the motion of interface. Finally, we prove our main result
in Section 6.

2. Results and comments

The question of the convergence of Problem (P ε) to (P 0) has been addressed in [11]. However, the author considers
only a very restricted class of initial data, namely those having a specific profile with well-developed transition layers. In
other words the generation of interface from arbitrary initial data is not studied. In the present paper we study both the
emergence and the propagation of interface. Moreover we prove a sharp O(ε) estimate of the thickness of the transition
layers of the solutions uε .

The authors in [15] prove the convergence of the solutions of (P ε) with arbitrary initial data with convex compact
support to solutions of (P 0), when there is no advection (i.e. vε ≡ 0). They provide an O(ε| lnε|) estimate of the thickness
of the transition layers. Therefore, even in the particular case vε ≡ 0, our O(ε) estimate was not known.

As mentioned in the introduction, the drift term and the reaction term in (P ε) are of the same magnitude for small
times. Therefore the emergence of the layers, initiated by the ODE ut = ε−1u(1 − u), will occur in the neighborhood of a
slightly drifted initial interface Γ

ε,drift
0 . To analyze such a phenomenon we shall use the Lagrangian coordinates. Recall that

we have smoothly extended v(t, x) in time–space on the whole of R × R
N , with v ≡ 0 outside of a large time–space ball.

Then, for (t0, x0) ∈ R × R
N , we denote by ϕ(t0,x0) the solution, defined on R, of the Cauchy problem⎧⎨⎩

dX

dt
(t) = ∇v

(
t, X(t)

)
, (2.1)
X(t0) = x0.
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We denote by Φ the associated flow defined on R × R × R
N , that is

Φ(t1, t2, x3) := ϕ(t2,x3)(t1). (2.2)

Recall that Γ0 = ∂Ω0 = ∂(Supp u0) is the initial interface. From t = 0 to

tε := ε| lnε| (generation time), (2.3)

we let each point on Γ0 evolve with the law (2.1) and then define a drifted initial interface Γ
ε,drift

0 by

Γ
ε,drift

0 := {
Φ

(
tε,0, x

)
: x ∈ Γ0

}
. (2.4)

Next we consider the free boundary problem

(
P 0

ε,drift

) ⎧⎨⎩ Vn = c∗ + ∂v

∂n
on Γ

ε,drift
t ,

Γ
ε,drift

t

∣∣
t=0 = Γ

ε,drift
0 .

Well-posedness of (P 0) and of (P 0
ε,drift)

Using the level set formulation (see, e.g., [5]), the motion law in Problem (P 0) can be rewritten as a first order Hamilton–
Jacobi equation with a convex Hamiltonian. This approach, combined with the results in [19], has been used in [11] in order
to prove the following.

Theorem 2.1 (Well-posedness of (P 0)). (See [11].) Let Ω0 � Ω be a smooth subdomain of Ω and let Γ0 = ∂Ω0 be the given smooth
initial interface. Then there exists T max(Γ0) > 0 such that Problem (P 0) has a unique smooth solution on [0, T ] for any 0 < T <

T max(Γ0). More precisely, there exists a family of smooth subdomains (Ωt)t∈(0,T ] with Ωt � Ω such that, denoting Γt = ∂Ωt , Γ :=⋃
0�t�T ({t} × Γt) is the unique solution to Problem (P 0) on [0, T ].

Moreover, T max(Γ0) depends smoothly on Γ0. Therefore we can choose ε0 > 0 small enough and T > 0 such that

0 < T < inf
0�ε�ε0

T max(Γ ε,drift
0

)
, (2.5)

which guarantees the existence of a unique smooth solution on [0, T ] to both (P 0) and (P 0
ε,drift) for any 0 < ε � ε0. We

denote by Γ ε,drift = ⋃
0�t�T ({t} × Γ

ε,drift
t ) the smooth solution to (P 0

ε,drift) and by Ω
ε,drift
t the region enclosed by Γ

ε,drift
t .

In the sequel we work on [0, T ], with T satisfying (2.5), and define Q T := (0, T ) × Ω .
Our main result, Theorem 2.2, contains generation, motion and thickness of the transition layers properties. It asserts

that: given an initial data u0, the solution uε quickly (at time tε = ε| lnε|) becomes close to 1 or 0, except in a small
neighborhood of the drifted interface Γ

ε,drift
tε , creating a steep transition layer around Γ

ε,drift
tε (generation of interface). The

theorem then states that the solution uε remains close to the step function associated with (P 0
ε,drift) on the time interval

[tε, T ] (motion of interface); in other words, the motion of the transition layer is well approximated by the limit interface
equation (P 0

ε,drift). Moreover, the estimate (2.6) in Theorem 2.2 implies that, once a transition layer is formed, its thickness
remains within order O(ε) for the rest of time.

Theorem 2.2 (Generation, motion and thickness of the layers). Let η ∈ (0,1/2) be arbitrary. Then, there exists C > 0 such that, for all
ε > 0 small enough and all

tε = ε| lnε| � t � T ,

we have

uε(t, x) ∈

⎧⎪⎪⎨⎪⎪⎩
[0,1 + η] if x ∈ NCε(Γ

ε,drift
t ),

[1 − η,1 + η] if x ∈ Ω
ε,drift
t \ NCε(Γ

ε,drift
t ),

{0} if x ∈ (Ω \ Ω
ε,drift
t ) \ NCε(Γ

ε,drift
t ),

(2.6)

with Nr(Γ
ε,drift

t ) := {x: dist(x,Γ ε,drift
t ) < r} the tubular r-neighborhood of Γ

ε,drift
t .

Note that (2.6) shows that, for any 0 < a < 1, for all tε � t � T , the a-level set

Lε
t (a) := {

x: uε(t, x) = a
}
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lives in a tubular O(ε) neighborhood of the interface Γ
ε,drift

t . In other words, we provide a new O(ε) estimate of the thick-
ness of the transition layers of the solutions uε . Concerning the localization of the level sets Lε

t (a), it is made with respect to
a slightly drifted free boundary Problem (P 0

ε,drift). Nevertheless, since the solution of (P 0
ε,drift) on [0, T ] is continuous w.r.t.

the initial hypersurface Γ
ε,drift

0 , we recover, as ε → 0, the original free boundary Problem (P 0) and obtain the expected
result. More precisely, let us define the step function ũ(t, x) by

ũ(t, x) :=
{

1 in Ωt,

0 in Ω \ Ωt
for t ∈ (0, T ]. (2.7)

As a consequence of Theorem 2.2, we obtain the following convergence result which shows that ũ is the sharp interface
limit of uε as ε → 0.

Corollary 2.3 (Convergence). As ε → 0, uε converges to ũ, defined in (2.7), everywhere in
⋃

0<t�T ({t} × Ωt) and
⋃

0<t�T ({t} ×
(Ω \ Ωt)).

3. Comparison principle, well-posedness for (Pε)

Since the diffusion term degenerates when u = 0 a loss of regularity of solutions occurs. We define below a notion of
weak solution for Problem (P ε), which is very similar to the one proposed in [3] for the one-dimensional problem with
homogeneous Dirichlet boundary conditions. Concerning the initial data, we suppose here that u0 ∈ L∞(Ω) and u0 � 0 a.e.
Note that in this section, and only in this section, we assume, for ease of notation, that ε = 1 and that vε ≡ v; we then
denote the associated Problem (P ε) by (P ). In the sequel f (u) = u(1 − u).

Definition 3.1. A function u : [0,∞) → L1(Ω) is a solution of Problem (P ) if, for all T > 0,

(i) u ∈ C([0,∞); L1(Ω)) ∩ L∞(Q T );
(ii) for all ϕ ∈ C2(Q T ) such that ϕ � 0 and ∂ϕ

∂ν = 0 on ∂Ω , it holds that∫
Ω

u(T )ϕ(T ) −
∫ ∫

Q T

(
uϕt + um�ϕ + u∇v · ∇ϕ

) =
∫
Ω

u0ϕ(0) +
∫ ∫

Q T

f (u)ϕ. (3.1)

A sub-solution (a super-solution) of Problem (P ) is a function satisfying (i) and (ii) with equality replaced by � (respec-
tively �).

Theorem 3.2 (Existence and comparison principle). Let T > 0 be arbitrary. The following properties hold.

(i) Let u− (u+) be a sub-solution (respectively a super-solution) with initial data u−
0 (respectively u+

0 ).

If u−
0 � u+

0 a.e. then u− � u+ in Q T ;
(ii) Problem (P ) has a unique solution u on [0,∞) and

0 � u � max
(
1,‖u0‖L∞(Ω)

)
in Q T ; (3.2)

(iii) u ∈ C(Q T ).

Since (1.3) holds, the proof of Theorem 3.2 is standard and follows the same steps of that of [3, Theorem 5]. The
continuity of u follows from [10].

The following lemma proved in [15], will be very useful when constructing smooth sub- and super-solutions in later
sections.

Lemma 3.3 (Being sub- and super-solutions). Let u be a continuous nonnegative function in Q T . Define

Ω
supp
t := {

x ∈ Ω: u(t, x) > 0
}
, Γ

supp
t := ∂Ω

supp
t ,

for all t ∈ [0, T ]. Suppose the family Γ supp := ⋃
0�t�T ({t} × Γ

supp
t ) is sufficiently smooth and let ν

supp
t be the outward normal vector

on Γ
supp

t . Suppose moreover that

(i) ∇(um) is continuous in Q T ;
(ii) Lε[u] := ut − �(um) + ∇ · (u∇v) − f (u) = 0 in {(t, x) ∈ Q T : u(t, x) > 0};

(iii) ∂(um)
supp = 0 on ∂Ω

supp
t , for all t ∈ [0, T ].
∂νt
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Then u is a solution of Problem (P ). Similarly a function satisfying (i) and (ii)–(iii) with equality replaced by � (�) is a sub-solution
(respectively a super-solution) of Problem (P ).

4. Emergence of the transition layers

In this section, we investigate the generation of interface which occurs very quickly around Γ
ε,drift

tε . We prove that, given
a virtually arbitrary initial datum u0, the solution uε of (P ε) quickly becomes close to 1 or 0 in most part of Ω . More
precisely – recalling that Φ(t1, t2, x3), defined in (2.2), denotes the flow associated with the Cauchy problem (2.1) – the
following holds.

Theorem 4.1 (Emergence of the layers). Let η ∈ (0,1/2) be arbitrary. Then there exists M0 > 0 such that, for all ε > 0 small enough,
the following hold with tε = ε| lnε|:

(i) for all x ∈ Ω , we have that

0 � uε
(
tε, x

)
� 1 + η; (4.1)

(ii) for all x ∈ Ω , we have that

if u0
(
Φ

(
0, tε, x

))
� M0ε then uε

(
tε, x

)
� 1 − η; (4.2)

(iii) for all x ∈ Ω , we have

if dist
(
Φ

(
0, tε, x

)
,Ω0

)
� M0ε then uε

(
tε, x

) = 0, (4.3)

where we recall that Ω0 = {x: u0(x) > 0} (see Assumption 1.1).

In order to prove the above theorem, we shall construct sub- and super-solutions. As mentioned before, in this very early
stage, we have to take into account both the reaction and the drift terms. We start with some preparations.

4.1. A related ODE and the flow Φ

An ODE
The solution of the problem without diffusion nor advection, namely ūt = ε−1 f (ū) supplemented with the condition

ū(0, x) = u0(x), is written in the form ū(t, x) = Y ( t
ε , u0(x)), where Y (τ , ξ) denotes the solution of the ordinary differential

equation Yτ (τ , ξ) = f (Y (τ , ξ)) supplemented with the initial condition Y (0, ξ) = ξ . Nevertheless, in order to take care of
the term −u�vε , we need a slight modification of f .

Let f̃ be the smooth odd function that coincides with f (u) = u(1 − u) on [0,∞): f̃ has exactly three zeros −1 < 0 < 1
and

f̃ ′(−1) = −1 < 0, f̃ ′(0) = 1 > 0, f̃ ′(1) = −1 < 0, (4.4)

i.e. f̃ is of the bistable type. Next, we define

f̃δ(u) := f̃ (u) + δ.

For |δ| small enough, this function is still of the bistable type: if δ0 > 0 is small enough, then for any δ ∈ (−δ0, δ0), f̃δ has
exactly three zeros α−(δ) < a(δ) < α+(δ) and there exists a positive constant C such that∣∣α−(δ) + 1

∣∣ + ∣∣a(δ)
∣∣ + ∣∣α+(δ) − 1

∣∣ � C |δ|, (4.5)∣∣μ(δ) − 1
∣∣ � C |δ|, (4.6)

where μ(δ) is the slope of f̃δ at the unstable zero, namely

μ(δ) := f̃ ′
δ

(
a(δ)

) = f̃ ′(a(δ)
)
. (4.7)

Now for each δ ∈ (−δ0, δ0), we define Y (τ , ξ ; δ) as the solution of the ordinary differential equation{
Yτ (τ , ξ ; δ) = f̃δ

(
Y (τ , ξ ; δ)) for τ > 0,

Y (0, ξ ; δ) = ξ,
(4.8)

where ξ varies in (−C0, C0), with

C0 := ‖u0‖L∞(Ω) + 1. (4.9)

We claim that Y (τ , ξ ; δ) has the following properties.
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Lemma 4.2 (Behavior of Y ). There exist positive constants δ0 and C such that the following hold for all (τ , ξ ; δ) ∈ (0,∞)×(−C0, C0)×
(−δ0, δ0).

(i) If ξ > a(δ) then Y (τ , ξ ; δ) > a(δ),
If ξ < a(δ) then Y (τ , ξ ; δ) < a(δ);

(ii) |Y (τ , ξ ; δ)| � C0;
(iii) 0 < Yξ (τ , ξ ; δ) � Ceμ(δ)τ ;

(iv) | Yξξ

Yξ
(τ , ξ ; δ)| � C(eμ(δ)τ − 1).

Properties (i) and (ii) are direct consequences of the bistable profile of f̃δ . For proofs of (iii) and (iv) we refer to [1].

The flow Φ

Let us briefly recall known facts concerning the flow Φ(t1, t2, x3). By definition we have

∂Φ

∂t1
(t, t0, x0) = ∇v

(
t,Φ(t, t0, x0)

)
. (4.10)

Next, note that, by uniqueness,

Φ
(
t, t0,Φ(t0, t, x0)

) = x0,

for all (t, t0, x0) ∈ R × R × R
N . Differentiating this identity with respect to t0, we get

∂Φ

∂t2
(t, t0, x) + D3Φ(t, t0, x)

∂Φ

∂t1
(t0, t, x0) = 0RN ,

where x := Φ(t0, t, x0) and where D3Φ(t1, t2, x3) denotes the Jacobian matrix of Φ w.r.t. the third variable. Hence, using
(4.10) we infer that

∂Φ

∂t2
(t, t0, x) + D3Φ(t, t0, x)∇v(t0, x) = 0RN , (4.11)

which is of crucial importance for our analysis.

4.2. Proof of (4.1) and (4.2)

We use the notation z+ = max(z,0). Our sub- and super-solutions are given by

w±
ε (t, x) :=

[
Y

(
t

ε
, u0

(
Φ(0, t, x)

) ± ε2C�
(
eμ(±εM)t/ε − 1

);±εM

)]+
, (4.12)

or equivalently by

w±
ε

(
t,Φ(t,0, x)

) :=
[

Y

(
t

ε
, u0(x) ± ε2C�

(
eμ(±εM)t/ε − 1

);±εM

)]+
. (4.13)

Here Y (τ , ξ ; δ) is the solution of (4.8), μ(δ) the slope defined in (4.7), Φ(t1, t2, x3) the flow defined in (2.2) and M is chosen
such that, for all ε > 0 small enough, M � C0‖�vε‖L∞(Q T ) , with C0 defined by (4.9).

Lemma 4.3 (Sub- and super-solutions for small times). There exists C� > 0 such that, for all ε > 0 small enough, (w−
ε , w+

ε ) is a pair
of sub- and super-solutions for Problem (P ε), in the domain [0, tε] × Ω .

Before proving the lemma, we remark that w−
ε (0, x) = w+

ε (0, x) = u0(x). Consequently, by the comparison principle, we
have

w−
ε (t, x) � uε(t, x) � w+

ε (t, x) for all (t, x) ∈ [
0, tε

] × Ω. (4.14)

Proof of Lemma 4.3. In order to prove that (w−
ε , w+

ε ) is a pair of sub- and super-solutions for Problem (P ε) – if C� is
appropriately chosen – we check the sufficient conditions stated in Lemma 3.3.

On the one hand, concerning the sub-solution w−
ε , for (t, x) such that x ∈ Ω

supp
t [w−

ε ] := {x: w−
ε (t, x) > 0} we have, at

point (t, x),

∇(
w−

ε

)m = (
mY m−1Yξ

)( t
, u0

(
Φ(0, t, x)

) − ε2C�
(
eμ(−εM)t/ε − 1

);−εM

)
∇x

(
u0

(
Φ(0, t, x)

))
.

ε
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If (t, x) → (t0, x0) such that x0 ∈ Γ
supp

t0
[w−

ε ] := ∂Ω
supp
t0

[w−
ε ] then the equality above implies

lim
(t,x)→(t0,x0)

∇(
w−

ε

)m
(t, x) = 0RN ,

and conditions (i) and (iii) of Lemma 3.3 are checked for the sub-solution.
On the other hand, concerning the super-solution w+

ε , note that

ξ := u0
(
Φ(0, t, x)

) + ε2C�
(
eμ(εM)t/ε − 1

)
is positive. Therefore the cubic profile of f̃δ shows that, for t > 0,

Ω
supp
t

[
w+

ε

] = Ω,

Γ
supp

t

[
w+

ε

] := ∂Ω
supp
t

[
w+

ε

] = ∂Ω.

Recall that u0 = 0 in a neighborhood V of ∂Ω; if x is sufficiently close to ∂Ω , Φ(0, t, x) lives in V for all t ∈ [0, tε] (with
ε > 0 sufficiently small). Therefore (4.12) shows that w+

ε is independent on x near ∂Ω and condition (iii) of Lemma 3.3 for
the super-solution is checked (and condition (i) is obviously checked).

Then it remains to prove that

Lε
[

w−
ε

] := (
w−

ε

)
t − ε�

(
w−

ε

)m + ∇ · (w−
ε ∇vε

) − 1

ε
f
(

w−
ε

)
� 0,

in {(t, x) ∈ [0, tε] × Ω: w−
ε (t, x) > 0} and that Lε[w+

ε ] � 0 in {(t, x) ∈ [0, tε] × Ω}. We will only prove the latter inequality
since the proof of the former is similar.

We compute

∂t w+
ε = 1

ε
Yτ + ∂

∂t

[
u0

(
Φ(0, t, x)

)]
Yξ + εμ(εM)C�eμ(εM)t/εYξ ,

∇w+
ε = ∇x

[
u0

(
Φ(0, t, x)

)]
Yξ ,

∇[(
w+

ε

)m] = ∇x
[
u0

(
Φ(0, t, x)

)](
Y m)

ξ
,

�
[(

w+
ε

)m] = ∣∣∇x
[
u0

(
Φ(0, t, x)

)]∣∣2(
Y m)

ξξ
+ �x

[
u0

(
Φ(0, t, x)

)](
Y m)

ξ
,

where the function Y and its derivatives are taken at the point

(τ , ξ ; δ) := (
t/ε, u0

(
Φ(0, t, x)

) + ε2C�
(
eμ(εM)t/ε − 1

);εM
)
.

Note that

∂

∂t

[
u0

(
Φ(0, t, x)

)] = ∇u0
(
Φ(0, t, x)

) · ∂Φ

∂t2
(0, t, x),

and that

∇x
[
u0

(
Φ(0, t, x)

)] = (
D3Φ(0, t, x)

)T ∇u0
(
Φ(0, t, x)

)
,

with (D3Φ(t1, t2, x3))
T the transpose of the Jacobian matrix of Φ w.r.t. the third variable.

Therefore, using f (w+
ε ) = f̃ (w+

ε ) = f̃εM(Y ) − εM and the equation Yτ = f̃εM(Y ), we infer that

Lε
[

w+
ε

] = E1 + E2 + εYξ E3,

where

E1 = M + Y �vε,

E2 = ∇u0
(
Φ(0, t, x)

) ·
(

∂Φ

∂t2
(0, t, x) + D3Φ(0, t, x)∇v(t, x)

)
Yξ ,

E3 = C�μ(εM)eμ(εM)t/ε + (
D3Φ(0, t, x)

)T ∇u0
(
Φ(0, t, x)

) · ∇vε
1(t, x)

− �x
[
u0

(
Φ(0, t, x)

)] (Y m)ξ

Yξ

− ∣∣∇x
[
u0

(
Φ(0, t, x)

)]∣∣2 (Y m)ξξ

Yξ

.

We note that, for ε > 0 sufficiently small, δ = εM ∈ (−δ0, δ0) and that, in the range 0 � t � tε = ε| lnε|,
ξ = u0

(
Φ(0, t, x)

) + ε2C�
(
eμ(εM)t/ε − 1

) ∈ (−C0, C0),

so that estimates of Lemma 4.2 on Y (τ , ξ ; δ) will apply.
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Since we have chosen M � C0‖�vε‖L∞(Q T ) , E1 � 0 holds. Moreover, (4.11) implies E2 = 0. In the sequel we denote by C
various positive constants which may change from place to place but do not depend on ε. From Lemma 4.2 (ii)–(iv) we see

that | (Y m)ξ
Yξ

| = |mY m−1| � C and that∣∣∣∣ (Y m)ξξ

Yξ

∣∣∣∣ � m(m − 1)
∣∣Y m−2Yξ

∣∣ + mY m−1
∣∣∣∣ Yξξ

Yξ

∣∣∣∣ � C + C
(
eμ(εM)t/ε − 1

)
,

since m � 2. Hence

E3 �
(
C�μ(εM) − C

)
eμ(εM)t/ε − C .

Since μ(εM) → 1 as ε → 0, by choosing C� 
 C we see that E3 � 0 for all ε > 0 small enough.
Recalling that Yξ > 0, we get Lε[w+

ε ] � 0 and the lemma is proved. �
We are now in the position to prove (4.1) and (4.2).

Proof of (4.1) and (4.2). Let η ∈ (0,1/2) be arbitrary. Then [1, Lemma 3.11] provides a constant CY > 0 such that, for all
ε > 0 small enough, for all ξ ∈ (−C0, C0),

Y
(| lnε|, ξ ;±εM

)
� 1 + η; (4.15)

if ξ � CY ε then Y
(| lnε|, ξ ;±εM

)
� 1 − η. (4.16)

By setting t = tε = ε| lnε| in (4.14), we obtain

Y
(| lnε|, u0

(
Φ

(
0, tε, x

)) − C�ε2eμ(−εM)| lnε| + C�ε2;−εM
)+

� uε
(
tε, x

)
� Y

(| lnε|, u0
(
Φ

(
0, tε, x

)) + C�ε2eμ(εM)| lnε| − C�ε2;εM
)+

. (4.17)

Therefore, the assertion (4.1) of Theorem 4.1 is a direct consequence of (4.17) and (4.15). Next we prove (4.2). Note that in
view of (4.6), we have εeμ(−εM)| lnε| → 1 as ε → 0. Therefore, for ε > 0 small enough (since Yξ > 0),

uε
(
tε, x

)
� Y

(
| lnε|, u0

(
Φ

(
0, tε, x

)) − 3

2
C�ε + C�ε2;−εM

)+
. (4.18)

Choose M0 
 0 so that M0ε − 3
2 C�ε + C�ε2 � max(CY ε,a(−εM)), with CY as in (4.16). Then, for any x ∈ Ω such that

u0(Φ(0, tε, x)) � M0ε, we have

u0
(
Φ

(
0, tε, x

)) − 3

2
C�ε + C�ε2 � CY ε.

Combining this, (4.18) and (4.16), we see that

uε
(
tε, x

)
� 1 − η.

This completes the proof of (4.2). �
4.3. Proof of (4.3)

Let us recall that a finite speed of propagation property, as is (4.3), is proved in [15]: the authors construct a super-
solution using a related travelling wave U of minimal speed, and they obtain an O(ε| lnε|) estimate of the thickness of the
transition layers. We borrow some ideas from this paper but, in order to obtain the improved O(ε) estimate, we again use
the solution Y of the ordinary differential equation (4.8).

Let zε be the solution of the Cauchy problem (recall that vε(t, x) has been extended on [0,∞) × R
N in Remark 1.4)

(
Q ε

) ⎧⎨⎩ zt = ε�
(
zm) − ∇ · (z∇vε

) + 1

ε
f (z) in (0,∞) × R

N ,

z(0, x) = u0(x) in R
N .

Lemma 4.4 (Super-solutions for (Q ε) for small times). Choose K � 1 and C� > 0 appropriately. For all x0 ∈ ∂Ω0 = ∂ Supp u0 , denote
by n0 the unit outward normal vector to ∂Ω0 at x0 . For t � 0, x ∈ R

n, define the function

z+
ε (t, x) := K

[
Y

(
t
,−(

Φ(0, t, x) − x0
) · n0 + ε2C�

(
eμ(εM)t/ε − 1

);εM

)]+
.

ε
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Here Y (τ , ξ ; δ) is the solution of (4.8), μ(δ) the slope defined in (4.7), Φ(t1, t2, x3) the flow defined in (2.2) and M is chosen such
that, for ε > 0 small enough, M � C0‖�vε‖L∞(Q T ) . Then, for all ε > 0 small enough,

u0(x) � z+
ε (0, x) for all x ∈ R

N , (4.19)

and

Lε
[
z+
ε

] := (
z+
ε

)
t − ε�

(
z+
ε

)m + ∇ · (z+
ε ∇vε

) − 1

ε
f
(
z+
ε

)
� 0, (4.20)

in the domain [0, tε] × R
N .

Proof. Recall that Ω0 is convex. Therefore, in view of (1.1), we can choose K � 1 sufficiently large so that, for all x0 ∈ ∂Ω0
and all x ∈ Ω0,

u0(x) � −K (x − x0) · n0. (4.21)

We prove (4.19). If Φ(0,0, x) = x /∈ Ω0 this is obvious since u0(x) = 0. Let us now assume that Φ(0,0, x) = x ∈ Ω0. Since
Ω0 is convex, it lies on one side of the tangent hyperplane at x0 so that (x − x0) · n0 < 0. Recall that Y (0, ξ ; δ) = ξ so that
z+
ε (0, x) = −K (x − x0) · n0 and (4.19) follows from (4.21).

We now prove (4.20). As in the proof of Lemma 4.3, straightforward computations combined with (4.8) and (4.11) yield

εLε
[
z+
ε

] = K f (Y ) − f (K Y ) + εK
(
M + Y �vε

)
+ ε2 K Yξ

{
C�μ(εM)eμ(εM)t/ε − D3Φ(0, t, x)n0 · ∇vε

1(t, x)

+ �x
[
Φ(0, t, x) · n0

]
K m−1 (Y m)ξ

Yξ

− ∣∣∇x
[
Φ(0, t, x) · n0

]∣∣2
K m−1 (Y m)ξξ

Yξ

}
.

Note that K f (Y ) − f (K Y ) = K (K − 1)Y 2 � 0. Then, by using similar arguments to those in the proof of Lemma 4.3, we see
that Lε[z+

ε ] � 0, if C� > 0 is sufficiently large. �
We now prove (4.3).

Proof of (4.3). We shall first prove that property (4.3) holds for zε the solution of the Cauchy problem (Q ε). Recall that
a(δ) is the unstable zero of f̃δ = f̃ + δ so that a(εM) < 0. Moreover, in view of (4.5) and (4.6), we can choose M0 > 0 large
enough so that, for ε > 0 small enough,

−M0ε + C�εe(μ(εM)−1)| lnε| − C�ε
2 < a(εM).

For x ∈ Ω such that dist(Φ(0, tε, x),Ω0) � M0ε, we choose x0 ∈ ∂Ω0 such that dist(Φ(0, tε, x),Ω0) = ‖Φ(0, tε, x) − x0‖ and
define z+

ε as in Lemma 4.4. It follows from Lemma 4.4 and the comparison principle that, for all ε > 0 small enough, all
(t, x) ∈ [0, tε] × R

N ,

0 � zε(t, x) � z+
ε (t, x). (4.22)

Since, for t = tε = ε| lnε|,
−(

Φ
(
0, tε, x

) − x0
) · n0 + ε2C�

(
eμ(εM)tε/ε − 1

) = −∥∥Φ
(
0, tε, x

) − x0
∥∥ + C�εe(μ(εM)−1)| lnε| − C�ε

2

� −M0ε + C�εe(μ(εM)−1)| lnε| − C�ε
2

< a(εM),

it follows from Lemma 4.2 (i) that

Y

(
tε

ε
,−(

Φ
(
0, tε, x

) − x0
) · n0 + ε2C�

(
eμ(εM)tε/ε − 1

);εM

)
< a(εM) < 0,

and therefore z+
ε (tε, x) = 0, which in turn implies zε(tε, x) = 0. Hence (4.3) holds for zε the solution of (Q ε).

Now, a straightforward modification of [15, Corollary 4.1] shows that there exists T̃ > 0 such that, for all ε > 0 small
enough,

uε(t, x) = zε(t, x),

for all (t, x) ∈ (0, T̃ ) × Ω . This proves (4.3) for uε the solution of (P ε). �
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5. The propagating front

The goal of this section is to construct efficient sub- and super-solutions that control uε during the latter time range,
when the motion of interface occurs. We begin with some preparations.

5.1. Materials

In the linear diffusion case (m = 1), it is well known that the equation ut = �u + u(1 − u) admits travelling wave
solutions with some semi-infinite interval of admissible wave speed. The same property holds for the nonlinear diffusion
case, namely equation ut = �(um)+ u(1 − u), m > 1. Nevertheless, it turns out that the travelling wave with minimal speed
c∗ > 0 is both compactly supported from one side and sharp. In the following, U denotes the unique solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
Um)′′

(z) + c∗U ′(z) + U (z)
(
1 − U (z)

) = 0 for all z ∈ R,

U (−∞) = 1,

U (z) > 0 for all z < 0,

U (z) = 0 for all z � 0.

(5.1)

Lemma 5.1 (Behavior of U ). For all z ∈ (−∞,0) we have U ′(z) < 0. The travelling wave U is smooth outside 0 and

U ′(0)

⎧⎨⎩
= 0 if 1 < m < 2,

∈ (−∞,0) if m = 2,

= −∞ if m > 2.

Moreover, there exist C > 0 and β > 0 such that the following properties hold.∣∣(Um)′
(z)

∣∣ � C U (z) for all z ∈ R, (5.2)

0 < 1 − U (z) � Ce−β|z| for all z � 0, (5.3)∣∣zU ′(z)
∣∣ � C U (z) for all z � −1. (5.4)

For more details and proofs we refer the reader to [4,7,15], as well as to [20] for related results.
Another ingredient is a “cut-off signed distance function” dε(t, x) which is defined as follows. Let d̃ε = d̃ε,drift be the

signed distance function to Γ ε,drift, the smooth solution of the free boundary Problem (P 0
ε,drift), namely

d̃ε(t, x) :=
{−dist(x,Γ ε,drift

t ) for x ∈ Ω
ε,drift
t ,

dist(x,Γ ε,drift
t ) for x ∈ Ω \ Ω

ε,drift
t ,

(5.5)

where dist(x,Γ ε,drift
t ) is the distance from x to the hypersurface Γ

ε,drift
t . We remark that d̃ε = 0 on Γ ε,drift and that

|∇d̃ε| = 1 in a neighborhood of Γ ε,drift: there exists d0 > 0 such that, for all ε > 0 small enough, |∇d̃ε(t, x)| = 1 if
|̃dε(t, x)| < 2d0. By reducing d0 if necessary we can assume that d̃ε is smooth in {(t, x) ∈ [0, T ] × Ω: |̃dε(t, x)| < 3d0}.

Next, let ζ(s) be a smooth increasing function on R such that

ζ(s) =
⎧⎨⎩

s if |s| � d0,

−2d0 if s � −2d0,

2d0 if s � 2d0.

We then define the cut-off signed distance function dε = dε,drift by

dε(t, x) := ζ
(

d̃ε(t, x)
)
. (5.6)

Note that

if
∣∣dε(t, x)

∣∣ < d0 then
∣∣∇dε(t, x)

∣∣ = 1, (5.7)

and that the equation of motion (P 0
ε,drift) is recast as(

dε
t + c∗ + ∇dε · ∇v

)
(t, x) = 0 on Γ

ε,drift
t = {

x ∈ Ω: dε(t, x) = 0
}
. (5.8)

Moreover, there exists a constant D > 0 such that, for all ε > 0 small enough,∣∣∇dε(t, x)
∣∣ + ∣∣�dε(t, x)

∣∣ � D for all (t, x) ∈ Q T . (5.9)

Finally, in view of (5.7) and (5.8), the mean value theorem provides a constant N > 0 such that, for all ε > 0 small enough,∣∣dε
t + c∗∣∣∇dε

∣∣2 + ∇dε · ∇v
∣∣(t, x) � N

∣∣dε(t, x)
∣∣ for all (t, x) ∈ Q T . (5.10)
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5.2. Sub- and super-solutions

We define

u±
ε (t, x) := (

1 ± q(t)
)
U

(
dε(t, x) ∓ εp(t)

ε

)
, (5.11)

where

p(t) := −e−t/ε + eLt + K ,

q(t) := σ
(
e−t/ε + εLeLt),

and where U and dε were defined in Section 5.1. In the following lemma, Ω
supp
t [u±

ε ], Γ
supp

t [u±
ε ], Γ supp[u±

ε ] and ν
supp
t [u±

ε ]
are defined as in Lemma 3.3.

Lemma 5.2 (Sub- and super-solutions for the propagating front). Choose σ > 0 small enough so that

c∗(m − 1)D2(1 + 2σ)m−2σ � 1

2
, (5.12)

where D is the constant that appears in (5.9). Choose K � 1. Then, if L > 0 is large enough, we have, for ε > 0 small enough,

Lε
[
u−

ε

]
� 0 � Lε

[
u+

ε

]
in (0, T ) × Ω, (5.13)

∂(u−
ε )m

∂ν
supp
t [u−

ε ] = 0 on ∂Ω
supp
t

[
u−

ε

]
, for all t ∈ [0, T ], (5.14)

∂(u+
ε )m

∂ν
supp
t [u+

ε ] = 0 on ∂Ω
supp
t

[
u+

ε

]
, for all t ∈ [0, T ]. (5.15)

Proof. Properties (5.14) and (5.15) follow from (Um)′(0) = 0 (see (5.2)). We prove below that Lε[u+
ε ] � 0, the proof of

Lε[u−
ε ] � 0 follows the same lines. Note that we only need to consider the case dε(t, x) � εp(t) since, if dε(t, x) > εp(t)

then u+
ε (t, x) = 0. Straightforward computations and Eq. (5.1) yield

ε
(
u+

ε

)
t = εq′U + (1 + q)

(
dε

t − εp′)U ′,
ε∇u+

ε = (1 + q)U ′∇dε,

ε2�
(
u+

ε

)m = (1 + q)m
∣∣∇dε

∣∣2(−c∗U ′ − U (1 − U )
) + ε(1 + q)m�dε

(
Um)′

,

where arguments are omitted. Thus we get

εLε
[
u+

ε

] = E1 + E2 + E3,

where

E1 = U ′(1 + q)
[
dε

t − εp′ + c∗(1 + q)m−1
∣∣∇dε

∣∣2 + ∇dε · ∇vε
] =: U ′(1 + q)E�

1,

E2 = U
{−(1 + q) + (1 + q)m

∣∣∇dε
∣∣2 + U

[
(1 + q)2 − (1 + q)m

∣∣∇dε
∣∣2] + εq′},

E3 = −ε(1 + q)m�dε
(
Um)′ + ε(1 + q)�vεU .

In the sequel we define a(t) := 1 + q(t) and denote by Ci various positive constants which do not depend on ε.
Since ‖�vε‖L∞(Q T ) is uniformly bounded w.r.t. ε > 0 (see Assumption 1.3), we deduce from (5.9) and (5.2) that |E3| �

εC3(am + a)U so that

E2 + E3 � U
{−a + am + U

(
a2 − am) − εC3am − εC3a + (∣∣∇dε

∣∣2 − 1
)
am(1 − U ) + εq′}. (5.16)

We claim that, for ε > 0 small enough,∣∣(∣∣∇dε
∣∣2 − 1

)
(1 − U )

∣∣ � εC2. (5.17)

Indeed, if −d0 < dε(t, x) � εp(t), it follows from (5.7) that, for ε > 0 small enough, |∇dε(t, x)| = 1. Next, if dε(t, x) � −d0,
(5.3) implies that

0 < (1 − U )

(
dε(t, x) − εp(t)

)
� (1 − U )

(
−d0

)
� Ce−β

d0
ε ,
ε ε
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and (5.17) holds for ε > 0 small enough. Therefore (5.16) and (5.17) imply

E2 + E3 � U
{−a + am + U

(
a2 − am) − ε(C2 + C3)a

m − εC3a + εq′}. (5.18)

Next, since

E�
1 = dε

t + c∗∣∣∇dε
∣∣2 + ∇dε · ∇v − εp′ + c∗(am−1 − 1

)∣∣∇dε
∣∣2 + ε∇dε · ∇vε

1,

using (5.10), (5.9) and Assumption 1.3, we see that

E�
1 � N

∣∣dε(t, x)
∣∣ − εp′(t) + c∗(am−1 − 1

)∣∣∇dε
∣∣2 + ε∇dε · ∇vε

1

� N
∣∣dε(t, x) − εp(t)

∣∣ + ε
(
Np(t) − p′(t)

) + c∗(am−1 − 1
)

D2 + εC D

� N
∣∣dε(t, x) − εp(t)

∣∣ + ε
(
Np(t) − p′(t)

) + c∗(m − 1)D2(1 + 2σ)m−2q(t) + εC D.

The last inequality above comes from the fact that, for ε > 0 small enough, we have 0 � q(t) � σ(1 + εLeLT) � 2σ , which in
turn implies that

0 � am−1 − 1 � (m − 1)(1 + 2σ)m−2q(t). (5.19)

In the following, we distinguish two cases.
First, assume that 0 � dε(t, x) � εp(t) so that, for ε > 0 small enough,

E�
1 � ε

(
2Np(t) − p′(t)

) + c∗(m − 1)D2(1 + 2σ)m−2q(t) + εC D

� e−t/ε(−ε2N − 1 + c∗(m − 1)D2(1 + 2σ)m−2σ
)

+ eLt(ε2N − εL + εc∗(m − 1)D2(1 + 2σ)m−2σ L
) + ε2N K + εC D.

In view of (5.12) we get

E�
1 � ε

(
eLt

(
2N − 1

2
L

)
+ 2N K + C D

)
� 0,

if L > 0 is sufficiently large. This implies that E1 = aU ′E�
1 � 0.

Now, assume that dε(t, x) � 0 so that

dε(t, x) − εp(t)

ε
� −K � −1. (5.20)

If E�
1 � 0 the conclusion E1 � 0 follows. Let us now assume E�

1 > 0. The above study for the case 0 � dε(t, x) � εp(t) implies
a fortiori that

ε
(
Np(t) − p′(t)

) + c∗(m − 1)D2(1 + 2σ)m−2q(t) + εC D � 0.

Therefore∣∣E�
1

∣∣ � N
∣∣dε(t, x) − εp(t)

∣∣,
and we deduce from (5.20) and (5.4) that

|E1| � εC1aU .

Summarizing, we obtain that, in any cases,

εLε
[
u+

ε

]
� U

{−a + am + U
(
a2 − am) − εC4am + εq′},

since a = 1 + q > 1 and with C4 := C1 + C2 + 2C3. Since U < 1, a > 1 and m � 2, the inequality −a + am + U (a2 − am) �
−a + a2 = q + q2 � q holds. Therefore, using |a| � 1 + 2σ and substituting the expressions for q(t) and q′(t), we see that

εLε
[
u+

ε

]
� U

{
εσ LeLt − εC4(1 + 2σ)m + σε2L2eLt}

� Uε
{
σ L − C4(1 + 2σ)m}

� 0,

if L > 0 is sufficiently large.
This completes the proof of Lemma 5.2. �
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6. Proof of Theorem 2.2

By fitting the sub- and super-solutions for the generation into the ones for the motion, we are now in the position to
prove our main result.

Let η ∈ (0,1/2) be arbitrary. Choose σ that satisfies (5.12) and

σ � η

2
. (6.1)

By Theorem 4.1, there exists M0 > 0 such that (4.1), (4.2) and (4.3) hold with the constant η replaced by σ/2. Recall that
u±

ε are the sub- and super-solutions constructed in (5.11).

Lemma 6.1 (Ordering initial data). There exists K̃ > 0 such that for all K � K̃ , all L > 0, all ε > 0 small enough, we have

u−
ε (0, x) � uε

(
tε, x

)
� u+

ε (0, x), (6.2)

for all x ∈ Ω .

Proof. We first prove

u−
ε (0, x) = (1 − σ − εσ L)U

(
dε(0, x) + Kε

ε

)
� uε

(
tε, x

)
. (6.3)

If x is such that dε(0, x) � −Kε, this is obvious since the definition of U then implies u−
ε (0, x) = 0. Next assume that x is

such that dε(0, x) < −Kε. Let us denote by d(t, x) the signed distance function to Γt . Note that, in view of hypothesis (1.1),
the mean value theorem provides the existence of a constant K̃0 > 0 such that

if d(0, y) � −K̃0ε then u0(y) � M0ε. (6.4)

Moreover in view of the definition of Γ
ε,drift

0 in (2.4) and the compactness of Γ0, there exists K0 > 0 such that, for ε > 0
small enough,

if dε(0, x) � −K0ε then d
(
0,Φ

(
0, tε, x

))
� −K̃0ε. (6.5)

Hence, if we choose K � K0, we deduce from (6.5), (6.4) and (4.2) (with η replaced by σ/2) that uε(tε, x) � 1 − σ
2 . Since

U � 1, this proves (6.3).
Next we prove

uε
(
tε, x

)
� (1 + σ + εσ L)U

(
dε(0, x) − Kε

ε

)
= u+

ε (0, x). (6.6)

In view of the definition of Γ
ε,drift

0 in (2.4) and the compactness of Γ0, there exists K1 > 0 such that

if dε(0, x) � K1ε then dist
(
Φ

(
0, tε, x

)
,Ω0

)
� M0ε. (6.7)

If x is such that dε(0, x) � K1ε then it follows from (6.7) and Theorem 4.1 (iii) that uε(tε, x) = 0, which proves (6.6). Next
assume that x is such that dε(0, x) < K1ε. Since U is nonincreasing we have

(1 + σ + εσ L)U

(
dε(0, x) − Kε

ε

)
� (1 + σ)U (K1 − K ) � 1 + σ

2
,

if K 
 K1 (recall that U (−∞) = 1). Then (6.6) follows from (4.1) (with η replaced by σ/2). �
We now prove Theorem 2.2.

Proof of Theorem 2.2. We fix K � 1 large enough so that Lemma 6.1 holds, and L > 0 large enough so that Lemma 5.2
holds. Therefore, from the comparison principle, we deduce that

u−
ε (t, x) � uε

(
t + tε, x

)
� u+

ε (t, x) for 0 � t � T − tε. (6.8)

Note that, since

lim u±
ε (t, x) =

{
1 if dε(t, x) < 0,

ε
(6.9)
ε→0 0 if d (t, x) > 0,
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for t > 0, (6.8) is enough to prove the convergence result, namely Corollary 2.3. We now choose C large enough so that(
1 − 3

4
η

)
U

(−C + eLT + K
)
� 1 − η. (6.10)

Note that this choice forces

C � eLT + K . (6.11)

In the sequel we prove (2.6).
Obviously, if ε > 0 is small enough, the constant map z+ ≡ 1 + η is a super-solution. Therefore we deduce from Theo-

rem 4.1 (i) that uε(t + tε, x) ∈ [0,1 + η], for all 0 � t � T − tε .
Next we take x ∈ Ω

ε,drift
t \ NCε(Γ

ε,drift
t ), i.e.

dε(t, x) � −Cε. (6.12)

For ε > 0 small enough, we have

u−
ε (t, x) �

(
1 − σ − εσ LeLT)U

(−C + eLT + K
)

�
(

1 − 3

2
σ

)
U

(−C + eLT + K
)

�
(

1 − 3

4
η

)
U

(−C + eLT + K
)

� 1 − η,

where we have successively used (6.1) and (6.10). In view of (6.8) this implies that uε(t + tε, x) � 1−η, for all 0 � t � T − tε .

Finally we take x ∈ (Ω \ Ω
ε,drift
t ) \ NCε(Γ

ε,drift
t ), i.e.

dε(t, x) � Cε. (6.13)

Using (6.11) we see that, for ε > 0 small enough, dε(t, x) − εp(t) � 0 so that u+
ε (t, x) = 0, which, in view of (6.8) implies

that uε(t + tε, x) = 0, for 0 � t � T − tε .
This completes the proof of Theorem 2.2. �
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