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A point x is a (bow) tie-point of a space X if X \ {x} can be partitioned into relatively
clopen sets each with x in its closure. Tie-points have appeared in the construction of
non-trivial autohomeomorphisms of βN \ N (e.g. [S. Shelah, J. Steprāns, Martin’s axiom is
consistent with the existence of nowhere trivial automorphisms, Proc. Amer. Math. Soc.
130 (7) (2002) 2097–2106 (electronic). MR 1896046 (2003k:03063), B. Veličković, OCA and
automorphisms of P(ω)/fin, Topology Appl. 49 (1) (1993) 1–13]) and in the recent study
of (precisely) 2-to-1 maps on βN \ N. In these cases the tie-points have been the unique
fixed point of an involution on βN \ N. This paper is motivated by the search for 2-to-1
maps and obtaining tie-points of strikingly differing characteristics.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A point x is a tie-point of a space X if there are closed sets A, B of X such that X = A ∪ B , {x} = A ∩ B and x is a
limit point of each of A and B . We picture (and denote) this as X = A ��

x B where A, B are the closed sets which have a
unique common accumulation point x and say that x is a tie-point as witnessed by A, B . Let A ≡x B mean that there is a
homeomorphism from A to B with x as a fixed point. If X = A ��

x B and A ≡x B , then there is an involution F of X (i.e.
F 2 = F ) such that {x} = fix(F ). In this case we will say that x is a symmetric tie-point of X .

An autohomeomorphism F of βN \ N (or N∗) is said to be trivial if there is a bijection f between cofinite subsets of N
such that F = β f � βN\N. If F is a trivial autohomeomorphism, then fix(F ) is clopen; so of course βN\N will have no sym-
metric tie-points in this case if all autohomeomorphisms are trivial. Important earlier work on such autohomeomorphisms
can be found in [6–10].

If A and B are arbitrary compact spaces, and if x ∈ A and y ∈ B are accumulation points, then let A ��

x=y
B denote the

quotient space of A ⊕ B obtained by identifying x and y and let xy denote the collapsed point. Clearly the point xy is a
tie-point of this space.

We came to the study of tie-points via the following observation.

Proposition 1.1. If x, y are symmetric tie-points of βN\N as witnessed by A, B and A′ , B ′ respectively, then there is a 2-to-1 mapping
from βN \ N onto the space A ��

x=y
B ′ .
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The proposition holds more generally if x and y are fixed points of involutions F , F ′ respectively. That is, replace A
by the quotient space of βN \ N obtained by collapsing all sets {z, F (z)} to single points and similary replace B ′ by the
quotient space induced by F ′ . It is an open problem to determine if 2-to-1 continuous images of βN \ N are homeomorphic
to βN \ N [5]. It is known to be true if CH [3] or PFA [2] holds.

There are many interesting questions that arise naturally when considering the concept of tie-points in βN\N. While the
interest in tie-points is fundamentally topologically, the detailed investigation of them is very set-theoretic. Given a closed
set A ⊂ βN \ N, let IA = {a ⊂ N: a∗ ⊂ A}. Given an ideal I of subsets of N, let I⊥ = {b ⊂ N: (∀a ∈ I) a ∩ b =∗ ∅} and
I+ = {d ⊂ N: (∀a ∈ I) d \ a /∈ I⊥}. If J ⊂ [N]ω , let J ↓ = ⋃

J∈J P( J ). Say that J ⊂ I is unbounded in I if for each a ∈ I ,
there is a b ∈ J such that b \ a is infinite. As usual, a collection J ⊂ I is dense if every member of I contains a member
of J .

Definition 1.2. If I is an ideal of subsets of N, set cf(I) to be the cofinality of I; b(I) is the minimum cardinality of an
unbounded family in I; δ(I) is the minimum cardinality of a subset J of I such that J ↓ is dense in I .

If βN \ N = A ��

x B , then IB = I⊥
A and x is the unique ultrafilter on N extending I+

A ∩ I+
B . The character of x in βN \ N is

equal to the maximum of cf(IA) and cf(IB).

Definition 1.3. Say that a tie-point x has (i) b-type; (ii) δ-type; respectively (iii) bδ-type, (κ,λ) if βN \ N = A ��

x B and
(κ,λ) equals: (i) (b(IA),b(IB)), (ii) (δ(IA), δ(IB)), and (iii) each of (b(IA),b(IB)) and (δ(IA), δ(IB)). We will adopt the
convention to put the smaller of the pair (κ,λ) in the first coordinate.

Again, it is interesting to note that if x is a tie-point of b-type (κ,λ), then it is uniquely determined (in βN \ N) by λ

many subsets of N since x will be the unique ultrafilter extending the family ((JA)↓)+ ∩ ((JB)↓)+ where JA and JB are
unbounded subfamilies of IA and IB . It would be very interesting if this could be less than the character of the ultrafilter.
Let us also note that JA and JB can always be chosen to be increasing mod finite chains, so b(IA) and b(IB) are regular
cardinals.

Question 1.1. Can there be a tie-point in βN \ N with b-type (κ,λ) with each of κ and λ being less than the character of
the point?

Question 1.2. Can βN \ N have tie-points of δ-type (ω1,ω1) and (ω2,ω2)?

Proposition 1.4. If βN \ N has symmetric tie-points of δ-type (κ,κ) and (λ,λ), but no tie-points of δ-type (κ,λ), then βN \ N has a
2-to-1 image which is not homeomorphic to βN \ N.

One could say that a tie-point x was radioactive in X (i.e. ���) if X \ {x} can be similarly split into 3 (or more) relatively
clopen sets accumulating to x. This is equivalent to X = A ��

x B such that x is a tie-point in either A or B .
Each point of character ω1 in βN \ N is a radioactive point (in particular is a tie-point). P-points of character ω1 are

symmetric tie-points of bδ-type (ω1,ω1), while points of character ω1 which are not P-points will have b-type (ω,ω1) and
δ-type (ω1,ω1). If there is a tie-point of b-type (κ,λ), then of course there are (κ,λ)-gaps. If there is a tie-point of δ-type
(κ,λ), then p � κ .

Proposition 1.5. If βN \ N = A ��

x B, then p � δ(IA).

Proof. If J ⊂ IA is unbounded and has cardinality less than p, there is, by Solovay’s Lemma (and Bell’s Theorem) an
infinite set C ⊂ N such that C and N \ C each meet every infinite set of the form J \ (

⋃
J ′) where { J } ∪J ′ ∈ [J ]<ω . We

may assume that C /∈ x hence there are a ∈ IA and b ∈ IB such that C ⊂ a ∪ b. Fix any finite J ′ ⊂J and choose J ∈J such
that J \ (a ∪⋃

J ′) is infinite. Now C ∩ J \ a is empty while C ∩ ( J \⋃
J ′) is not, it follows that a is not contained in

⋃
J ′;

thus no finite union from J covers a. However, since |J | < p, it follows that J ↓ is not dense in [a]ω , and so also not dense
in IA . �

Although it does not seem to be completely trivial, it can be shown that PFA implies there are no tie-points (the hardest
case to eliminate is those of b-type (ω1,ω1)).

Question 1.3. Does p > ω1 imply there are no tie-points of b-type (ω1,ω1)?

Analogous to tie-points, we also define a tie-set: say that K ⊂ βN \ N is a tie-set if βN \ N = A ��

K
B and K = A ∩ B ,

A = A \ K , and B = B \ K . Say that K is a symmetric tie-set if there is an involution F such that K = fix(F ) and F [A] = B .
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Question 1.4. If F is an involution on βN \ N such that K = fix(F ) has empty interior, is K a (symmetric) tie-set?

Question 1.5. Is there some natural restriction on which compact spaces can (or cannot) be homeomorphic to the fixed
point set of some involution of βN \ N?

Again, we note a possible application to 2-to-1 maps.

Proposition 1.6. Assume that F is an involution of βN \ N with K = fix(F ) �= ∅. Further assume that K has a symmetric tie-point x
(i.e. K = A ��

x B), then βN \ N has a 2-to-1 continuous image which has a symmetric tie-point (and possibly βN \ N does not have
such a tie-point).

Question 1.6. If F is an involution of N∗ , is the quotient space N∗/F (in which each {x, F (x)} is collapsed to a single point)
a homeomorphic copy of βN \ N?

Proposition 1.7 (CH). If F is an involution of βN \ N, then the quotient space N∗/F is homeomorphic to βN \ N.

Proof. If fix(F ) is empty, then N∗/F is a 2-to-1 image of βN \ N, and so is a copy of βN \ N. If fix(F ) is not empty, then
consider two copies, (N∗

1, F1) and (N∗
2, F2), of (N∗, F ). The quotient space of N∗

1/F1 ⊕ N∗
2/F2 obtained by identifying the

two homeomorphic sets fix(F1) and fix(F2) will be a 2-to-1-image of N∗ , hence again a copy of N∗ . Since N∗
1 \ fix(F1) and

N∗
2 \ fix(F2) are disjoint and homeomorphic, it follows easily that fix(F ) must be a P-set in N∗ . It is trivial to verify that a

regular closed set of N∗ with a P-set boundary will be (in a model of CH) a copy of N∗ . Therefore the copy of N∗
1/F1 in this

final quotient space is a copy of N∗ . �
2. A spectrum of tie-sets

We adapt a method from [1] to produce a model in which there are tie-sets of specified bδ-types. We further arrange
that these tie-sets will themselves have tie-points but unfortunately we are not able to make the tie-sets symmetric. In the
next section we make some progress in involving involutions. In topological terms we formulate the following main result.

Theorem 2.1. It is consistent to have non-empty sets I, J of uncountable regular cardinals below c such that for each κ ∈ I ∪ {c}, there
is a nowhere dense Pκ -set Kκ of character κ which is a tie-set of N∗ , and for each κ ∈ J , there is no Pκ -set of character κ which is a
tie-set of N∗ .

Theorem 2.1 follows easily from the following more set-theoretic result.

Theorem 2.2. Assume GCH and that Λ is a set of regular uncountable cardinals such that for each λ ∈ Λ, Tλ is a <λ-closed λ+-Souslin
tree. There is a forcing extension in which there is a tie-set K (of bδ-type (c, c)) and for each λ ∈ Λ, there is a tie-set Kλ of bδ-type
(λ+, λ+) such that K ∩ Kλ is a single point which is a tie-point of Kλ . Furthermore, for μ � κ < c and (μ,κ) /∈ {(λ+, λ+): λ ∈ Λ},
then there is no tie-set of bδ-type (μ,λ).

We will assume that our Souslin trees are well-pruned and are ever ω-ary branching. That is, if Tλ is a λ+-Souslin tree,
we assume that for each t ∈ T , t has exactly ω immediate successors denoted {t�	: 	 ∈ ω} and that {s ∈ Tλ: t < s} has
cardinality λ+ (and so has successors on every level). A poset is <κ-closed if every directed subset of cardinality less than κ
has a lower bound. A poset is <κ-distributive if the intersection of any family of fewer than κ dense open subsets is again
dense. For a cardinal μ, let μ− be the minimum cardinal such that (μ−)+ � μ (e.g. the predecessor if μ is a successor).

The main idea of the construction is nicely illustrated by the following.

Proposition 2.3. Assume that βN \ N has no tie-sets of bδ-type (κ1, κ2) for some κ1 � κ2 < c. Also assume that λ+ < c is such that
λ+ is distinct from one of κ1, κ2 and that Tλ is a λ+-Souslin tree and {(at , xt ,bt): t ∈ Tλ} ⊂ ([N]ω)3 satisfy that, for t < s ∈ Tλ:

(1) {at, xt ,bt} is a partition of N,
(2) xt� j ∩ xt�	 = ∅ for j < 	,
(3) xs ⊂∗ xt , at ⊂∗ as, and bt ⊂∗ bs,
(4) for each 	 ∈ ω, xt�	+1 ⊂∗ at�	 and xt�	+2 ⊂∗ bt�	 ,

then if ρ ∈ [Tλ]λ+
is a generic branch (i.e. ρ(α) is an element of the αth level of Tλ for each α ∈ λ+), then Kρ = ⋂

α∈λ+ x∗
ρ(α) is a

tie-set of βN \ N of bδ-type (λ+, λ+), and there is no tie-set of bδ-type (κ1, κ2).



1664 A. Dow, S. Shelah / Topology and its Applications 155 (2008) 1661–1671
(5) Assume further that {(cξ , eξ ,dξ ): ξ ∈ c} is a family of partitions of N such that {eξ : ξ ∈ c} is a mod finite descending family of
subsets of N such that for each Y ⊂ N, there is a maximal antichain AY ⊂ Tλ and some ξ ∈ c such that for each t ∈ AY , xt ∩ eξ is
a proper subset of either Y or N \ Y , then K = ⋂

ξ∈c e∗
ξ meets Kρ in a single point zλ .

(6) If we assume further that for each ξ < η < c, cξ ⊂∗ cη and dξ ⊂∗ dη , and for each t ∈ Tλ , η may be chosen so that xt meets each
of (cη \ cξ ) and (dη \ dξ ), then zλ is a tie-point of Kρ .

Proof. To show that Kρ is a tie-set it is sufficient to show that Kρ ⊂ ⋃
α∈λ+ a∗

ρ(α) ∩ ⋃
α∈λ+ b∗

ρ(α) . Since Tλ is a λ+-Souslin
tree, no new subset of λ is added when forcing with Tλ . Of course we use that ρ is Tλ is generic, so assume that Y ⊂ N
and that some t ∈ Tλ forces that Y ∗ ∩ Kρ is not empty. We must show that there is some t < s such that s forces that as ∩ Y
and bs ∩ Y are both infinite. However, we know that xt�	 ∩ Y is infinite for each 	 ∈ ω since t�	 �Tλ “Kρ ⊂ x∗

t�	”. Therefore,
by condition (4), for each 	 ∈ ω, Y ∩ at�	 and Y ∩ bt�	 are both infinite.

Now let κ1, κ2 be regular cardinals at least one of which is distinct from λ+ . Recall that forcing with Tλ preserves
cardinals. Assume that in V [ρ], K ⊂ N∗ and N∗ = C ��

K
D with b(IC ) = δ(IC ) = κ1 and b(ID) = δ(ID) = κ2. In V , let

{cγ : γ ∈ κ1} be Tλ-names for the increasing cofinal sequence in IC and let {dξ : ξ ∈ κ2} be Tλ-names for the increasing
cofinal sequence in ID . Again using the fact that Tλ adds no new subsets of N and the fact that every dense open subset
of Tλ will contain an entire level of Tλ , we may choose ordinals {αγ : γ ∈ κ1} and {βξ : ξ ∈ κ2} such that for each t ∈ Tλ ,
if t is on level αγ it will force a value on cγ and if t is on level βξ it will force a value on dξ . If κ1 < λ+ , then sup{αγ :
γ ∈ κ1} < λ+ , hence there are t ∈ Tλ which force a value on each cγ . If λ+ < κ2, then there is some β < λ+ , such that
{ξ ∈ κ2: βξ � β} has cardinality κ2. Therefore there is some t ∈ Tλ such that t forces a value on dξ for a cofinal set of
ξ ∈ κ2. Of course, if neither κ1 nor κ2 is equal to λ+ , then we have a condition that decided cofinal families of each of IC

and ID . This implies that N∗ already has tie-sets of bδ-type (κ1, κ2).
If κ1 < κ2 = λ+ , then fix t ∈ Tλ deciding C = {cγ : γ ∈ κ1}, and let D = {d ⊂ N: (∃s > t)s �Tλ “d∗ ⊂ D”}. It follows easily

that D = C⊥ . But also, since forcing with Tλ cannot raise b(D) and cannot lower δ(D), we again have that there are tie-sets
of bδ-type in V .

The case κ1 = λ+ < κ2 is similar.
Now assume we have the family {(cξ , eξ ,dξ ): ξ ∈ c} as in (5) and (6) and set K = ⋂

ξ e∗
ξ , A = {K } ∪ ⋃{c∗

ξ : ξ ∈ c}, and
B = {K } ∪ ⋃{d∗

ξ : ξ ∈ c}. It is routine to see that (5) ensures that the family {eξ ∩ xρ(α): ξ ∈ c and α ∈ λ+} generates an
ultrafilter when ρ meets each maximal antichain AY (Y ⊂ N). Condition (6) clearly ensures that A \ K and B \ K each meet
(eξ ∩ xρ(α))

∗ for each ξ ∈ c and α ∈ λ+ . Thus A ∩ Kρ and B ∩ Kρ witness that zλ is a tie-point of Kρ . �
Let θ be a regular cardinal greater than λ+ for all λ ∈ Λ. We will need the following well-known Easton Lemma (see

[4, p. 234]).

Lemma 2.4. Let μ be a regular cardinal and assume that P1 is a poset satisfying the μ-cc. Then any <μ-closed poset P2 remains
<μ-distributive after forcing with P1 . Furthermore any <μ-distributive poset remains <μ-distributive after forcing with a poset of
cardinality less than μ.

Proof. Recall that a poset P is <μ-distributive if forcing with it does not add, for any γ < μ, any new γ -sequences of
ordinals. Since P2 is <μ-closed, forcing with P2 does not add any new antichains to P1. Therefore it follows that forcing
with P2 preserves that P1 has the μ-cc and that for every γ < μ, each γ -sequence of ordinals in the forcing extension by
P2 × P1 is really just a P1-name. Since forcing with P1 × P2 is the same as P2 × P1, this shows that in the extension by P1,
there are no new P2-names of γ -sequences of ordinals.

Now suppose that P2 is μ-distributive and that P1 has cardinality less than μ. Let Ḋ be a P1-name of a dense open
subset of P2. For each p ∈ P1, let D p ⊂ P2 be the set of all q such that some extension of p forces that q ∈ Ḋ . Since p forces
that Ḋ is dense and that Ḋ ⊂ D p , it follows that D p is dense (and open). Since P2 is μ-distributive,

⋂
p∈P1

D p is dense and

is clearly going to be a subset of Ḋ . Repeating this argument for at most μ many P1-names of dense open subsets of P2
completes the proof. �

We recall the definition of Easton supported product of posets (see [4, p. 233]).

Definition 2.5. If Λ is a set of cardinals and {Pλ: λ ∈ Λ} is a set of posets, then we will use
∏

λ∈Λ Pλ to denote the
collection of partial functions p such that

(1) dom(p) ⊂ Λ,
(2) |dom(p) ∩ μ| < μ for all regular cardinals μ,
(3) p(λ) ∈ Pλ for all λ ∈ dom(p).

This collection is a poset when ordered by q < p if dom(q) ⊃ dom(p) and q(λ) � p(λ) for all λ ∈ dom(p).
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Lemma 2.6. For each cardinal μ,
∏

λ∈Λ\μ+ Tλ is <μ+-closed and, if μ is regular,
∏

λ∈Λ∩μ Tλ has cardinality at most 2<μ �
min(Λ \ μ).

Lemma 2.7. If P is ccc and G ⊂ P × ∏
λ∈Λ Tλ is generic, then in V [G], for any μ and any family A⊂ [N]ω with |A| = μ:

(1) if μ � ω, then A is a member of V [G ∩ P ];
(2) if μ = λ+, λ ∈ Λ, then there is an A′ ⊂A of cardinality λ+ such that A′ is a member of V [G ∩ (P × Tλ)];
(3) if μ− /∈ Λ, then there is an A′ ⊂A of cardinality μ which is a member of V [G ∩ P ].

Corollary 2.8. If P is ccc and G ⊂ P ×∏
λ∈Λ Tλ is generic, then for any κ � μ < c such that either κ �= μ or κ /∈ {λ+: λ ∈ Λ}, if there

is a tie-set of bδ-type (κ,μ) in V [G], then there is such a tie-set in V [G ∩ P ].

Proof. Assume that βN \ N = A ��

K
B in V [G] with μ = b(A) and λ = b(B). Let JA ⊂ IA be an increasing mod finite chain,

of order type μ, which is dense in IA . Similarly let JB ⊂ IB be such a chain of order type λ. By Lemma 2.7, JA and JB

are subsets of [N]ω ∩ V [G ∩ P ] = [N]ω . Choose, if possible μ1 ∈ Λ such that μ+
1 = μ and λ1 ∈ Λ such that λ+

1 = λ. Also by
Lemma 2.7, we can, by passing to a subcollection, assume that JA ∈ V [G ∩ (P × Tμ1 )] (if there is no μ1, then let Tμ1 denote
the trivial order). Similarly, we may assume that JB ∈ V [G ∩ (P × Tλ1 )]. Fix a condition q ∈ G ⊂ (P ×∏

λ∈Λ Tλ) which forces
that (JA)↓ is a ⊂-dense subset of IA , that (JB)↓ is a ⊂-dense subset of IB , and that (IA)⊥ = IB .

Working in the model V [G ∩ P ] then, there is a family {ȧα: α ∈ μ} of Tμ1 -names for the members of JA ; and a family
{ḃβ : β ∈ λ1} of Tλ1 -names for the members of JB . Of course if μ = λ and Tμ1 is the trivial order, then JA and JB are
already in V [G ∩ P ] and we have our tie-set in V [G ∩ P ].

Otherwise, we assume that μ1 < λ1. Set A to be the set of all a ⊂ N such that there is some q(μ1) � t ∈ Tμ1 and α ∈ μ
such that t �Tμ1

“a = ȧα”. Similarly let B be the set of all b ⊂ N such that there is some q(λ1) � s ∈ Tλ1 and β ∈ λ such that

s �Tλ1
“b = ḃβ”. It follows from the construction that, in V [G], for any (a′,b′) ∈ JA × JB , there is an (a,b) ∈ A × B such

that a′ ⊂∗ a and b′ ⊂∗ b. Therefore the ideal generated by A∪B is certainly dense. It remains only to show that B ⊂ (A)⊥ .
Consider any (a,b) ∈ A×B, and choose (q(μ1),q(λ1)) � (t, s) ∈ Tμ1 × Tλ1 such that t �Tμ1

“a ∈ JA” and s �Tλ1
“b ∈ JB ”. It

follows that for any condition q̄ � q with q̄ ∈ (P × ∏
λ∈Λ Tλ), q̄(μ1) = t , q̄(λ1) = s, we have that

q̄ �(P×∏
λ∈Λ Tλ) “a ∈JA and b ∈JB ”.

It is routine now to check that, in V [G ∩ P ], A and B generate ideals that witness that
⋂{(N \ (a ∪ b))∗: (a,b) ∈A×B} is

a tie-set of bδ-type (μ,λ). �
Let T be the rooted tree {∅} ∪ ⋃

λ∈Λ Tλ and we will force an embedding of T into P(N) mod finite. In fact, we force a
structure {(at , xt,bt): t ∈ T } satisfying the conditions (1)–(4) of Proposition 2.3.

Definition 2.9. The poset Q 0 is defined as the set of elements q = (nq, T q, f q) where nq ∈ N, T q ∈ [T ]<ω , and f q : nq × T q →
{0,1,2}. The idea is that xt will be

⋃
q∈G{ j ∈ nq: f q( j, t) = 0}, at will be

⋃
q∈G{ j ∈ nq: f q( j, t) = 1} and bt = N \ (at ∪ xt).

We set q < p if nq � np , T q ⊃ T p , f q ⊃ f p and for t, s ∈ T p and i ∈ [np,nq)

(1) if t < s and f q(i, t) ∈ {1,2}, then f q(i, s) = f q(i, t);
(2) if t < s and f q(i, s) = 0, then f q(i, t) = 0;
(3) if t ⊥ s, then f q(i, t) + f q(i, s) > 0;
(4) if j ∈ {1,2} and{t�	, t�(	+ j)} ⊂ T p and f q(i, t�(	 + j)) = 0, then f q(i, t�	) = j.

The next lemma is very routine but we record it for reference.

Lemma 2.10. The poset Q 0 is ccc and if G ⊂ Q 0 is generic, the family XT = {(at , xt ,bt): t ∈ T } satisfies the conditions of Proposi-
tion 2.3.

The poset Q 0 is the first step in constructing the ccc poset P so that the final model will be obtained by forcing with
P × ∏

λ∈Λ Tλ . Properties (1)–(4) of Proposition 2.3 are handled by Q 0 × ∏
λ∈Λ Tλ , the rest of P is needed to give us (5) and

(6) to ensure there are no unwanted tie-sets.
We will need some other combinatorial properties of the family XT .

Definition 2.11. For any T̃ ∈ [T ]<ω , we define the following (Q 0-names).

(1) for i ∈ N, [i]T̃ = { j ∈ N: (∀t ∈ T̃ ) i ∈ xt iff j ∈ xt},
(2) the collection fin(T̃ ) is the set of [i] ˜ which are finite.
T
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We abuse notation and let fin(T̃ ) ⊂ n abbreviate fin(T̃ ) ⊂P(n).

Lemma 2.12. For each q ∈ Q 0 and each T̃ ⊂ T q, q forces that fin(T̃ ) ⊂ nq and for i � nq, [i]T̃ is infinite.

Definition 2.13. A sequence SW = {(aξ , xξ ,bξ ): ξ ∈ W } is a tower of T -splitters if W is a set of ordinals, and for ξ < η ∈ W
and t ∈ T :

(1) {aξ , xξ ,bξ } is a partition of N,
(2) aξ ⊂∗ aη , bξ ⊂∗ bη ,
(3) xt ∩ xη is infinite.

Definition 2.14. If SW is a tower of T -splitters and Y is a subset N, then the poset Q (SW , Y ) is defined as follows. Let EY
be the (possibly empty) set of minimal elements of T such that there is some finite H ⊂ W such that xt ∩ Y ∩ ⋂

ξ∈H xξ is

finite. Let DY = E⊥
Y = {t ∈ T : (∀s ∈ EY ) t ⊥ s}. A condition q ∈ Q (SW , Y ) is a tuple (nq,aq, xq,bq, T q, Hq) where

(1) nq ∈ N and {aq, xq,bq} is a partition of nq ,
(2) T q ∈ [T ]<ω and Hq ∈ [W ]<ω ,
(3) (aξ \ aη), (bξ \ bη), and (xη \ xξ ) are all contained in nq for ξ < η ∈ Hq .

We define q < p to mean np � nq , T p ⊂ T q , H p ⊂ Hq , and

(4) for t ∈ T p ∩ DY , xt ∩ (xq \ xp) ⊂ Y ,
(5) xq \ xp ⊂ ⋂

ξ∈H p xξ ,
(6) aq \ ap is disjoint from bmax(H p) ,
(7) bq \ bp is disjoint from amax(H p) .

Lemma 2.15. If W ⊂ γ , SW is a tower of T -splitters, and if G is Q (SW , Y )-generic, then SW ∪ {(aγ , xγ ,bγ )} is also a tower of
T -splitters where aγ = ⋃{aq: q ∈ G}, xγ = ⋃{xq: q ∈ G}, and bγ = ⋃{bq: q ∈ G}. In addition, for each t ∈ DY , xt ∩ xγ ⊂∗ Y (and
xt ∩ xγ ⊂∗ N \ Y for t ∈ EY ).

Lemma 2.16. If W does not have cofinality ω1 , then Q (SW , Y ) is σ -centered.

As usual with (ω1,ω1)-gaps, Q (SW , Y ) may not (in general) be ccc if W has a cofinal ω1 sequence.
Let 0 /∈ C ⊂ θ be cofinal and assume that if C ∩ γ is cofinal in γ and cf(γ ) = ω1, then γ ∈ C .

Definition 2.17. Fix any well-ordering ≺ of H(θ). We define a finite support iteration sequence {Pγ , Q̇ γ : γ ∈ θ} ⊂ H(θ).
We abuse notation and use Q 0 rather than Q̇ 0 from Definition 2.9. If γ /∈ C , then let Q̇ γ be the ≺-least among the list of
Pγ -names of ccc posets in H(θ) \ {Q̇ ξ : ξ ∈ γ }. If γ ∈ C , then let Ẏγ be the ≺-least Pγ -name of a subset N which is in
H(θ) \ {Ẏξ : ξ ∈ C ∩ γ }. Set Q̇ γ to be the Pγ -name of Q (SC∩γ , Ẏγ ) adding the partition {ȧγ , ẋγ , ḃγ } and, where SC∩γ is
the Pγ -name of the T -splitting tower {(aξ , xξ ,bξ ): ξ ∈ C ∩ γ }.

We view the members of Pθ as functions p with finite domain (or support) denoted dom(p).

The main difficulty to the proof of Theorem 2.2 is to prove that the iteration Pθ is ccc. Of course, since it is a finite
support iteration, this can be proven by induction at successor ordinals.

Lemma 2.18. For each γ ∈ C such that C ∩ γ has cofinality ω1 , Pγ +1 is ccc.

Proof. We proceed by induction. For each α, define p ∈ P∗
α if p ∈ Pα and there is an n ∈ N such that

(1) for each β ∈ dom(p) ∩ C , with Hβ = dom(p) ∩ C ∩ β , there are subsets aβ, xβ,bβ of n and T β ∈ [T ]<ω such that
p � β �Pβ “p(β) = (n,aβ, xβ,bβ, T β, Hβ)”.

Assume that P∗
β is dense in Pβ and let p ∈ Pβ+1. To show that P∗

β+1 is dense in Pβ+1 we must find some p∗ � p in P∗
β+1. If

β /∈ C and p∗ ∈ P∗
β is below p � β , then p∗ ∪ {(β, p(β)} is the desired element of P∗

β+1. Now assume that β ∈ C and assume

that p � β ∈ P∗
β and that p � β forces that p(β) is the tuple (n0,a, x,b, T̃ , H̃). By an easy density argument, we may assume

that H̃ ⊂ dom(p). Let n∗ be the integer witnessing that p � β ∈ P∗
β . Let ζ be the maximum element of dom(p) ∩ C ∩ β and

let p � ζ �Pζ “p(ζ ) = (n∗,aζ , xζ ,bζ , T ζ , Hζ )” as per the definition of P∗
ζ+1. Notice that since H̃ ⊂ Hζ we have that

p � β �Pβ “
(
n∗, a∗, x,b∗, T ζ ∪ T̃ , Hζ ∪ {ζ }) � p(β)”
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where a∗ = a ∪ ([n0,n∗) \ bζ ) and b∗ = b ∪ ([n0,n∗) ∩ bζ ). Defining p∗ ∈ Pβ+1 by p∗ � β = p � β and p∗(β) = (n∗,a∗, x,b∗,
T ζ ∪ T̃ , Hζ ∪ {ζ }) completes the proof that P∗

β+1 is dense in Pβ+1, and by induction, that this holds for β = γ .
Now assume that {pα: α ∈ ω1} ⊂ P∗

γ +1. By passing to a subcollection, we may assume that

(1) the collection {T pα(γ ): α ∈ ω1} forms a Δ-system with root T ∗;
(2) the collection {dom(pα): α ∈ ω1} also forms a Δ-system with root R;
(3) there is a tuple (n∗,a∗, x∗,b∗) so that for all α ∈ ω1, apα(γ ) = a∗ , xpα(γ ) = x∗ , and bpα(γ ) = b∗ .

Since C ∩ γ has a cofinal sequence of order type ω1, there is a δ ∈ γ such that R ⊂ δ and, we may assume,
(dom(pα) \ δ) ⊂ min(dom(pβ) \ δ) for α < β < ω1. Since Pδ is ccc, there is a pair α < β < ω1 such that pα � δ is com-
patible with pβ � δ. Define q ∈ Pγ +1 by

(1) q � δ is any element of Pδ which is below each of pα � δ and pβ � δ,
(2) if δ � ξ ∈ γ ∩ dom(pα), then q(ξ) = pα(ξ),
(3) if δ � ξ ∈ dom(pβ) \ C , then q(ξ) = pβ(ξ),
(4) if δ � ξ ∈ dom(pβ) ∩ C , then

q(ξ) = (
n∗,apβ (ξ), xpβ (ξ),bpβ (ξ), T pβ (ξ), H pβ (ξ) ∪ H pα(γ )

)
.

The main non-trivial fact about q is that it is in Pγ +1 which depends on the fact that, by induction on η ∈ C ∩ γ , q � η
forces that

(aη \ aξ ) ∪ (bη \ bξ ) ∪ (xξ \ xη) ⊂ n∗ for ξ ∈ C ∩ η.

It now follows trivially that q is below each of pα and pβ . �
Proof of Theorem 2.2. This completes the construction of the ccc poset P (Pθ as above). Let G ⊂ (P × ∏

λ∈Λ Tλ) be generic.
It follows that V [G ∩ P ] is a model of Martin’s Axiom and c = θ . Furthermore by applying Lemma 2.6 with μ = ω and
Lemma 2.4, we have that P2 = ∏

λ∈Λ Tλ is ω1-distributive in the model V [G ∩ P ]. Therefore all subsets of N in the model
V [G] are also in the model V [G ∩ P ].

Fix any λ ∈ Λ and let ρλ denote the generic branch in Tλ given by G . Let Gλ denote the generic filter on P ×Π{Tμ: λ �=
μ ∈ Λ} and work in the model V [Gλ]. It follows easily by Lemmas 2.6 and 2.4, that Tλ is a λ+-Souslin tree in this model.
Therefore by Proposition 2.3, Kλ = ⋂

α<λ+ x∗
ρλ(α)

is a tie-set of bδ-type (λ+, λ+) in V [G]. By the definition of the iteration
in P , it follows that condition (4) of Lemma 2.3 is also satisfied, hence the tie-set K = ⋂

ξ∈C x∗
ξ meets Kλ in a single

point zλ . A simple genericity argument confirms that conditions (5) and (6) of Proposition 2.3 also holds, hence zλ is a
tie-point of Kλ .

It follows from Corollary 2.8 that there are no unwanted tie-sets in βN\N in V [G], at least if there are none in V [G ∩ P ].
Since p = c in V [G ∩ P ], it follows from Proposition 1.5 that indeed there are no such tie-sets in V [G ∩ P ]. �

Unfortunately the next result shows that the construction does not provide us with our desired variety of tie-points
(even with variations in the definition of the iteration). We do not know if bδ-type can be improved to δ-type (or simply
exclude tie-points altogether).

Proposition 2.19. In the model constructed in Theorem 2.2, there are no tie-points with bδ-type (κ1, κ2) for any κ1 � κ2 < c.

Proof. Assume that βN \ N = A ��

x B and that δ(IA) = κ1 and δ(IB) = κ2. It follows from Corollary 2.8 that we can assume
that κ1 = κ2 = λ+ for some λ ∈ Λ. Also, following the proof of Corollary 2.8, there are P × Tλ-names JA = {ãα: α ∈ λ+} and
P × Tλ+ -names JB = {b̃β : β ∈ λ+} such that the valuation of these names by G result in increasing (mod finite) chains in
IA and IB respectively whose downward closures are dense. Passing to V [G ∩ P ], since Tλ has the θ -cc, there is a Boolean
subalgebra B ∈ [P(N)]<θ such that each ãα and b̃β is a name of a member of B. Furthermore, there is an infinite C ⊂ N
such that C /∈ x and each of b ∩ C and b \ C are infinite for all b ∈ B. Since C /∈ x, there is a Y ⊂ N (in V [G]) such that
C ∩ Y ∈ IA and C \ Y ∈ IB . Now choose t0 ∈ Tλ which forces this about C and Y . Back in V [G ∩ P ], set

A= {
b ∈ B: (∃t1 � t0) t1 �Tλ “b ∈JA ∪JB ”

}
.

Since V [G ∩ P ] satisfies p = θ and A↓ is forced by t0 to be dense in [N]ω , there must be a finite subset A′ of A which
covers C . It also follows easily then that there must be some a,b ∈ A′ and t1, t2 each below t0 such that t1 �Tλ+ “a ∈ JA”,
t2 �Tλ+ “b ∈ JB ”, and a ∩ b is infinite. The final contradiction is that we will now have that t0 fails to force that C ∩ a ⊂∗ Y
and C ∩ b ⊂∗ (N \ Y ). �
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3. T -involutions

In this section we strengthen the result in Theorem 2.2 by making each K ∩ Kλ a symmetric tie-point in Kλ (at the
expense of weakening Martin’s Axiom in V [G ∩ P ]). This is progress in producing involutions with some control over the
fixed point set but we are still not able to make K the fixed point set of an involution. A poset is said to be σ -linked
if there is a countable collection of linked (elements are pairwise compatible) which union to the poset. The statement
MA(σ -linked) is, of course, the assertion that Martin’s Axiom holds when restricted to σ -linked posets.

Our approach is to replace T -splitting towers by the following notion. If f is a (partial) involution on N, let min( f ) =
{n ∈ N: n < f (n)} and max( f ) = {n ∈ N: f (n) < n} (hence dom( f ) is partitioned into min( f ) ∪ fix( f ) ∪ max( f )). This
construction is motivated by the method used in [8].

Definition 3.1. A sequence T = {(Aξ , fξ ): ξ ∈ W } is a tower of T -involutions if W is a set of ordinals and for ξ < ν ∈ W
and t ∈ T

(1) Aν ⊂∗ Aξ ;
(2) f 2

ξ = fξ and fξ � (N \ fix( fξ )) ⊂∗ fη;
(3) fξ [xt] =∗ xt and fix( fξ ) ∩ xt is infinite;
(4) fξ ([n,m)) = [n,m) for n < m both in Aξ .

Say that T, a tower of T -involutions, is full if K = KT = ⋂{fix( fξ )∗: ξ ∈ W } is a tie-set with βN \ N = A ��

K
B where

A = K ∪ ⋃{min( fξ )∗: ξ ∈ W } and B = K ∪ ⋃{max( fξ )∗: ξ ∈ W }.

If T is a tower of T -involutions, then there is a natural involution FT on
⋃

ξ∈W (N \ fix( fξ ))∗ , but this FT need not
extend to an involution on the closure of the union—even if the tower is full.

In this section we prove the following theorem.

Theorem 3.2. Assume GCH and that Λ is a set of regular uncountable cardinals such that for each λ ∈ Λ, Tλ is a <λ-closed λ+-Souslin
tree. Let T denote the tree sum of {Tλ: λ ∈ Λ}. There is forcing extension in which there is T, a full tower of T -involutions, such that
the associated tie-set K has bδ-type (c, c) and such that for each λ ∈ Λ, there is a tie-set Kλ of bδ-type (λ+, λ+) such that FT does
induce an involution on Kλ with a singleton fixed point set {zλ} = K ∩ Kλ . Furthermore, for μ � λ < c, if μ �= λ or λ /∈ Λ, then there
is no tie-set of bδ-type (μ,λ).

Question 3.1. Can the tower T in Theorem 3.2 be constructed so that FT extends to an involution of βN \ N with
fix(F ) = KT?

We introduce T -tower extending forcing.

Definition 3.3. If T = {(Aξ , fξ ): ξ ∈ W } is a tower of T -involutions and Y is a subset of N, we define the poset Q = Q (T, Y )

as follows. Let EY be the (possibly empty) set of minimal elements of T such that there is some finite H ⊂ W such that
xt ∩ Y ∩ ⋂

ξ∈H fix( fξ ) is finite. Let DY = E⊥
Y = {t ∈ T : (∀s ∈ EY ) t ⊥ s}. A tuple q ∈ Q if q = (aq, f q, T q, Hq) where:

(1) Hq ∈ [W ]<ω , T q ∈ [T ]<ω , and nq = max(aq) ∈ Aαq where αq = max(Hq),
(2) f q is an involution on nq ,
(3) (Aαq \ nq) ⊂ Aξ for each ξ ∈ Hq ,
(4) fin(T q) ⊂ nq ,
(5) fξ � (N \ (fix( fξ ) ∪ nq)) ⊂ fαq for ξ ∈ Hq ,
(6) fαq [xt \ nq] = xt \ nq for t ∈ T q .

We define p < q if np � nq , and for t ∈ T p and i ∈ [np,nq):

(7) ap = aq ∩ np , T p ⊂ T q , and H p ⊂ Hq ,
(8) aq \ ap ⊂ Aαp ,
(9) fαp (i) �= i implies f q(i) = fαp (i),

(10) f q([n,m)) = [n,m) for n < m both in aq \ ap ,
(11) f q(xt ∩ [np,nq)) = xt ∩ [np,nq),
(12) if t ∈ D p and i ∈ xt ∩ fix( f q), then i ∈ Y .

It should be clear that the involution f introduced by Q (T, Y ) satisfies that for each t ∈ DY , fix( f ) ∩ xt ⊂∗ Y , and, with
the help of the following density argument, that T∪ {(γ , A, f )} is again a tower of T -involutions where A is the infinite set
introduced by the first coordinates of the conditions in the generic filter.
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Lemma 3.4. If W ⊂ γ , Y ⊂ N, and T = {(Aξ , fξ ): ξ ∈ W } is a tower of T -involutions and p ∈ Q (T, Y ), then for any T̃ ∈ [T ]<ω ,
ζ ∈ W , and any m ∈ N, there is a q < p such that nq � m, ζ ∈ Hq, T q ⊃ T̃ , and fix( f q) ∩ (xt \ np) is not empty for each t ∈ T p .

Proof. Let β denote the maximum αp and ζ and let η denote the minimum. Choose any nq ∈ Aαq \ m large enough so that

(1) fαp [xt \ nq] = xt \ nq for t ∈ T̃ ,
(2) fη � (N \ (nq ∪ fix( fη))) ⊂ fβ ,
(3) Aβ \ Aη is contained in nq ,
(4) nq ∩ [i]T p ∩ fix( fαp ) is non-empty for each i ∈ N such that [i]T p is in the finite set {[i]T p : i ∈ N} \ fin(T p),
(5) if i ∈ xt ∩ nq \ np for some t ∈ DY ∩ T p , then Y meets [i]T p ∩ nq \ np in at least two points.

Naturally we also set Hq = H p ∪ {ζ } and T q = T p ∪ T̃ . The choice of nq is large enough to satisfy (3), (4), (5) and (6) of
Definition 3.3. We will set aq = ap ∪ {nq} ensuring (1) of Definition 3.3. Therefore for any f q ⊃ f p which is an involution
on nq , we will have that q = (aq, f q, T q, Hq) is in the poset. We have to choose f q more carefully to ensure that q � p. Let
S = [np,nq) ∩ fix( fαp ), and S ′ = [np,nq) \ S . We choose f̄ an involution on S and set f q = f p ∪ ( fαp � S ′) ∪ f̄ . We leave it
to the reader to check that it suffices to ensure that f̄ sends [i]T p ∩ S to itself for each t ∈ T p and that fix( f̄ ) ∩ xt ⊂ Y for
each t ∈ T p ∩ DY . Since the members of {[i]T p ∩ S: i ∈ N} are pairwise disjoint we can define f̄ on each separately.

For each [i]T p ∩ S which has even cardinality, choose two points yi , zi from it so that if there is a p ∈ DY ∩ T p such that
[i]T p ⊂ xt , then {yi, zi} ⊂ Y . Let f̄ be any involution on [i]T p ∩ S so that yi , zi are the only fixed points. If [i]T p ∩ S has odd
cardinality then choose a point yi from it so that if [i]T p

is contained in xt for some t ∈ D y ∩ T p , then yi ∈ Y ∩ [i]T p ∩ S .
Set f̄ (yi) = yi and choose f̄ to be any fixed-point free involution on [i]T p ∩ S \ {yi}. �

Let Pθ now be the finite support iteration defined as in Definition 2.17 except for two important changes. For γ ∈ C ,
we replace T -splitting towers by the obvious inductive definition of towers of T -involutions when we replace the posets
Q̇ (SC∩γ , Ẏγ ) by Q̇ (TC∩γ , Ẏγ ). For γ /∈ C we require that �Pγ “Q̇ γ is σ -linked”.

Special (parity) properties of the family {xt : t ∈ T } are needed to ensure that �Pγ “Q̇ (SC∩γ , Ẏγ ) is ccc” even for cases
when cf(γ ) is not ω1.

The proof of Theorem 3.2 is virtually the same as the proof of Theorem 2.2 (so we skip it) once we have established that
the iteration is ccc.

Lemma 3.5. For each γ ∈ C, Pγ +1 is ccc.

Proof. We again define P∗
α to be those p ∈ Pα for which there is an n ∈ N such that for each β ∈ dom(p) ∩ C , there are

n ∈ aβ ⊂ n+1, f β ∈ nn , T β ∈ [T ]<ω , and Hβ = dom(p) ∩ C ∩ β such that p � β �Pβ “p(β) = (aβ, f β, T β, Hβ)”. However, in
this proof we must also make some special assumptions in coordinates other than those in C . For each ξ ∈ γ \ C , we fix a
collection {Q̇ (ξ,n): n ∈ ω} of Pξ -names so that

1 �Pξ “Q̇ ξ =
⋃

n

Q̇ (ξ,n) and (∀n) Q̇ (ξ,n) is linked”.

The final restriction on p ∈ P∗
α is that for each ξ ∈ α \ C , there is a kξ ∈ ω such that p � ξ �Pξ “p(ξ) ∈ Q̇ (ξ,kξ )”.

Just as in Lemma 2.18, Lemma 3.4 can be used to show by induction that P∗
α is a dense subset of Pα . This time though,

we also demand that dom( f p(0)) = n × T p(0) is such that T β ⊂ T p(0) for all β ∈ dom(p) ∩ C and some extra argument
is needed because of needing to decide values in the name Ẏγ as in the proof of Lemma 3.4. Let p ∈ Pβ+1 and assume
that P∗

β is dense in Pβ . By density, we may assume that p � β ∈ P∗
β , H p(β) ⊂ dom(p), T p(β) ⊂ T p(0) , and that p � β has

decided the members of the set DẎβ
∩ T p(β) . We can assume further that for each t ∈ DẎβ

∩ T p(β) , p � β has forced a value

yt ∈ Ẏβ ∩ xt \ ⋃{xs: s ∈ T p and s � t} such that yt > np(β) . We are using that T is not finitely branching to deduce that
if t ∈ DẎβ

, then p � β �Pβ “Ẏβ ∩ xt \ ⋃{xs: s ∈ T p and s � t} is non-empty” (which follows since Ẏβ must meet xs for each

immediate successor s of t). Choose any m larger than yt for each t ∈ T p(β) . Without loss of generality, we may assume
that the integer n∗ witnessing that p � β ∈ P∗

β is at least as large as m and that n∗ ∈ ⋂
ξ∈H p(β) Aξ . Construct f̄ just as

in Lemma 3.4, except that this time there is no requirement to actually have fixed points so one member of Ẏβ in each
appropriate [i]T p(β) is all that is required. Let ζ = max(dom(p) ∩ β). No new forcing decisions are required of p � β in order
to construct a suitable f̄ , hence this shows that p � β ∪ {(β,q)} (where q is constructed below p(β) as in Corollary 3.4 in
which H p(ζ ) ∪ {ζ } is add to Hq) is the desired extension of p which is a member of P∗

β+1.
Now to show that Pγ +1 is ccc, let {pα: α ∈ ω1} ⊂ P∗

γ +1. Clearly we may assume that the family {pα(0): α ∈ ω1}
are pairwise compatible and that there is a single integer n such that, for each α ∈ ω1, dom(pα(0)) = n × T α for some
T α ∈ [T ]<ω . Also, we may assume that there is some (a,h) such that, for each α,

pα � γ �Pγ “p(γ ) = (
a,h, T α, Hα

)
”

where Hα = dom(pα) ∩ C ∩ γ .
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The family {dom(pα) ∩ γ : α ∈ ω1} may be assumed to form a Δ-system with root R . For each ξ ∈ R , we may assume
that, if ξ /∈ C , there is a single kξ ∈ ω such that, for all α, pα � ξ �Pξ “pα(ξ) ∈ Q̇ (ξ,kξ )”, and if ξ ∈ C , then there is a
single (aξ ,hξ ) such that pα � ξ �Pξ “pα(ξ) = (aξ ,hξ , T α, Hα ∩ ξ)”. For convenience, for each ξ /∈ C let ṙξ be a Pξ -name of a
function from ω × Q̇ 2

ξ such that, for each k ∈ ω,

1 �Pξ “ṙξ (k,q,q′) � q,q′ (∀q,q′ ∈ Q̇ (ξ,k)
)
”.

Fix any α < β < ω1 and let H = Hα ∪ Hβ . Recall that pα(0) and pβ(0) are compatible. Recursively define a Pξ -name
q(ξ) for ξ ∈ dom(pα) ∪ dom(pβ) so that q � ξ �Pξ

“q(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(n, T α ∪ T β, f pα(0) ∪ f pβ (0)) ξ = 0,

ṙξ (kξ , pα(ξ), pβ(ξ)) ξ ∈ R \ C ,

pα(ξ) ξ ∈ dom(pα) \ (R ∪ C),

pβ(ξ) ξ ∈ dom(pβ) \ (R ∪ C),(
aξ ,hξ , T α ∪ T β, H ∩ ξ

)
ξ ∈ C .

”

Now we check that q ∈ Pξ by induction on ξ ∈ γ + 1.
The first thing to note is that not only is this true for ξ = 1, but also that q(0) �Q 0 “ fin(T α ∪ T β) ⊂ n”. Since pα and pβ

are each in P∗
γ +1, this show that condition (4) of Definition 3.3 will hold in all coordinates in C .

We also prove, by induction on ξ , that q � ξ forces that for η < δ both in H ∩ ξ and t ∈ T α ∪ T β , fδ[xt \ n] = xt \ n,
fη � (N \ (fix( fη) ∪ n)) ⊂ fδ and Aδ \ n ⊂ Aη .

Given ξ ∈ H and the assumption that q � ξ ∈ Pξ , and α = αq(ξ) = max(H ∩ ξ), condition (3), (5), and (6) of Definition 3.3
hold by the inductive hypothesis above. It follows then that q � ξ �Pξ “q(ξ) ∈ Q̇ ξ ”. By the definition of the ordering on Q̇ ξ ,
given that H ∩ ξ = Hq(ξ) and T α ∪ T β = T q(ξ) , it follows that the inductive hypothesis then holds for ξ + 1.

It is trivial for ξ ∈ dom(q) \ C , that q � ξ ∈ Pξ implies that q � ξ �Pξ “q(ξ) ∈ Q̇ ξ ”. This completes the proof that q ∈ Pγ +1,
and it is trivial that q is below each of pα and pβ . �
Remark 1. If we add a trivial tree T1 to the collection {Tλ: λ ∈ Λ} (i.e. T1 has only a root), then the root of T has a single
extension which is a maximal node t , and with no change to the proof of Theorem 3.2, one obtains that F induces an
automorphism on x∗

t with a single fixed point. Therefore, it is consistent (and likely as constructed) that βN \ N will have
symmetric tie-points of type (c, c) in the model V [G ∩ P ] and V [G].

Remark 2. In the proof of Theorem 2.2, it is easy to arrange that each Kλ (λ ∈ Λ) is also KTλ
for a (Tλ-generic) full tower,

Tλ , of N-involutions. However the generic sets added by the forcing P will prevent this tower of involutions from extending
to a full involution.

4. Questions

In this section we list all the questions with their original numbering.

Question 1.1. Can there be a tie-point in βN \ N with b-type (κ,λ) with each of κ and λ being less than the character of
the point?

Question 1.2. Can βN \ N have tie-points of δ-type (ω1,ω1) and (ω2,ω2)?

Question 1.3. Does p > ω1 imply there are no tie-points of b-type (ω1,ω1)?

Question 1.4. If F is an involution on βN \ N such that K = fix(F ) has empty interior, is K a (symmetric) tie-set?

Question 1.5. Is there some natural restriction on which compact spaces can (or cannot) be homeomorphic to the fixed
point set of some involution of βN \ N?

Question 1.6. If F is an involution of N∗ , is the quotient space N∗/F (in which each {x, F (x)} is collapsed to a single point)
a homeomorphic copy of βN \ N?

Question 3.1. Can the tower T in Theorem 3.2 be constructed so that FT extends to an involution of βN \ N with
fix(F ) = KT?
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[6] S. Shelah, J. Steprāns, Non-trivial homeomorphisms of βN \ N without the Continuum Hypothesis, Fund. Math. 132 (1989) 135–141.
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