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Natural Killer Cells in Allogeneic Transplantation:
Effect on Engraftment, Graft- versus-Tumor,

and Graft-versus-Host Responses

Saar Gill, Janelle A. Olson, Robert S. Negrin
Natural killer (NK) cells are effectors of the innate immune system and recognize cells transformed by viruses
or neoplasia. Their response to ‘‘missing self’’ signals was described 3 decades ago, but the recent discovery of
a panoply of activating receptors has made it clear that NK cell reactivity arises from a combination of
inhibitory and activating signals. Successful clinical exploitation of NK cell reactivity was demonstrated in
allogeneic transplantation for acute myelogenous leukemia from HLA-haploidentical donors when matched
donors were not available. Multiple clinical studies have since attempted to use NK reactivity in the setting of
both HLA-matched and -mismatched transplantation, with varying results. This review summarizes the
heterogeneous clinical results and explains them based on a succinct description of NK cell biology.
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INTRODUCTION

Alternative donors are required for allogeneic
hematopoietic cell transplantation (HCT) when suit-
able matched donors are not available in a timely fash-
ion. Early studies investigating unmanipulated bone
marrow (BM) grafts from mismatched or haploidenti-
cal related or unrelated donors demonstrated a high
rate of nonrelapse mortality (NRM) resulting from
graft failure, graft-versus-host disease (GVHD), or de-
layed immune reconstitution, and showed an associa-
tion between increasing HLA disparity and worse
prognosis [1-5]. Approaches designed to circumvent
these hurdles included increasing peritransplantation
immunosuppression, increasing the dose of hemato-
poietic stem cells [6,7], and manipulating the graft
through T cell depletion (TCD) [8] or positive selec-
tion for CD341 hematopoietic stem cells [9,10]. A re-
cent review of these studies concluded that GVHD in
haploidentical transplant recipients can be ameliorated
by TCD, but at the cost of increased relapse and
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delayed immune reconstitution [5]. Using a reduced in-
tensity conditioning regimen before mismatched or
haploidentical transplantation was found to be associ-
ated with high rates of engraftment and low treatment-
related mortality (TRM) when combined with in vivo
or ex vivo TCD [11-13]; however, these approaches
were again complicated by relapse of malignancy and
delayed immune reconstitution.

Pioneering work from Perugia, Italy, highlighted
a remarkable effect of donor natural killer (NK) cells
in reducing relapse after TCD haploidentical transplant
for acute myelogenous leukemia (AML) [14-16]. This
group reported that allogeneic, alloreactive NK cells
promote engraftment and the graft-versus-tumor effect,
whereas they reduce GVHD. Relapse-free and event-
free survival outcomes were significantly better in pa-
tients exhibiting killer immunoglobulin-like receptor
(KIR) ligands that were mismatched with those from
their donor. The publication of these provocative data
spurred numerous studies attempting to document the
beneficial effects of NK cell alloreactivity; however,
these studies’design, methods, and thus results have
been very heterogeneous. Examination of a nonexhaus-
tive list of these studies (Table 1) suggests that the
following factors may be important in maximizing
NK cell alloreactivity: high stem cell dose, extensive
TCD, no GVHD prophylaxis, and myelogenous malig-
nancy as the target. Other possible reasons for the dispa-
rate findings include the differences in the definition of
NK cell alloreactivity (phenotypic vs genotypic; mis-
match algorithm), donor source (related vs unrelated;
765
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Table 1. Selected Clinical Trials Investigating NK Alloreactivity

Reference Disease

Number
of

patients Conditioning TCD

Graft
source and
composition

NK
alloreactivity*

GVHD
prophylaxis

Engraftment
failure

Acute GVHD
grade
II +/Chronic
GVHD Infection TRM RFS OS

Benefit from
NK
alloreactivity?

Haploidentical
Ruggeri

et al.,
2007 [16]

AML 112 MA Ex vivo PB; 15 �
106/kg
CD34, 3 �
104/kg CD3

1, 2, 3 0 6% vs 10% 10%,
NS/NR

38% fatal
infections

43% 67%
vs 18%

NR Yes

Leung et al.,
2004 [86]

AML, ALL;
pediatric

36 NR CD34+

selection
PB; < 3 �

104/kg CD3
1, 2, 4 0 NR NR/NR NR NR 13% vs

54%
relapse rate

NR Yes, for
relapse,
‘‘missing
ligand’’
model

Lang 2004
[134]

Various 63 MA CD34 or
CD133

selected +
ATG

PB; 19.5 �
106/kg
MNC,
< 2.5 �
104/kg CD3

1 0 17% 7%/13% 17% fatal
infections

27% NR 42% No (equivalent
to historical

matched
unrelated
donor)

HLA-identical
related
Hsu et al.,
2005 [47]

AML, CML,
ALL, MDS

178 MA Ex vivo BM; 9�
105/kg
CD3

2 Yes 0% NS/NS NR NR � 0.41 relapse
(AML, MDS)

� 0.52 risk Yes

Cook
2004
[135]

Various 220 MA/RIC NR NR 1, 2 Yes NR NS/NR NR NR NS 31.6%) vs
56.1% (4
years)

No; worse
survival for

myeloid
patients

with C2/C2
and

KIR2DS2
donor

Unrelated
Giebel 2003
[136]

Various 130 MA ATG BM; 4.3
� 108/kg
MNC

1 Yes 0% vs 4% 0% vs 15%
(grade

III-IV/NS

NR 6% vs 40% Relapse
6% vs 21%

87% vs 48%
(4.5 years

Yes

Kroger
et al.,
2006
[104]

AML, CML,
ALL, MDS

142 MA ATG PB/BM 1, 2 Yes 0% NS/NS Increased � 2.2 risk if
alloreactive

� 3 relapse
risk

(activating
KIR)

� 0.5 unless
donors are

KIR
haplotype A

No; ligand/
ligand
model

Cooley
et al.,

2008 [59]

AML 448 MA No PB/BM 1, 2 NR NR NS/� 1.5
risk if

activating
haplotype

NR NS � 2 RFS
(activating

KIR)

� 1.5 with
higher

number of
activating

KIR (3
years)

Y for donors
with group

B KIR
haplotype

Davies 2002
[137]

Various 175 MA Ex vivo,
minority

BM; 2
� 108/kg
MNC

1 Yes NS NS/NR NR NR 9%-12% at
5 years
(NS)

NS (whole
group);
� 0.5

(myeloid)

No
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haploidentical), disease state at transplantation, and eth-
nicity. Grafts from both BM or peripheral blood (PB)
sources have been effective, but KIR-mismatched grafts
may be associated with worse survival in nonmyeloabla-
tive transplants from unrelated cord blood (UCB) [17].
Recent evidence also suggests that mothers may be a su-
perior haploidentical donor source [18].

The aforementioned approaches rely on the devel-
opment of donor hematopoietic stem cell–derived NK
cells in the host. Adoptive therapy using mature NK
cells from haploidentical donors has been attempted,
but a significant antileukemia effect has been difficult
to demonstrate [19-22].

In an attempt to explain the heterogeneous out-
comes of studies documenting NK alloreactivity, in
this review we present a brief update of NK cell biology,
describing NK cell development, activation, receptor
types, effector functions, and models of alloreactivity.
We then summarize the current understanding of
the role of NK cells in mediating and modulating
engraftment as well as the graft-versus-host and graft-
versus-tumor responses.
OVERVIEW OF NK CELL BIOLOGY

NK cells circulate in the PB and lymphogenous or-
gans, licensed and ready to engage target cells. After
a short engagement, they are able to kill unless stopped
by an inhibitory signal. NK cells develop in the BM
and migrate to the PB, spleen, lymph nodes, and other
tissues (eg, lung, liver, or uterus). As a component of
the innate immune system, NK cells play a role in sur-
veillance against transformed and virally infected cells
[23]. NK cells compose 2% to 18% of the mononu-
clear cells in human PB [23] and have a turnover rate
of approximately 14 days [24]. In humans, NK cells
have traditionally been defined as expressing CD56
with or without CD16, without expressing T cell
markers (CD3, T cell receptors). Level of CD56 ex-
pression further subdivides human NK cells into 2
broad groups, the CD56dimCD16bright subset, which
composes 90% of PB NK cells and has cytotoxic func-
tion, and the CD56brightCD16- subset, which cooper-
ates with dendritic cells (DCs) and T cells in lymph
nodes to secrete interferon (IFN)-g and promote
adaptive immune responses. The CD56dimCD16bright

subset expresses major histocompatibility complex
(MHC) class I allele–specific KIR, as well as the
CXCR1 and CX3CR1 chemokine receptors, whereas
the CD56brightCD16- subset expresses the CD94/
NKG2A receptors along with lymphogenous organ
homing markers, such as CCR7, CD62L, and
CXCR3. Recent evidence suggests that the CD56bright

differentiates into the CD56dim subset [25]. In the
mouse, NK cells are defined as CD3- NK1.11 or
DX51 cells, and mature NK cells are further
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subdivided into functionally disparate
CD11b1CD27bright and CD11b1CD27dim subsets
[26]. The CD11b1CD27bright subset is highly cyto-
toxic, localized in the lymph nodes, and interacts
with dendritic cells, whereas the CD11b1CD27dim

subset has a higher stimulatory threshold and is found
in the spleen and PB. Recent evidence suggests that
NKp46 may be a unifying marker of NK cells across
both species [27].
Table 2. Selected Human NK Cell Receptors

Receptor/Gene Target (Where Known) Allele Frequency*

Inhibitory
NK Cell Development

NK cells arise from common lymphogenous pro-
genitors in the BM in a process requiring signaling
through the Flt3-, c-kit–, and gamma chain–associated
receptors [28]. Further development, peripheral
expansion, and survival depends on cytokine stimula-
tion through the interleukin (IL)-2/IL-15 receptor
[29,30]; an indirect effect through osteopontin in the
microenvironment also has been postulated [31]. The
transcription factors Ets-1 and PU.1 are important in
early NK cell development, whereas Gata-2 and
T-bet play a role in maturation, and CEPg, MEF, and
MITF are responsible for cytotoxicity and cytokine
production in mature NK cells [28].

An NK cell’s ability to respond to stimulation is
related to the strength of the inhibitory signal received
during its development, a process termed ‘‘licensing’’
or ‘‘education’’ [32,33]. Thus, NK cells without self-
specific KIR are likely to be hyporesponsive, although
evidence from mouse studies suggests that they still
may retain the ability to react robustly when stimu-
lated by cytokines or by a suitably potent antigen
[34,35]. The acquisition of Ly49 receptors in mice
and KIR in humans may be regulated by the cytokines
IL-15 and IL-2, respectively [36,37].
KIR2DL2/3 HLA-C group 1 (also
recognize some HLA-C
group 2)

2DL2: 40%-60%
2DL3: 80%-95%

KIR2DL1 HLA-C group 2 90%-100%
KIR3DL1 HLA-A and B with Bw4

motifs at position 77-83
(but not HLA-B1301 or
B1302)

90%-95%

CD94/NKG2A HLA-E 100%
KIR3DL2 HLA-A3/A11 100%
LAIR-1 Collagen
KIR2DL4 HLA-G 100%

Activating
KIR2DS4 85%-95%
KIR2DS1 HLA-C group 2 30%-50%
KIR2DS2 40%-50%
KIR2DS3 0-30%
KIR2DS5 20%-40%
KIR3DS1 20%-40%
NKG2D MICA/B, ULBP
CD94/NKG2C HLA-E
DNAM-1 (CD226) CD112, CD155
NKp30 BAT3
NKp44 Viral hemagglutinin
NKp46 (CD335) Viral hemagglutinin
2B4 (CD244) CD48

*From http://www.allelefrequencies.net; accessed December 23, 2008.
NK Cell Activation

After infection or inflammation, NK cells are
recruited to tissues under the control of the chemokine
receptors CCR2, CCR5, CX3CR1, and CXCR3 [28].
Resting human PB or mouse splenic NK cells have
poor cytotoxic potential and require activation, either
by direct cell-to-cell contact and receptor recognition
or by the action of cytokines. Type I interferon secre-
tion by plasmacytoid and myelogenous DCs [38], DC
trans-presentation of IL-15 [39], and CD41 T cell pro-
duction of IL-2 in the lymph node [40] activate NK
cells, leading to translation of a preexisting pool of
granzyme B and perforin mRNA [41] and secretion
of these effector molecules, whereas IL-12 and IL-18
lead to increased IFN-g secretion by NK cells [42].
In contrast, transforming growth factor-b secreted by
regulatory T cells [43] is a negative regulator of NK
homeostasis and induces down-regulation of natural
cytotoxicity receptor (NCR) families [28,43].
NK Receptors

NK cells recognize their targets through inhibi-
tory and activating cell surface receptors. Three main
receptor families have been described: KIR, C-type
lectin receptors (including NKG2A-E and Ly49 in
mice), and NCR (see Table 2). The observation that
NK cytotoxicity is triggered by tumor (and other) cells
lacking expression of self MHC class I molecules first
led to the ‘‘missing self’’ hypothesis and the discovery
of the inhibitory receptors [44]; however, it is now
apparent that it is the balance of signaling through
the different receptors that leads to the final ‘‘decision’’
on NK cell reactivity [45].

The KIR are type I transmembrane molecules be-
longing to the immunoglobulin superfamily that are
encoded on chromosome 19q13.4. They are expressed
on gd CD8 T cells as well as NK cells, and recognize
amino acids in the carboxyl terminal domain of the
MHC class I a1 helix in specific groups of HLA-A,
-B, or C alleles. The specificity of KIR for HLA-C al-
lotypes is determined by allelic dimorphism at residues
77 and 80 of the HLA-C molecule [46]. KIR genetics
are of importance for transplantation, because signifi-
cant diversity occurs at the population level both within
and between ethnicities [47]. Furthermore, KIR genes
segregate independently of the HLA genes (encoded
on chromosome 6), and thus 2 HLA-matched individ-
uals (even if related) may still be KIR-mismatched.
An individual’s HLA class I genotype dictates which KIR
or NKG2A receptor combination occurs as inhibitory

http://www.allelefrequencies.net
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receptors on the surface of that person’s NK cells,
however. Thus, functionally mature NK cells express at
least 1 inhibitory receptor for self-HLA, and occasionally
as many as 3 or 4 such receptors. Some KIR are more often
used as single receptors [48,49].

KIRs may be inhibitory or activating. Recognition
of the MHC class I target by inhibitory KIRs lead to
phosphorylation of an immunoreceptor tyrosine-based
inhibitory motif in their cytoplasmic tail, followed by
an inhibitory downstream signal. Activating KIR
contain the same extracellular and transmembrane
domains as the related inhibitory KIR, but lack cyto-
plasmic tails. Thus, target recognition by activating
KIR leads to an interaction with an adapter protein
and activation of alternative downstream signaling
pathways [45]. The activating KIR bind MHC class I
molecules more weakly than the respective inhibitory
KIR [50,51], although the ligands for activating KIR
are not well characterized, and it is possible that as-
yet unidentified non-HLA proteins serve as their true
ligands [52,53]. Based on murine data, the inhibitory
signal has been considered the dominant one [54], al-
though this notion has been challenged by recent
human data [55].

The mouse homologs of the human KIR are the
Ly49 family of receptors, which are structurally dis-
tinct type II lectin–related homodimers. Like KIR,
this family of receptors recognizes classical MHC class
Ia molecules, such as H-2d and H-2k in mice, and also
occurs in both immunoreceptor tyrosine-based inhib-
itory and stimulatory forms.

A particular NK cell in mice or humans may express
anywhere from 0 to 4 Ly49 receptors or KIR, respec-
tively. The expression of the inhibitory NKG2A recep-
tor varies inversely with the number of KIR genes
coexpressed on the cell surface, being highest in cells
with no KIR expression [49,56]. Each KIR has a different
affinity for its target, although some redundancy exists,
such that a single KIR can recognize epitopes shared be-
tween different HLA alleles [57]; see Table 2. Further
complexity is added by the fact that each MHC class I
molecule may be recognized by both inhibitory and
activating receptors on the same NK cell.

Inhibition is not solely MHC class I–mediated. The
target of the CD94/NKG2A, B, or C receptor is the
nonclassical MHC HLA-E molecule [58]; other inhibi-
tory receptors include NKR-P1A and LAIR-1, which
bind to LLT-1 and collagen, respectively [23,51].

The complement of KIR genes on one chromosome
comprises a KIR haplotype. KIR haplotypes may vary in
terms of gene number and gene content, [51]. Haplotype
B is defined as encoding at least one of KIR2DL5,
KIR2DS1, KIR 2DS2, KIR2DS3, KIR2DS5, or
KIR3DS1, and haplotype A is defined as having none
of these loci [59]. Homozygosity for haplotype A is
seen in 25% to 30% of Caucasians and 80% of Japanese
[59,60], whereas the remainder are heterozygous or
homozygous for haplotype B and thus have combina-
tions of activating and inhibitory KIR. Furthermore,
KIR genotype correlates with phenotype in only about
75% of cases, because of allelic polymorphism and epi-
genetic silencing [61-64].

NK cells also may recognize MHC class I–negative
targets using the NCR, including NKp30, NKp44, and
NKp46, as well as NKG2D, CD16, and DNAM-1.
Whereas NKp30 and NKp46 are constitutively ex-
pressed by all PB NK cells [65,66], NKp44 is up-
regulated in IL-2–activated NK cells [67]. The ligands
for the NCR in humans are not well characterized, but
NKp30 may recognize BAT3, an intracellular ligand re-
leased in exosomes from tumor cells and DCs [68], and
also may play a role in regulating DC lysis and matura-
tion [69]. NKG2D plays a role in tumor immunosurveil-
lance [70,71]; its ligands are rarely expressed by normal
cells, but are up-regulated in response to cellular stress
signals from transformation, viral infection, heat shock,
and DNA damage. The ligands for NKG2D include
MHC I–related genes A and B (MICA and MICB), as
well as UL16-binding proteins (ULBPs) in humans
and Rae-1 and H-60 in mice [72,73]. Another receptor
with a recently identified role in immunosurveillance is
DNAM-1, which recognizes the CD112 and CD155
in both mice and humans [74]. Human NK cells also ex-
press CD16, the FCgRIII receptor, which binds the Fc
portion of IgG and thus mediates antibody-dependent
cellular cytotoxicity [75].

NK Cell Effector Functions

On recognition, an immunologic synapse forms
between the NK cell and its target, allowing direct cy-
totoxicity that is mediated through the perforin, gran-
zyme, Fas/FasL, and TRAIL pathways [76-78], as well
as by production of IFN-g [23]. In addition, it has be-
come clear that the original description of NK cells as
‘‘natural killers’’ spontaneously lysing transformed and
virally infected cells encompasses only part of their ef-
fector mechanism; NK cells also promote DC matura-
tion through tumor necrosis factor-a and IFN-g
secretion [79] and enhance Th1 polarization in second-
ary lymphogenous organs [80]. In addition to their viral
or tumor targets, NK cells also may kill activated autol-
ogous CD41 cells [81] and thus provide a link between
the innate and adaptive immune responses [82,83],
with a possible additional role in protecting the host
from excessive immune response to pathogens [23].
ALGORITHMS OF NK CELL
ALLOREACTIVITY

The 2 major models used to predict NK cell allor-
eactivity are the ‘‘missing self’’ and ‘‘missing ligand’’
models (see Figure 1). According to the ‘‘missing
self’’ model, NK alloreactivity is stimulated when the



DONOR RECIPIENT

Missing self 
recognition

Missing self model:

Haplotype for HLA-Bw4, HLA-C1 or HLA-C2

KIR gene for cognate HLA ligand

NK cells from donor

Tumor or normal target cells from patient

Cytotoxicity assay
DONOR RECIPIENT

Functional analysis:

DONOR RECIPIENT
Missing ligand model:

Missing self 

Missing ligand*

OR:

* Neither donor nor recipient possess a ligand for a KIR gene
present in the donor

Figure 1. Models used to predict NK cell alloreactivity.
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recipient lacks one or more HLA class I alleles present
in the donor [84,85]. This was the model used by the
Perugia group to predict NK alloreactivity in their
transplantation studies. According to the alternative
‘‘missing ligand’’ (also known as the ‘‘receptor-ligand’’)
model, NK cell alloreactivity also may occur in donor–
recipient pairs matched for KIR and KIR ligands: when
there is an extra KIR in the donor for which neither the
donor nor the recipient has a ligand, the donor’s poten-
tially self-reactive NK cells are anergic in situ, but can
trigger an alloreactive effect in the recipient. This find-
ing is based on the observation that most individuals
have 3 inhibitory KIR (for HLA-C1 and -C2 and for
HLA-Bw4 alleles), but only 1 or 2 HLA KIR ligands
on their own cells [47,64,86,87]. This latter model
was found to be a better predictor of risk of leukemia
relapse by some groups [47,86] but not by others
[16], with the discrepancy likely related to differences
in age, disease, and conditioning regimens.

Functional analysis may resolve the differences
between predictive models and in some cases reveal
unexpected findings, as exemplified by recent data re-
ported by several groups. Ruggeri et al. [16] performed
functional analysis to identify and quantitate the fre-
quency of alloreactive NK clones against HLA-C–
mismatched targets. Alloreactive clones were present
in all donors, at a frequency of 8% (6 6%) for HLA-
C group 2 mismatches and a frequency of 5% (6 3%)
for HLA-C group 1 mismatches. Alloreactive clones
were present in only 2/3 of HLA-Bw4–mismatched
donors, however. As predicted by their model,
Ruggeri et al. [16] found no NK alloreactivity in
donor–recipient pairs that were not KIR ligand–mis-
matched. Fauriat et al. [49] evaluated the frequency of
the alloreactive repertoire in donors with the A haplo-
type (consisting only of inhibitory KIR and KIR2DS4)
and found that the use of KIR and HLA genotyping
alone to predict alloreactivity may significantly overes-
timate the size of the alloreactive repertoire. They
found a wide variability (0 to 62%) in the alloreactivity
of the total NK pool in donor–recipient pairs (all of
which would have been predicted to be alloreactive
by use of genotyping) depending on the extent of KIR
ligand expression on theoretical recipients; the allor-
eactive subset was larger for recipients lacking more
than one KIR ligand [49]. Finally, Foley et al. [88] dem-
onstrated that some Bw4 alleles (HLA-B*1301 and
HLA*1302) failed to protect targets from KIR3DL1-
dependent lysis but, unexpectedly, HLA-A*2402 and
HLA-A*3201 were protective against lysis; these results
have implications for donor selection. Up to now, the
1/3 of individuals expressing all 3 KIR ligands (HLA-
C1, HLA-C2, and HLA-Bw4) were thought to inhibit
NK cells from all donors and thus be unable to benefit
from NK alloreactivity [16]. Thus, the aforementioned
findings, along with recent work suggesting that acti-
vating receptors may occasionally predominate, have
important functional ramifications and suggest the
need for caution when relying on genotypic predictive
models alone.
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ENGRAFTMENT AND IMMUNE
RECONSTITUTION

Many studies have documented NK cells’ ability to
mediate rejection of allogeneic BM in murine models,
as initially described in the ‘‘hybrid resistance’’ model
[89]. This phenomenon has been ascribed to classical
‘‘missing self’’ recognition, but activating receptors,
such as NKG2D, may play a role as well [90].

In an extension of these observations, infusion of al-
loreactive NK cells (in the graft-versus-host direction)
into haploidentical mice led to ablation by the NK cells
of host hematopoiesis and antigen-presenting cells (14).
This may explain the ability of alloreactive NK trans-
plants to facilitate engraftment, as first described by
the Perugia group in 2002. Interestingly, a recent update
of this data no longer showed a significant impact of NK
alloreactivity on rejection [16]. NK cells are relatively ra-
dioresistant [91], and the presence of host-versus-graft
alloreactive NK cells may increase the risk of graft failure
or incomplete chimerism [92,93].

NK cells are the first lymphogenous cells to
repopulate after engraftment [94]. Early after HLA-
matched HCT, NK cells are NKG2A1 and KIR-;
reconstitution kinetics are variable, and acquisition of
a donor-type KIR repertoire may take anywhere from
3 months to 3 years [86,95]. Alloreactive NK cells of
donor origin were detectable from 1 to 3 months up un-
til at least 12 months posttransplantation in some stud-
ies of haploidentical transplantation [16,55], although
another study found that NK cells reconstituting in
the haploidentical setting had an immature CD56bright

KIR- NKG2A1 phenotype, and that even putatively al-
loreactive cells had poor effector function against pri-
mary leukemia cells [96]. Reconstitution is adversely
affected in the setting of T cell–replete grafts [97,98],
and peritransplantation immunosuppression affects
NK cell subsets and function [99,100]. In contrast,
several groups have reported an association between
NK recovery after HLA-identical HCT and improved
relapse-free and overall survival (RFS, OS) [101,102].

Increased incidences of infection and infection-
related mortality have been noted in several studies
[16,103,104]. Impaired immune function is likely
related to the extensive TCD required to prevent
GVHD, as well as to the contribution of an NK-
mediated attack on host antigen-presenting cells. Fi-
nally, cytomegalovirus (CMV), a common pathogen
in severely immunocompromised patients, has been
shown to shape the NK receptor repertoire in healthy
donors [105]. Conversely, donor KIR genotype was
found to have an effect on CMV reactivation in HCT
in some studies [106], but not in others [104].

ANTITUMOR EFFECT

NK cell–mediated rejection of tumor cells occurs
through MHC class I–dependent and –independent
mechanisms. In vitro cytotoxicity has been demon-
strated against many tumor types, including AML
and chronic myelogenous leukemia (CML), chronic
lymphocytic leukemia (CLL), non-Hodgkin lym-
phoma (NHL), multiple myeloma (MM), T-cell acute
lymphoblastic leukemia (ALL), melanoma, renal cell
carcinoma (RCC), and neural tumors [107-109]. Pre-
clinical models have convincingly demonstrated effi-
cacy against human AML [14]. Tumor cells exhibit
differential sensitivity to NK cytotoxicity because of
variegated expression of inhibitory and activating re-
ceptors on NK cells [23,71], thus NK-mediated clear-
ance of leukemia cells can be augmented by the
blockade of inhibitory receptors [110,111].

Clinical data on NK cell antitumor efficacy is lim-
ited mainly to hematologic malignancies. The most
impressive and frequently quoted data was published
in 2002 and most recently updated in 2007. In total,
112 patients with high-risk AML, of whom 61 were
in remission and 51 in relapse, were transplanted with
HLA-haploidentical grafts from 51 NK alloreactive
or 61 nonalloreactive related donors. In this case, NK
alloreactivity was defined by the presence of KIR
ligands in the donor, which were absent in the recipi-
ent, KIR gene for missing self recognition in the recip-
ient, and alloreactive NK clones against recipient
targets. Transplantation from NK alloreactive donors
led to a remarkably low relapse rate in patients trans-
planted in remission (3% vs 47%), and to a superior
EFS for patients whether transplanted in remission
(67% vs 18%) or in relapse (34% vs 6%). Disease status
and transplantation from an NK alloreactive donor
were the only independent prognostic factors [16]. A
lower relapse rate in patients transplanted in the setting
of potential NK alloreactivity has been demonstrated
by some groups, but not by others (see Table 1).

Although ALL cells are generally held to be less sus-
ceptible to NK cell mediated attack than AML [14,112],
MLL-rearranged ALL cells have been shown to be sus-
ceptible to NK alloreactivity, with a sensitivity which is
proportional to the extent of KIR-ligand mismatch [86];
this effect was also found in AML and myelodysplastic
syndrome (MDS) [47]. Clearly, inhibitory KIR are not
the only factor permitting antitumor NK alloreactivity.
The presence of certain activating KIR genes in the do-
nor may be associated with a lower relapse rate [113],
and NKG2D plays a role in AML and CML [114,115].

Barriers to successful NK antitumor activity in-
clude tumor bulk and immunoevasion mechanisms
[116,117]. Tumor escape from NK attack has been
shown to occur through down-regulation on the tumor
of activating receptor ligands, such as MICA/B, ULBP,
CD112, CD155, and CD48 [112,115,118,119]. Direct
contact with AML cells leads to down-regulation of
NCR on the NK cells, correlating with worse survival
[120]. NKG2D may be down-regulated after exposure
to high levels of soluble tumor-derived MICA/MICB
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[121]. Finally, an NK cell–suppressive NK subset may
be induced by tumor cells [122].

Attempts to counter tumor immunoevasion mecha-
nisms by manipulation and enhancement of NK cell
function can be achieved using cytokines or ligation or
modulation of inhibitory or activating receptors, as has
been reviewed recently [116,123]. Examples of this in-
clude blockade of the interaction between KIR2DL1/
2/3 and HLA-C molecules as postremission therapy
in patients with AML and MM [124], use of bispecific
antibodies to direct effectors to lyse otherwise-refractory
target cells [125], genetic modification of NK or T cells
to express a chimeric NKG2D receptor [126], and
down-regulation of myeloma MHC class I molecules
using bortezomib [127].
EFFECTS ON GVHD

In a preclinical model, infusion of alloreactive NK
cells into haplodentical mouse recipients as part of the
conditioning regimen was protective against GVHD
after a T cell–replete transplantation [14]. A rationale
for this observation may be provided by NK-mediated
ablation of host DCs [14], lysis of donor T cells [128-
130], and the absence of activating NK receptor
ligands on normal nonhematopoietic cells [131].

Clinical results vary, however. Although the initial
report from the Perugia group suggested a favorable
effect of NK alloreactivity on the incidence of acute
GVHD (aGVHD), the updated results no longer
showed a significant difference [16]. As can be seen
in Table 1, most groups report no significant differ-
ence in GVHD rates, and in fact GVHD may be wors-
ened by KIR mismatch or in the presence of some
donor-activating KIR genes [21,93,132,133]. Because
KIR mismatch correlated with HLA mismatch in
some of these studies, T cell–induced GVHD clearly
is a major confounder.
CONTROVERSIES AND CONCLUSIONS

Alloreactive NK cells in transplantation can have
remarkably favorable effects on relapse and survival,
as well as adverse outcomes related to relapse, infec-
tion, and GVHD. These discrepancies relate to differ-
ences in donor selection, conditioning regimens, extent
of TCD, hematopoietic stem cell dose, disease state at
transplantation, nature of disease, and algorithm of NK
alloreactivity. In broad brushstrokes, it seems the most
favorable conditions include a myeloablative condi-
tioning regimen, maximal stem cell and minimal T
cell doses, lack of interference with NK expansion by
posttransplantation GVHD prophylaxis, and selection
of patients with myelogenous disease in remission.

Selecting the most appropriate NK alloreactivity
model is of vital importance. Preclinical and clinical
results point variously to the ‘‘missing self ’’ or ‘‘missing
ligand’’ model as the most predictive. NK cell receptor
recognition is a complex and incompletely elucidated
process, and tests of donor NK cell function against
leukemia and patient target cells have sometimes re-
vealed unexpected results [49,55,88]. Thus, functional
analysis, including quantitation of the alloreactive edu-
cated NK cell pool, should be incorporated in real time
into the donor selection process, as should KIR geno-
typing of the donor. Proper donor selection may be
only part of the answer, however; perhaps ‘‘tumor
selection’’—an individualized assessment of tumor
cell expression of NK receptor ligands or strategies to
increase expression of ligands—could be incorporated
into these models.

Hopefully, these major issues will be addressed with
well-designed clinical trials. Nonetheless, several unan-
swered questions will require further biological input:

� Is the observed reduction in relapse because of a
persistence of NK immunosurveillance?

� How are donor stem cell–derived NK cells educated
in the recipient, and do hyporesponsive NK cells
acquire effector function after transplantation?

� What are the ideal conditions for in vivo persistence
of NK cells after transplantation?

� Should a particular NK cell subset be preferentially
expanded, and if so, by what means?

Despite these unanswered questions, the use of
alloreactive NK cells in transplantation continues to
be an exciting example of the translation of basic
biological principles to clinical medicine.
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