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Human monoclonal antibodies often display limited thermodynamic and colloidal stabilities. This
behavior hinders their production, and places limitations on the development of novel formulation
conditions and therapeutic applications. Antibodies are highly diverse molecules, with much of the
sequence variation observed within variable domain families and, in particular, their complemen-
tarity determining regions. This has complicated the development of comprehensive strategies for
the stability engineering of the human antibody repertoire. Here we provide an overview of the
field, and discuss recent advances in the development of robust and aggregation resistant antibody
therapeutics.
Crown Copyright � 2013 Published by Elsevier B.V. on behalf of Federation of European Biochemical
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1. Introduction

The number of human monoclonal antibody candidates has in-
creased rapidly in recent years, and now represent the largest sin-
gle class of molecules entering clinical studies [1]. Despite the
rapid growth of the antibody therapeutics market over the past
twenty to thirty years, hurdles remain that limit their manufac-
ture. Key factors relate to the variable and often limited stability
of human antibodies, which negatively impact on many production
processes including expression [2,3], purification [4] and formula-
tion [5].

Antibodies are complex multidomain proteins and mechanisms
governing their thermodynamic [6] and, in particular, colloidal [7]
stability are not fully understood. Human antibodies of the com-
monly used immunoglobulin G (IgG) type consist of a total of
twelve domains, which can be further divided into two chains
(heavy and light) and variable (VH, VL) and constant (CH1, CH2,
CH3, CL) domains (Fig. 1). Only limited diversity is observed among
constant domains, with a total of four isotype (IgG1–4) and two
light chain ([j] kappa and [k] lambda) classes expressed in hu-
mans. Consequently, isotype differences can explain only a limited
proportion of the observed stability variation in the human anti-
body repertoire [8]. A higher proportion of sequence diversity is
observed among antibody variable domains, which are assembled
through genetic recombination of variable, diverse (VH only) and
joining segments (VDJ-recombination). Further diversity is then
introduced into framework, and in particular complementarity
determining regions (CDR), through somatic hypermutation, fol-
lowed by clonal selection of the repertoire. As a result of these pro-
cesses, the overwhelming majority of sequence variation within
the human antibody repertoire is observed within the CDR regions
of a limited range of human variable domain families. In this re-
view, we summarize the influence of the observed antibody diver-
sity on colloidal and thermodynamic stabilities and discuss recent
advances to improve these properties through engineering
approaches.

2. Protein aggregation

Aggregation is a complex process by which proteins can form
alternative colloidal states, which are different from the native
state, but otherwise energetically favorable [9,10]. It is generally
believed that such aggregate species are predominantly formed
via unfolded or partially unfolded states [11]. Protein aggregation
is increasingly recognized as a problem affecting the manufactura-
bility of human therapeutic antibodies, shelf life and efficacy [12].
Importantly, the presence of aggregates has also been linked to in-
creased immunogenicity, with effects ranging from mild skin irri-
tation to anaphylaxis [13].

Although it can be assumed that stabilization of the native state
over alternative aggregate states has occurred during evolution
[14], it is important to note that the production of monoclonal anti-
bodies exposes these molecules to a wide range of non-physiological
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Fig. 1. Structure of the human IgG molecule. The molecule is formed by two heavy chains (consisting of VH, CH1, CH2 and CH3 domains) and two light chains (consisting of VL

and CL). Figure was generated using PYMOL.
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processes and conditions. These include recombinant expression,
purification, concentration, viral inactivation, filtration, formulation,
freeze/drying, transport and long-term storage. Throughout these
steps the antibody molecule may encounter several stress factors
that can dramatically increase its propensity to aggregate (including
variations of temperature, pH, protein concentrations, ionic strength,
exposure to air–water interfaces and mechanical stress). A further
driver of protein aggregation has been a growing trend towards for-
mulations that allow sub-cutaneous administration routes. This re-
quires formulation at high protein concentrations (at around
100 mg/ml) in syringes for self-injection, which places increased de-
mands on colloidal stability [15].

3. Stability of human antibody isotypes and constant domains

The four human IgG isotypes differ in their stabilities and bio-
logical functions, namely their potential to induce cellular killing
through antibody dependent cellular cytotoxicity (ADCC) and com-
plement dependent cytotoxicity (CDC). While the human IgG1 iso-
type induces powerful ADCC and CDC responses, this is not the
case for human IgG2, which is particularly suitable for applications
where cellular killing is not required (such as neutralization of sol-
uble ligands) [16]. Unlike the other human isotypes, IgG4 also has a
naturally occurring potential to form a bispecific molecule [17] (it
has been recently shown that this dual specificity can be grafted
onto other isotypes [18]). Human IgG3 is not commonly used
due to its longer hinge region, which renders it susceptible to pro-
teolysis [19]. The vast majority of human antibody therapeutics
currently in clinical practice and development are of the IgG1 iso-
type [16].

Conflicting evidence exists in respect to the colloidal stability of
the various human IgG isotypes. A recent study of eleven different
IgG1 and IgG2 antibodies concluded that, after high temperature
storage, the IgG2 isotype is more prone to aggregation [20]. Similar
findings were also obtained when subjecting these isotypes to high
salt conditons [21] and from isotype switching studies [22]. The
latter study confirmed that the human IgG1 isotype is less prone
to aggregation when compared to IgG2 or IgG4. However, the
authors also found that this isotype is more prone to fragmenta-
tion, especially at low pH, due to a non-enzymatic site in the upper
hinge region. The hinge regions have also been implicated in the
observed differences in aggregation propensity as the IgG2 hinge
contains two additional cysteines in each heavy chain compared
to IgG1, and is prone to the display of free cysteine residues
[23,24]. Differences in the thermal stability of human constant do-
mains have also been reported, with the CH3 domains of human
IgG1 and IgG2 displaying similar melting temperatures, much
higher than what was observed for IgG4 [8]. In general, CH3 do-
mains exhibit more favorable biophysical properties than CH2 do-
mains [25]. This is reflected by melting temperatures of 8–10 �C
higher than those observed for CH2 domains [8,26].

Although human IgG1 therefore appears less aggregation
prone than other isotypes, this is not universally the case. For
example, a recent study found that the IgG1 isotype variant of
an anti-LINGO-1 antibody exhibited a much higher propensity
to aggregate than an IgG2 variant containing identical variable
regions [27]. Studies such as these demonstrate that predicting
the aggregation propensities of IgG molecules based on isotype
can be difficult at the best of times. Moreover, evidence suggests
that the aggregation propensity of human IgG molecules is greatly
influenced by their variable domains [8,27,28]. This has the
effect that antibodies with identical constant domains, but
different variable domains, can vary widely in their stability pro-
files [5].
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4. Stability of human antibody variable domains

Human antibody variable domains can be grouped into several
homologous families, which differ in their biophysical properties. A
seminal study of consensus domains of human VH and VL families
has revealed considerable differences of expression yields and
thermodynamic stability [6]. In the case of human VH domains, sta-
bilities ranging from DGN–U 14–53 kJ/mol were observed, with sol-
uble expression yields ranging from 1–2.4 mg/l (Table 1).
Intriguingly, Ewert et al. also reported that members of the (odd
numbered) VH 1, 3 and 5 families generally displayed superior bio-
physical properties in comparison with the (even numbered) 2, 4
and 6 families. These differences were observed for both thermo-
dynamic stabilities and expression yield. In particular, the human
VH3 family was identified as uniquely stable and well expressed.
This family is also among the most abundant in the human reper-
toire [29]. The overall stability trends were confirmed in a more re-
cent study, which analyzed the effect of pairing of different human
variable domain families on expression, thermal and colloidal sta-
bilities of Fab fragments and IgG monoclonals [30].

More limited differences in biophysical properties were ob-
served among human VL families, with thermodynamic stabilities
ranging from DGN–U 15–24 kJ/mol for lambda and DGN–U 29–
35 kJ/mol for kappa [6]. Similarly, higher expression yields were
observed for kappa variable light domains (5–17 mg/l) than for
lambda domains (0.3–2 mg/l). The observed differences between
antibody variable light domains were much less pronounced when
pairing these with human VH in an scFv format, while considerable
differences between variable heavy domain families remained.
Overall, the authors found the VH/VL combinations H3j3, H1bj3,
H5j3 and H3j1 to be superior in respect to expression yield and
thermodynamic stability [6]. However, despite the clear influence
of variable domain family (and framework regions), the study also
observed a strong influence of CDR sequence on biophysical prop-
erties. Indeed, initial attempts of the authors to express human VH

domain in isolation failed to yield protein (with the exception of
VH3). Only the grafting of a solubilizing CDR3 region allowed the
soluble expression of human VH1, and of VH2, VH4, VH5 and VH6
through refolding from inclusion bodies.

Although several of the human variable domain families are
thermodynamically stable, they nevertheless often display poor
colloidal stability and readily aggregate when heated above their
melting temperatures. This behavior is exemplified by the VH3
model domain DP47 [31] and by studies of synthetic antibody rep-
ertoires on phage, which have demonstrated that as few as one in a
thousand VH domains resists heat induced aggregation [32].
Table 1
Biophysical properties of human antibody variable domains. Adapted from Ref. [6].

Human
family

Solubilizing
CDR3
required

Expression
yield

DGN–U

VH 1a Y + +
1b Y + ++
2 Y Refold nd
3 N + +++
4 Y Refold nd
5 Y Refold +
6 Y Refold nd

VL j1 N + ++
j2 N +++ ++
j3 N +++ +++
j4 N ++ -
k1 N + ++
k2 N + +
k3 N + +
5. Increasing antibody stability through formulation

The most common method for controlling the biophysical prop-
erties of monoclonal antibodies and other biologics is through
changes of buffer conditions and excipients. Formulation allows
for the control of ionic strength, pH and the addition of excipient
agents such as sugars or surfactants, which have been shown to
stabilize monoclonal antibody preparations [33]. Although
formulation can shield proteins from some chemical and physical
challenges (including deamidation, oxidation, hydrolysis/fragmen-
tation and isomerization), aggregation remains difficult to control
[12]. Consequently, finding appropriate formulation conditions
for an individual product is often an arduous process. This is
exemplified by the therapeutic monoclonal antibody cetuximab
(Erbitux). Its initial formulation conditions (2 mg/ml in phosphate
buffer pH 6.0) generated visible aggregates under mechanical
stress [34]. To address this issue, conditions had to be
empirically optimized and were changed to 5 mg/ml in citrate
buffer pH 5.5 with the addition of glycine and polysorbate 80 as
stabilizers.

In recent years, more high-throughput techniques for formula-
tion optimization have been developed [35], and stabilizers and
excipients with more general applicability have been identified.
Among these, arginine is commonly used to improve refolding
yields [36,37], and more recently has been used in formulation to
reduce heat-induced aggregation [38]. Another commonly used
class of excipient molecules are polysorbates, which accumulate
at the air–solvent interface and offer protection against shaking
and other mechanical stresses [39]. Despite recent advances, the
identification of suitable formulation conditions for a specific
monoclonal antibody remains challenging and cannot be deter-
mined from its amino acid sequence. Indeed, a considerable pro-
portion of human monoclonal antibody candidates fail
formulation studies, often at relatively late pre-clinical stage, plac-
ing heavy burdens onto drug development pipelines [5].
6. Stability engineering of human antibody constant domains

Many efforts have been made to increase the stability of the dif-
ferent human antibody isotypes. Early work in this field focused on
sequences analyses to predict stabilizing mutations. This approach
allowed the identification of a set of substitutions (371K, 376G and
392L), which considerably increased thermal stability (from 76 �C
to 86 �C) of the CH3 domain [40]. The study was based on frequency
analyses within 19 mammalian species to generate a consensus se-
quence. Structural approaches have also been utilized to increase
stability of the CH1/CL interface [41]. More recently, it was shown
that the introduction of additional intra-domain disulfide bridges
in the human CH3 domain resulted in the thermal stabilization of
an isolated IgG1 Fc fragment [42] (Fig. 2). In particular, the intro-
duction of a link between the N-terminal A strand (position 343)
and the F strand (position 431) caused a 8 �C increase in the melt-
ing temperature, while a linkage between positions 375 and 396
resulted in a 4 �C increase (combined 13 �C). These findings were
successfully applied to a HER2 specific Fcab molecule (Fc fragment
with engineered binding loops) resulting in an increased in the
thermal stability of 19 �C. A similar finding was observed for a hu-
man IgG1 CH3 single domain, which could be stabilized by intro-
duction of an intra-domain disulfide bridge [43]. The authors
used a two-step approach, by initially introducing mutations that
rendered the CH3 domain monomeric, resulting in a overall low
thermal stability (41 �C compared to 82 �C for the native dimeric
form). Using structure-based design, two additional cysteines (at
positions 343 and 431) were then introduced to generate a disul-
fide bridge, which increased the thermal stability to 76 �C (a



Fig. 2. Stability engineering of human constant domains.
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35 �C increase) [43]. Similar strategies have been also reported for
CH2 domains [26]. Here the authors reported the engineering of an
isolated human CH2 domain, resulting in an increase in thermal
stability of 20 �C (from 54 �C to 74 �C) [26]. More recently, the
same group reported the stabilization of a CH2 domain through re-
moval of an unstructured region at the N-terminus. Combined with
the intra-domain disulfide bond, this resulted in a further increase
of melting temperature of 10 �C [44]. For all of the above studies,
stability of constant domains was evaluated in the context of frag-
ments or isolated domains.

Other studies have investigated the effects of such mutations on
the stability of full-length human IgG. In the case of human IgG4,
alteration of the disulfide bond network in the Fab region was
shown to lead to an increase of thermal stability of between 3
and 7 �C [45]. This effect was achieved through removal of a cys-
teine at position 127 in the CH1 domain, while an additional in-
ter-domain disulfide bond between position 229 and CL was
introduced (similar to what is observed in human IgG1). Impor-
tantly, the authors reported that the introduced mutations did
not affect antigen binding [45]. More recently, molecular dynamic
simulations have been used to predict the spatial aggregation pro-
pensity (SAP) of human IgG molecules [46]. The authors later
showed that by mutating identified surface-exposed hydrophobic
patches within the hinge and Fc regions of an IgG, aggregation
resistance and, to a more limited extent, thermodynamic stability
could be improved [47].

7. Increased stability through charged fusion tags

In addition to the modification of constant domains, it was re-
cently shown that the addition of charged fusion tags to the N-ter-
minus of human variable domains could considerably improve
aggregation propensity [48]. The authors noted that batches of
the same IgG monoclonal expressed in yeast were less prone to
aggregation than those expressed in mammalian cells. Mass spec-
trometry and sequencing analyses revealed the presence of a non-
processed ‘‘EAEA’’ leader sequence within both heavy and light
chains. In contrast to colloidal stability, the authors did not observe
improved thermodynamic stability, and the effect seemed to be
particularly pronounced for antibodies with a low global net
charge. In addition to terminal fusion tags, a different study ex-
plored the internal use of a ‘‘DED’’ motif [49]. It was shown that
the insertion of the tag into the CDR3 region of aggregation-prone
VH domain antibodies reduced their aggregation propensity, while
reducing retention on gel filtration matrices.
8. Stability engineering of human antibody variable domains

8.1. Engineering of human VH domains through mutation of the light
chain interface

The poor biophysical properties of isolated human antibody
variable domains are in marked contrast to those of the variable
domains of camels and llamas [50]. Although these immunoglobu-
lin domains (VHH) display a relatively high level of sequence iden-
tity with human VH domains, they are generally well expressed
and soluble [51] and reversibly unfold after incubation at temper-
atures as high as 90 �C [52]. In addition to the observed differences
in biophysical nature, camelid domains also display an important
difference in chain structure, as they are naturally devoid of light
chain partners [50]. Their single domain nature results in unique
structural features, compared to human antibody VH domains.
These include CDR length and conformation, as well as framework
residues. A particular feature of VHH domains is their long flexible
CDR3 loop capable of folding back on itself, thereby protecting an
area forming the VH/VL interface in human antibodies. In addition,
these naturally occurring single domains display a marked reduc-
tion in hydrophobicity of the former light chain interface, due to
a limited number of changes in their respective germlines
(Fig. 3). The most common and significant changes compared to
humans, coined the ‘‘VHH tetrad’’, are located at positions: G44Q,
L45R/C, W47G/I and V37F/Y (human/camelid). The latter residue
is nucleating a small core involving Y91, W103, R45 and other
hydrophobic residues within the CDR3 loop [53]. Structural inves-
tigation of VHH has also shown the CDR3 loop covering residue 37,
thereby shielding hydrophobicity in an area corresponding to
the light chain interface in human VH [54]. In addition, camelid
VHH often contain an additional disulfide bridge between CDR1
and CDR3, which increases their thermal stability [55,56].

In order to improve the biophysical properties of human VH do-
mains, elements of the VHH tetrad have been incorporated into hu-
man frameworks (‘‘camelization’’) [57]. Although the introduced
framework changes improved the solubility of human VH, they also
reduced expression levels, induced conformational changes, de-
creased thermodynamic stability and did not considerably improve
the colloidal stability of the domains [58,59]. In contrast, combining
the approach with the introduction of an additional disulfide bond
between CDR1 and CDR3, yielded domains with high colloidal sta-
bility, although at the expense of antigen binding affinity [60].

As an alternative to camelid domains, shark single domain anti-
bodies (VNAR) could also potentially serve as a blueprint for improving



Fig. 3. Engineering of human VH domains through mutation of the light chain interface. Shown are surface representations of the light chain interface in human VH (PDB
2VXS) and of the equivalent surfaces in camelized VH (PDB 1VHP), camelid VHH (PDB 1ZVH) and shark VNAR domains (PDB 1T6V). Residues forming the camelid ‘tetrad’ at
positions 37, 44, 45 and 47 are highlighted in green. Camelized VH, VHH and VNAR domains display a considerable reduction in surface hydrophobicity in comparison to human
VH domains. Figure was generated using PYMOL.
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the stability of human antibody VH domains (although they are more
distantly related to human domains [61]). As observed for camelid
domains, shark VNAR domains are characterized by a long protruding
CDR3 [62]. The CDR loop is constrained by additional disulfide bonds,
thereby folding over an area equivalent to the former VH/VL interface
of human antibodies [61]. A recent study revealed that VNAR domains
are resistant to thermal denaturation, acidic denaturation, and lyo-
philisation denaturation and are capable of returning to their native
state after thermal unfolding [63].

Rather than focusing on direct grafting of camelid residues,
more recent approaches for the generation of autonomous single
domains have focused on the identification of novel mutations.
This has been possible due to the use of phage display based selec-
tion strategies and the use of protein A to select for folded domains
(pA superantigen binds to folded human VH3 domains, but not to
unfolded or aggregated domains). Using this approach, an exten-
sive mutagenesis study has identified hydrophilic substitutions
within the VH3/VL interface [53]. The authors were able to demon-
strate that their mutations (including H35G, Q39R, L45E, R50S) im-
proved solubility, thermal refolding and melting temperature.
Importantly, some of the mutations improved protein A binding
(and presumably stability), independently of CDR3 sequence diver-
sity. As CDR3 of VH provides the majority of binding energy in anti-
body–antigen interactions, this indicated broad compatibility with
antigen binding and suggested that the engineered frameworks
could be used for the construction of stable repertoires of autono-
mous VH domains.

8.2. Engineering of human VH domains through CDR grafting and
framework mutations

In addition to their use in the engineering of autonomous anti-
body single domains, homology-based approaches have also been
used for the identification of mutations outside the interface re-
gions, thereby retaining the ability of human VH to interact with
variable light domains. One of the earliest examples of such
strategies relates to the use of CDR grafting for the improvement
of biophysical properties. Developed by Jones and Winter in the
mid-1980s, CDR grafting was initially used to reduce the immuno-
genicity of mouse monoclonals, by transplantation of murine CDR
regions onto a human framework [64]. However, it was later
shown that by grafting onto a stable and well-behaved framework
(such as the Herceptin 4D5 [VH3] framework) considerably im-
proved expression levels and thermodynamic stability, while
maintaining binding affinity of the parental antibody fragment
[65]. A second approach is based on the use of consensus se-
quences to improve stability [66]. This approach has been applied
to a range of protein scaffolds [67], and utilizes amino acid ob-
served with high frequency within the repertoire [68]. This ap-
proach was also used in the construction of the HuCAL human
antibody library, for which the authors have reported good expres-
sion yields [69]. More recent studies from the same group have
identified additional framework mutations that transfer biophysi-
cal properties between human VH3 and VH6 families [70,71].

As an alternative to homology-based approaches, other studies
have focused on the computational prediction of aggregation hot-
spots in antibody sequences. Early studies on peptides and proteins
involved in neurodegenerative diseases have highlighted physico-
chemical properties that correlate with an increase in aggregate
formation, namely hydrophobicity, b-sheet propensity and re-
duced net charge [72]. Algorithms have been developed to detect
such aggregation-prone regions [73–76]. Two of these algorithms,
TANGO and PAGE, have been used to identify potential aggrega-
tion-prone regions in commercial therapeutic antibodies, which
are predominately located in variable domains, and particularly
within CDR and adjacent framework residues [28].

8.3. Engineering of human variable domains through CDR mutations

The role of CDR residues in determining thermodynamic and in
particular colloidal stability of human antibody variable domains is
further highlighted by studies on the biophysical properties of the
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HEL4 model domain [31]. HEL4 was originally isolated through
phage display selection from a synthetic CDR-only repertoire based
on the human VH3-23 DP47 germline [77]. As phage is remarkably
resistant to chemical, proteolytic and thermal denaturation [78–
80], the authors were able to heat the phage displayed antibody
fragments at high temperature (80 �C), followed by cooling and
binding to antigen (hen egg white lysozyme). The method thereby
selected for domains that unfolded reversibly, and could be cap-
tured by binding to antigen or superantigen. Unlike other human
VH3 domains, HEL4 displayed highly favorable biophysical proper-
ties, including heat-refoldability, high expression levels in bacteria,
and the absence of ‘stickiness’ on gel-filtration [31]. Indeed, it was
later shown that aggregation resistance on phage is a general indi-
cator of the solution behavior of human VH domains [81]. In addi-
tion to HEL4, several other VH domains, that were isolated using
this method, showed a high level of resistance to aggregation.
Intriguingly, despite their high level of colloidal stability, all of
the domains actually had lower thermodynamic stabilities than
the DP47 domain from which they had been derived from
(DGN–U = 15–20 kJ/mol vs 35 kJ/mol). In contrast, DP47 readily
aggregated upon heating, further highlighting differences between
Fig. 4. Effect of mutations in human antibody VH and VL domains on aggregation re
substitution with aspartate. Aggregation resistance of the domains was determined by m
phage. Complementarily determining regions are indicated (A) Mutations in human V
increases aggregation resistance of human variable domains up to 40-fold for VH and up
mapped onto the human VL surface (blue: 100% retained superantigen binding, white:
human VL repertoire. The mutant repertoires were generated through introduction of asp
Introduction of the mutations significantly increases the aggregation resistance of hum
Adapted from Ref. [7].
thermodynamic and colloidal stability. As an alternative to heat-
based selection on phage, a more recent study explored the use
of pH stress (pH 3.2) for the selection of aggregation-resistant VH

domains [82]. In contrast to domains isolated after thermal
denaturation, the selected VH domains displayed increased
thermodynamic stabilities and increased colloidal stability at low
pH, reflecting the different denaturation conditions experienced
during the selection process.

Although the denaturation method on phage was capable of
selecting human VH domains with CDR sequences that promoted
a high level of aggregation resistance, it was also evident that such
domains were rare within the repertoire. To increase the frequency
of such clones, a human VH library was constructed through com-
binatorial assembly of CDR regions that had been pre-selected for
aggregation resistance in phage. Binders were successfully selected
from this repertoire, which exhibited good antigen-binding prop-
erties together with favorable biophysical properties [32].

Despite clear improvements over other human VH domains, de-
tailed determinants of the observed aggregation resistance initially
had remained unclear. As HEL4 and other clones had been selected
from synthetic CDR-only repertoires, it was apparent that the
sistance. Surface residues in variable heavy and light domains were targeted for
easuring binding to protein A and protein L superantigen after heating to 80 �C on

H. (B) Mutations in human VL. Introduction of aspartate into CDR H1 and CDR L2
to 80-fold for VL. (C) Mutations mapped onto the human VH surface. (D) Mutations
0%). (E) Stability engineering of human VH repertoire. (F) Stability engineering of

artate mutations in CDR H1 and CDR L2 (at positions 32/33 and 52/53, respectively).
an antibody repertoires, independent of sequence diversity at other CDR positions.
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exhibited biophysical properties were a result of changes in the
complementarity determining regions, without any further influ-
ence of framework residues [31]. Crystal structure of the HEL4
model domain had indicated a potential effect of a serine to glycine
mutation at position 35 [77]. Indeed, introduction of this mutation
into DP47, resulted in increased solubility and reduced ‘‘stickiness’’
on gel-filtration. However, the mutant domain continued to readily
aggregate when heated above its melting temperature. The authors
also reported that many of the selected domains had a low isoelec-
tric point (pI). Similar findings were also obtained in a second
study, which reported that a low pI, together with the non-canon-
ical inter-CDR disulfide linkages, contribute to improved biophysi-
cal properties human VH domains [83]. Using transient heating to
pre-select for proteins reversible thermal unfolding properties,
the authors found that many of the isolated domains had pI values
of less than six, although they also observed domains with values
higher than eight. The authors concluded that the improved bio-
physical characteristics of these VH domains were caused by a
combination of global pI effects, together with an increase of sta-
bility through inter-CDR disulfide linkage (other studies by the
same group demonstrated that, although the additional disulfide
bridge significantly increased thermal stability and protease resis-
tance [84], it also induced structural changes in human VH as indi-
cated by a marked reduction of protein A superantigen binding
[85]). A global increase in charge was also observed in a different
study, analyzing larger sets of VH domain sequences after heat
selection on phage, together with an overall reduction of hydro-
phobicity and a decrease in beta-sheet propensity [86].

More recently, an extensive mutagenesis study on phage has
provided detailed insights into mutations that increase the colloi-
dal stability of human VH and VL antibody domains [7]. Using
superantigen binding after heat denaturation on phage as a mean
to select for reversible unfolding, the investigators analyzed the ef-
fect of charged mutations at all CDR positions (excluding CDR3 to
limit effects on antigen binding). This revealed that the introduc-
tion of negative charge (and in particular aspartate) at CDR-H1
positions (28, 30–33, 35) considerably increased the aggregation
resistance of human VH domains (up to 40-fold) (Fig. 4A). This is
in excellent agreement with the observations for the model HEL4
domain, which contains negatively charged amino acids at a subset
of the identified positions (as highlighted by CDR grafting studies
[87–89]).

Intriguingly, this was not the case for human VL domains, for
which the introduction of mutations at equivalent positions had
little effect. In contrast to what was observed for human VH, in-
creased aggregation resistance (up to 80-fold) was instead en-
dowed by the introduction of asparate at CDR-L2 positions (49,
50–53, 56) (Fig. 4B). As observed in other studies [81], the im-
proved properties on phage correlated with increased aggregation
resistance in solution, improved expression yields and reduced
retention on gel-filtration. Importantly, the observed increases in
aggregation resistance were not only observed in model domains,
but also when introducing CDR-H1 and CDR-L2 mutations into di-
verse antibody libraries [7] (Fig. 4E/F).

In addition, and unlike what had been observed for camelized
and other engineered variable domains [53,59,85], crystal struc-
tures of mutant VH and VL domains showed no detectable confor-
mational changes in either CDR conformations or the VH/VL

interface. Taken together, these results indicated broad compatibil-
ity with high affinity antigen binding, which was confirmed by the
introduction of CDR-H1 and CDR-L2 mutations into the antibody
therapeutic Herceptin [7]. Further evidence for the influence of
the identified mutations on colloidal stability has recently been re-
ported in a study of an aggregation-prone human IgG1 monoclonal
[90]. The authors found that the aspartic acid at position 49 of
the VL domain considerably reduced aggregation rate of the
antibody during long-term stability studies (from 35% to 0.2% per
month).

9. Conclusion – towards stable human antibody therapeutics

The increasing number of human monoclonals in development
and clinical practice, together with a trend towards high concen-
tration formulations for subcutaneous delivery places increasing
demands on the stability of human antibody therapeutics. While
the thermodynamic stability of human antibodies is relatively well
studied and can be further increased through homology, disulfide
and computational approaches [71,83,47], determinants of their
colloidal stability are just beginning to emerge due to a combina-
tion of rational and high-throughput approaches on phage
[7,31,46,91]. In particular, the recent availability of human VL do-
mains with high levels of aggregation resistance [7] will greatly as-
sist in the generation of paired antibody fragments and IgG.
Further advances in the generation of human antibody therapeu-
tics with high thermodynamic and colloidal stability will not only
improve the production and formulation of human antibody ther-
apeutics, but may also open up new administration routes and
therapeutic applications.
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