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a b s t r a c t

Brassica juncea annexin-3 (BjAnn3) was functionally characterized for its ability to modulate H2O2-
mediated oxidative stress in Saccharomyces cerevisiae. BjAnn3 showed a significant protective role
in cellular-defense against oxidative stress and partially alleviated inhibition of mitochondrial
respiration in presence of exogenously applied H2O2. Heterologous expression of BjAnn3 protected
membranes from oxidative stress-mediated damage and positively regulated antioxidant gene
expression for ROS detoxification. We conclude that, BjAnn3 partially counteracts the effects of thi-
oredoxin peroxidase 1 (TSA1) deficiency and aids in cellular-protection across kingdoms. Despite
partial compensation of TSA1 by BjAnn3 in cell-viability tests, the over-complementation in ROS-
related features suggests the existence of both redundant (e.g. ROS detoxification) and distinct fea-
tures (e.g. membrane protection versus proximity-based redox regulator) of both proteins.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Annexins represent ubiquitous proteins that are highly con-
served among most eukaryotes. They comprise multigene family
of calcium-dependent or -independent phospholipid-binding pro-
teins [1–3]. For more than a decade, they are known to be trans-
criptionally regulated in response to various abiotic stressors and
in dependence on diverse signaling pathways [3–18].

Arabidopsis thaliana annexin-1 (AtAnn1) was the first plant
annexin protein that was functionally linked to oxidative stress
response, and protected bacterial and mammalian cells from oxi-
dative damage [4,19–21]. In line with this observation, Brassica
juncea annexin-1 (BjAnn1), Zea mays annexins-33/35 (ZmAnn33/
35), Capsicum annuum annexin-24 (CaAnn24), Cynanchum komaro-
vii annexin (CkANN), Gossypium hirsutum annexin-1 (GhAnx1) and
Nelumbo nucifera annexin-1 (NnANN1) proteins could also be asso-
ciated with antioxidant function [10,13,14,22,23]. Initially, the
conserved histidine residue of the first annexin repeat (His-40 in
AtAnn1) was known to be associated with peroxidase activity
[21,24]. Later, the concept was challenged, since peroxidase activ-
ity of plant annexin was proven to be independent of the heme-
binding motif when ectopically expressed in plants or bacteria
[12,22]. The published crystal structure of Anx(Gh1) from G. hirsu-
tum (different from the G. hirsutum annexin mentioned above),
suggested the putative triangular sulfur (S3) cluster as redox-reac-
tive center which functions in hydrogen peroxide (H2O2) reduction
[25,26]. Presence of this cluster was later confirmed in AtAnn1
[12,27].

Our previous report demonstrated transcriptional up-regulation
of B. juncea annexin-3 (BjAnn3) upon treatment with H2O2, sodium
chloride, methyl viologen and wounding [11]. Based on this find-
ing, we postulated that BjAnn3 is important for counteracting
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sustained oxidative stress. Further, we proceeded with amino acid
sequence analysis of BjAnn3 using ClustalW and Jalview [28,29],
which revealed the absence of both heme-binding histidine resi-
due and S3 cluster (Supplemental Fig. 1). Cysteines are known to
function as structural elements or redox switches [30]. They may
contribute to multiple interactions of plant annexins with cyto-
skeleton, membranes and other proteins [31]. High cysteine (Cys)
content in evolutionarily more ancient conifer annexins suggests
their role in substitution for type 2 calcium-binding ligands in
the loops for membrane interaction [31]. Cysteine rich annexin
A10 from gastrointestinal mucous of human provides protection
against microbes and fungi [32]. Cysteines play a crucial role as re-
dox buffer in maintaining redox homeostasis for cell-survival on
oxidative stress [30]. Two cysteine residues of BjAnn3 are highly
conserved (Supplemental Fig. 1) among both plant and animal
annexins [25], and might function in modulating or sensing oxida-
tive stress [12,22]. The homology-modeled structure of BjAnn3
using SWISS-MODEL [33] and PyMOL (The PyMOL Molecular
Graphics System, Version 1.4.1 Schrödinger, LLC.) showed that,
the two conserved cysteine residues are positioned close to each
other (Supplemental Fig. 2) and might contribute to disulfide
bridge formation. Therefore, this study aimed at functional charac-
terization of BjAnn3 following heterologous expression in Saccha-
romyces cerevisiae, in connection to H2O2-mediated oxidative
stress response.

2. Materials and methods

2.1. Strains and culture conditions

Escherichia coli DH5a cells (Supplemental Table 1) were grown
at 37 �C in Luria Bertani media. S. cerevisiae INVSc1 cells (Supple-
mental Table 1) were used for heterologous expression and assays.
They were grown either in YPD medium (1% yeast extract, 2% pep-
tone and 2% dextrose) or synthetic complete (SC) minimal medium
(SC-ura) (0.67% yeast nitrogen base without amino acids, 2% glu-
cose/raffinose as carbon source and dropout medium without ura-
cil) at 30 �C. Protein expression was induced by adding 2%
galactose as sole carbon source. In order to inactivate the thiore-
doxin peroxidase 1 (TSA1) gene, KANMX cassette with TSA1 flanking
region was amplified using pFA6a-kanMX6 plasmid as template
and the primer pair TSA1-KANMX-F/TSA1-KANMX-R. The PCR
product was then transfected into INVSc1 cells for integration into
TSA1 and the cells were selected on G418 Sulfate (Calbiochem�,
Germany)-containing YPD plates, to generate the tsa1 null strain
named as ADY1 (Supplemental Table 1). The knockout genotype
was confirmed by gDNA PCR (genomic DNA isolated according to
[34]) and RT-PCR (described below). S. cerevisiae ADY1 cells were
used for complementation studies. Amplification primers for
knockout generation and confirmation are listed in Supplemental
Table 2.

2.2. Site-directed mutagenesis, cloning and recombinant plasmid
construction

Standard molecular and biochemical methods were used for
cloning of BjAnn3 cDNA [35]. Total RNA isolated from B. juncea
using TRI Reagent� (Sigma-Aldrich, USA), was used for first strand
cDNA synthesis using oligo(dT)23 primer (Sigma–Aldrich) and M-
MLV Reverse Transcriptase (Sigma–Aldrich). BjAnn3 cDNA was
amplified using the primer pair BjAnn3-KpnI-F/BjAnn3-XhoI-R
and Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scien-
tific Inc., USA). Cys114 and Cys242 were sequentially mutated to ser-
ine using primer pairs BjAnn3-C114S-F/BjAnn3-C114S-R and
BjAnn3-C242S-F/BjAnn3-C242S-R, by site-directed mutagenesis
as described by [36]. Both BjAnn3 and BjAnn3C114S/C242S cDNAs were
cloned into KpnI and XhoI sites of pYES2/NTA shuttle vector (Invit-
rogen™, USA) generating N-terminally His6-tagged fragments. The
correctness of the constructs was confirmed by sequencing (euro-
fins mwg|operon, Germany). Amplification primers for site-direc-
ted mutagenesis and cloning are listed in Supplemental Table 3.

2.3. Heterologous expression and immunodetection

INVSc1 and ADY1 cells transfected with empty and recombi-
nant plasmids were selected on SC-ura + 2% glucose and main-
tained on SC-ura + 2% raffinose. For heterologous expression, 5 ml
of liquid cultures in SC-ura + 2% galactose were grown overnight.
The cultured-cells were sedimented and proteins were isolated
using trichloroacetic acid (TCA) as described in [37,38]. The cul-
ture-pellets were washed once with sterile distilled water followed
by 500 ll of 20% TCA. The pellets were then resuspended in 200 ll
of 20% TCA and the suspensions were vortexed with glass beads at
4 �C for 30 min. The suspensions with lysed-cells were centrifuged
(3000 rpm, 10 min at 25 �C) to collect the TCA-precipitated pro-
teins and were further washed with 5% TCA. Each precipitate was
dissolved in 60 ll of 1 � sample buffer [0.05 M Tris–HCl (pH 6.8),
2% sodium dodecyl sulfate (SDS), 10% glycerol and 0.1% bromophe-
nol blue] supplemented with 6.66 ll of 1 M DTT and 33 ll of 1 M
Tris–HCl (pH 9.0). The protein samples were boiled for 3–5 min;
centrifuged (14000 rpm, 5 min at 25 �C) and finally the superna-
tants were loaded on 12% sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS–PAGE). The resolved proteins were then
electroblotted onto polyvinylidene difluoride (PVDF) membrane
and probed with mouse monoclonal Anti-polyHistidine antibody
(Sigma–Aldrich) (dilution: 1:6000) followed by goat anti-Mouse
IgG-ALP secondary antibody (Merck, Germany) (dilution:
1:3000). The blot was developed using BCIP/NBT (5-bromo-4-
chloro-3-indolyl phosphate/nitro-blue-tetrazolium chloride) solu-
tion (Bangalore Genei, India).

2.4. Growth in liquid media and phenotypical analysis

Freshly grown cultures (OD600 = 0.7–1) after secondary inocula-
tion in SC-ura media containing 2% galactose were diluted to
OD600 = 0.2 with the same media. Oxidative stress was elicited
with different concentrations of H2O2. After 12 h, cell density was
estimated at OD600 and the percent ratio was calculated.

In addition, diluted culture of OD600 = 0.2 were treated with 2
and 2.5 mM H2O2 for 4 h and aliquots were spotted by serial dilu-
tion on YPD plates for phenotypic analysis. Viability was deter-
mined with fluctuation assay by plating 1000 cells based on
OD600 (cell number in liquid culture was confirmed by plating for
viable colonies under control conditions) from treated and un-
treated samples on YPD plates. Plates were photographed and col-
onies were counted after 48 h.

2.5. Oxygen consumption under oxidative stress

Exponentially grown cultures (OD600 = 0.7–1) after secondary
inoculation in SC-ura liquid media containing 2% galactose, were
sedimented, washed twice and finally re-suspended in fresh
minimal media at a density of approximately 20 OD600 units.
Cell-suspension (25 ll) was added into the oxygraph chamber to
make up to a final reaction volume of 1 ml with minimal medium.
The cell re-suspension procedure and the final cell number used in
oxygraph chamber were optimized [39]. Respiratory oxygen con-
sumption rates were monitored using a Clark-type oxygen elec-
trode (Hansatech Instruments Ltd., England) for 10 min with and
without H2O2.
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2.6. Intracellular reactive oxygen species (ROS) production

Cells washed as before were re-suspended at a density of
approximately 10 OD600 units. Cells were treated with H2O2 for
10 min and then incubated with 10 lM 20,70-dichlorofluorescein
diacetate (DCFDA; Sigma–Aldrich) for 10 min in the dark at 25 �C.
The cells were washed twice with the same media for removal of
unincorporated dye and immediately imaged under a LSM 710
NLO ConfoCor 3 laser-scanning confocal fluorescence microscope
(Carl Zeiss, Germany) at kem = 529 nm (kexc = 495 nm). OD of cells,
H2O2 concentrations and time of treatment, time and temperature
of DCFDA treatment were adjusted as appropriate [40]. 20,70-
dichlorofluoresecin (DCF) fluorescence intensity was quantified in
equal number of cells for each treatment from three different
experiments using Image-J 1.42 software (NIH, USA).

2.7. Plasma membrane permeabilization

Cells re-suspended at a density of approximately 10 OD600 units
were treated with H2O2 for 75 min, and subsequently incubated
with 5 lg ml�1 propidium iodide (PI; Sigma–Aldrich) for 30 min
in dark at 30 �C. The cells were washed twice and imaged under
a LSM 710 NLO ConfoCor 3 laser-scanning confocal fluorescence
microscope at kem = 620 nm (kexc = 530 nm) in order to check for
viability and plasma membrane integrity. Intact plasma membrane
is impermeable to PI. Upon loss of membrane integrity, PI pene-
trates the cell and intercalates in DNA. Thus PI is used as viability
stain. Time and concentration of PI treatment was adjusted [41].
DNA-bound PI fluorescence intensity was quantified in equal num-
ber of cells for each treatment from three different experiments
using Image-J 1.42 software (NIH, USA).

2.8. RNA isolation from S. cerevisiae, semi-quantitative RT-PCR and
quantitative RT-PCR

Cultures diluted to an OD600 = 0.5 were treated with 2.5 mM
H2O2 for 75 min. RNA was isolated from 10 ml of liquid cultures
by acid phenol method as described in [38,42]. After short centri-
fugation, the pellet was resuspended in 400 ll of TES buffer
[10 mM Tris–HCl (pH 7.5), 10 mM EDTA and 0.5% SDS] followed
by addition of 400 ll of phenol (pre-equilibrated with DEPC-trea-
ted water). The mixture was incubated at 65 �C for 1 h, with inter-
mittent vortexing. The mixture was rapidly chilled on ice for 5 min
and centrifuged (14000 rpm, 10 min) at 4 �C. The aqueous layer
was mixed with 400 ll of chloroform, vortex-mixed and centri-
fuged with same conditions as described above. RNA was precipi-
tated from the extracted aqueous phase by addition of 1/10th
volume of 3 M sodium acetate (pH 5.2) and 2.2 volume of pre-
chilled ethanol. After centrifugation, the RNA pellet was washed
with 70% ethanol and dissolved in 30 ll of DEPC-treated water.
Equal amount of RNA was treated with DNase I (Sigma–Aldrich)
according to manufacturer’s protocol followed by cDNA synthesis
using oligo(dT)23 primer and M-MLV Reverse Transcriptase. cDNA
samples were diluted appropriately and were subjected to semi-
quantitative RT-PCR and qRT-PCR using gene-specific primers
(Supplemental Table 4). SapphireAmp� Fast PCR Master Mix (Taka-
ra Bio Inc., Japan) was used for semi-quantitative RT-PCR. The reac-
tion mixtures were pre-incubated for 1 min at 94 �C followed by 30
cycles of denaturation for 5 s at 98 �C, annealing for 5 s at 55 �C and
extension for 5 s at 72 �C, in a Mastercycler� (Eppendorf, Ger-
many). For qRT-PCR, FastStart Universal SYBR Green Master (Rox)
(Roche Applied Science, Germany) was used. The reaction mixtures
were pre-incubated at 95 �C for 10 min followed by 40 cycles of
denaturation at 95 �C for 15 s, annealing at 59 �C for 30 s and
extension at 72 �C for 30 s, in a Mastercycler� ep realplex4
(Eppendorf). The relative gene-expression was analyzed using
2-DDCt method.

3. Results and discussion

The work aimed at understanding the role of BjAnn3 in H2O2-
mediated oxidative stress. Externally applied H2O2 induces intra-
cellular oxidative stress in yeast due to its water solubility and
membrane permeability. Cells generate H2O2 both under basal
and stressed growth conditions [43]. TSA1, the major 2-Cys perox-
iredoxin in yeast, detoxifies hydroperoxides [44,45] and functions
as a key regulator of intracellular ROS, especially H2O2, in S. cerevi-
siae [46]. tsa1 null mutants are viable and indistinguishable from
parental wild-type under aerobic control conditions, but display
a remarkably H2O2-sensitive phenotype [40]. TSA1 was knocked
out in regular INVSc1 strain to generate the tsa1 null mutant
named as ADY1. Genomic DNA PCR (Fig. 1A) using primer pair
KANMX-F/TSA1-R amplified a fragment connecting KANMX cas-
sette and 30 end of TSA1 from ADY1 cells, with no amplification
from INVSc1 cells. On the other hand, TSA1-F/TSA1-R primer pair
resulted in gDNA PCR amplification from TSA1 in INVSc1 cells, with
no amplification from ADY1 cells. This result shows the absence of
TSA1 in ADY1 cells, which was further confirmed in transcript lev-
els using TSA1-F/TSA1-R primer pair by semi-quantitative RT-PCR
and qRT-PCR (Fig. 1B). Both strains were transfected either with
empty vector pYES2/NTA or recombinant pYES2/NTA-BjAnn3 clone
to create four different strains, INVc, INV-ANNw, ADYc and ADY-
ANNw. BjAnn3 expression was confirmed by Western blotting in
INV-ANNw and ADY-ANNw cells (Fig. 1C).

To assess the role of BjAnn3 expression in oxidative stress, the
four strains were treated with H2O2 in liquid culture (Fig. 1D). Het-
erologous expression of BjAnn3 increased growth rate of ADY1
cells by 18% in the absence of H2O2, but by 44% at 1 mM H2O2,
and by more than 100% at 2 mM H2O2. These observations are in
line with earlier findings [44,46]. Apparently, BjAnn3 efficiently
counteracted the lost TSA1 function in ADY-ANNw cells (Fig. 1D).
The data suggest a protective role of BjAnn3 in cellular-defense
against oxidative stress. Based on the results, H2O2 concentrations
of 2 and 2.5 mM were chosen for further experiments.

We hypothesized that, BjAnn3 might protect mitochondrial res-
piration during oxidative stress response (Fig. 1E). At 2 mM H2O2,
respiration of cells overexpressing BjAnn3 showed no significant
difference when compared with their respective wild-types. But
at 2.5 mM H2O2, BjAnn3 overexpression stimulated respiratory
activity of INVSc1 and ADY1 cells by 28% and 20%, respectively.
Apparently, the presence of BjAnn3 partially mitigated oxidative
stress-induced inhibition of mitochondrial respiration. ADYc cells
had improved respiration compared to INVc cells upon treatment.
TSA1 plays a prominent role in cellular-protection against hydro-
peroxide-mediated oxidative stress in respiratory-incompetent
cells compared to wild-type. In addition, H2O2 treatment stimu-
lates TSA1 expression more in cells with dysfunctional mitochon-
dria than in wild-type [44]. Based on the above studies, a
possible explanation could be that, compromised TSA1 resulted
in compensational elevation of respiration activity in order to
maintain a balanced metabolism. Our results from Fig. 1E suggest
that, BjAnn3 aids in cellular-protection against oxidative stress,
thereby safeguards mitochondrial respiration.

In order to further substantiate our findings, we performed
growth assays on plates (Fig. 2A). Viability of all four strains was
indistinguishable under normal aerobic condition, while it varied
in presence of H2O2. INV-ANNw cells appeared to be slightly more
tolerant than INVc cells when treated with 2.5 mM H2O2, whereas
no significant difference was seen at 2 mM H2O2. ADYc cells were
more sensitive to H2O2 at both concentrations compared to INVc



Fig. 1. PCR-based confirmation of TSA1 knockout, recombinant expression of BjAnn3 in yeast and its functional effect on cell growth and respiration. (A) Confirmation of TSA1
knockout by genomic DNA PCR in lane1 and 3: INVc and lane2 and 4: ADYc cells. (B) Semi-quantitative RT-PCR (Lane1: INVc and Lane2: ADYc cells) and qRT-PCR analysis for
verification of tsa1 null mutant. ACT1 was used as reference gene. (C) Confirmation of BjAnn3 expression in lane1, INVc; 2, ADYc; 3, INV-ANNw; 4, ADY-ANNw cells. (D) Cell
growth in presence of different concentrations of H2O2. (E) Mitochondrial respiration in percent of untreated cells. Data represent means ± S.D. from three measurements.
Statistical analysis was carried out in SigmaPlot 11.0 by One-Way ANOVA (analysis of variance) with Duncan’s Multiple Range Test (DMRT). (⁄) marks significant differences
with p < 0.05 relative to the likewise treated wild-type.

A. Dalal et al. / FEBS Letters 588 (2014) 584–593 587
cells, which is consistent with earlier reports [44,46]. Expression of
BjAnn3 restored cell-viability of ADYc cells close to the level of
INVc cells. Cell-viability was quantified using fluctuation assay
(Fig. 2B). Survival rate of INV-ANNw cells in 2 and 2.5 mM H2O2 in-
creased by 14.7% and 16.5%, respectively, compared to the likewise
treated wild-type. Viability of ADY-ANNw cells increased by 20.3%
and 19.6% in 2 and 2.5 mM H2O2, respectively, when compared
with treated wild-type. TSA1 knockout resulted in 31.2% and
28.4% observed mortalities of ADYc cells in presence of 2 and
2.5 mM H2O2, respectively, which agrees with previous reports
[44]. BjAnn3 expression in ADY1 cells partially complemented
the loss of TSA1 function, indicating a significant protective role
of BjAnn3 against H2O2-mediated oxidative stress.

Oxidative stress affects the structural integrity of phospholipids
by lowering membrane lipid packing and facilitating phase
separation [47,48]. One of the primary roles of annexins is seen
in protecting cell membrane permeability by their highly con-
served annexin core domain [49]. Plant annexins which respond
to oxidative stress in a membrane-bound state, might bind or
decompose peroxidated lipids, thereby restoring membrane stabil-
ity and integrity. Alternatively, a protective mechanism of annex-
ins on membranes may involve formation of two dimensional
crystal patches on peroxidated membranes or fostering of mem-
brane resealing [27]. Therefore, the next experiment investigated
the capability of expressed BjAnn3 to maintain membrane integ-
rity, which may be one of the underlying mechanisms to restore
cell-viability upon oxidative stress. H2O2 treatment resulted in pro-
nounced increase of cellular PI fluorescence in all four strains com-
pared to their respective untreated controls, indicating an increase
in plasma membrane permeability (Fig. 3A). Loss of TSA1 in ADYc



Fig. 2. Restoration of cell viability by BjAnn3 expression during H2O2-mediated oxidative stress. Sensitivity of yeast strains INVc, INV-ANNw, ADYc and ADY-ANNw to H2O2

was analyzed by spotting (A) and fluctuation assay with cell survival rate in percent of untreated cells (B). Data represent means ± S.D. from three measurements. Statistical
analysis was carried out in SigmaPlot 11.0 by One-Way ANOVA with DMRT. (⁄) marks significant differences with p < 0.05 relative to the likewise treated wild-type.
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cells further enhanced PI fluorescence upon H2O2 treatment.
BjAnn3 overexpression counteracted the PI fluorescence increase
in INV-ANNw and ADY-ANNw cells. Quantification of PI fluores-
cence confirmed that, BjAnn3 strongly quenched the fluorescence
in both INV-ANNw and ADY-ANNw cells (Fig. 3B). At both H2O2

concentrations, BjAnn3 was able to complement the loss of TSA1
function, with fluorescence quenched below the level as seen in
INVc cells. These data support the conclusion that, annexins
protect membranes against oxidative stress, which is in line with
previous findings [27].

The role of plant annexins in improved ROS detoxification has
been shown in both native [12] and transgenic plants
[10,13,14,21,22,50,51]. ROS is formed due to normal yeast metab-
olism. Its release is enhanced in response to environmental stress
[43]. In order to explore the possible link between BjAnn3 expres-
sion, increased cell-viability, plasma membrane protection and
ROS formation, cells were subjected to DCFDA staining and ana-
lyzed by confocal microscopy (Fig. 4A). The DCF fluorescence level
upon H2O2 treatment was highest in TSA1-deficient ADYc cells.
Similar results were reported by Wong et al. [40]. BjAnn3 overex-
pression decreased the DCF fluorescence in H2O2-treated INV-
ANNw and ADY-ANNw cells. When treated with 2 and 2.5 mM
H2O2, BjAnn3 was able to suppress ROS accumulation by 20% and
35%, respectively in INV-ANNw cells, and by 23% and 38%, respec-
tively in ADY-ANNw cells (Fig. 4B). ADYc cells generated 28.5%
more ROS compared to INVc cells in presence of 2 mM H2O2, while
no significant difference was observed upon 2.5 mM H2O2
treatment. This insignificant increase of ROS at higher H2O2 con-
centration may tentatively be explained by saturation of the stress
effect. Overexpression of BjAnn3 compensated for the loss of TSA1
function as indicated by DCF fluorescence which was lower than
that in INVc cells at 2 mM H2O2. The result is consistent with that
from PI assay. Apparently, BjAnn3 lowers ROS accumulation and
thus combats oxidative stress and increases cell-viability.

BjAnn3 has four cysteine residues, namely Cys114, Cys129, Cys226

and Cys242 (Supplemental Fig. 1). In their comprehensive review,
Clark et al. [31] summarized the possible functions of highly con-
served cysteine residues, in particular Cys111 (Cys114 in BjAnn3),
and suggested that, it mediates redox sensitivity and interaction
with external partners. In addition to disulfide bridge formation,
redox regulation may also involve S-nitrosylation [52] or S-glu-
tathionylation [12] of annexins. The redox switch likely interferes
with the calcium-binding ability and calcium-dependent functions
of annexins [31]. Based on protein modeling studies (Supplemental
Fig. 2), Cys129 and Cys226 are predicted to be distantly positioned on
the protein surface. On the other hand, Cys114 and Cys242 remained
adjacent to each other (�5.3 Å) and might participate in disulfide
bridge formation [53]. It may be proposed that, the two highly con-
served cysteine residues (Cys114 and Cys242) of BjAnn3 (Supple-
mental Fig. 1) might be responsible for ROS detoxification [12].
Therefore, we mutated these two cysteine residues of BjAnn3 to
generate BjAnn3C114S/C242S, and performed complementation assay
(Fig. 5). Both INVSc1 and ADY1 cells were transfected with recom-
binant pYES2/NTA-BjAnn3C114S/C242S clone to create two different



Fig. 3. Effect of BjAnn3 expression on membrane permeability upon H2O2-mediated oxidative stress. Propidium iodide (PI) fluorescence was observed under a confocal
microscope; scale bars: 5 lm (A) and fluorescence intensity was quantified from more than 100 cells in each sample by using Image-J (B). Values are expressed as a fraction of
the control (untreated INVc cells). Data represent means ± S.D. from three replicates. Data were analyzed for statistically significant differences using SigmaPlot 11.0 by One-
Way ANOVA with DMRT. (⁄) marks significant differences with p < 0.05 relative to the likewise treated wild-type.
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strains, INV-ANNv and ADY-ANNv. BjAnn3C114S/C242S expression
was confirmed by Western blotting in INV-ANNv and ADY-ANNv
cells (Fig. 5A). Growth assay on plates showed that, BjAnn3C114S/C242S

expression could not protect INV-ANNv and ADY-ANNv cells effi-
ciently upon H2O2 treatment when compared with their respective
treated wild-types. The mutated protein failed to restore the lost
cell-viability of ADYc cells upon treatment (Fig. 5B). Fluctuation as-
say clearly showed no significant protective role of the protein in
INV-ANNv and ADY-ANNv cells upon H2O2 treatment when com-
pared with their respective treated wild-types (Fig. 5C). Due to the
absence of both heme-binding histidine residue and S3 cluster in
BjAnn3, the conserved cysteine residues are likely important com-
ponents of the oxidative stress response. Since cysteine thiols partic-
ipate in conformational stability [30], their mutation may result in
conformational changes which could be studied by circular dichro-
ism spectroscopy. The data indicate that, the loss of BjAnn3 function
is a direct cause of cysteine mutation. Apparently, BjAnn3C114S/C242S

expression could not counteract the loss of TSA1 function effectively
in ADY1 cells, indicating a prominent role of the conserved cysteine
residues in ROS detoxification.

In the next step, we investigated the effects of BjAnn3 expres-
sion which could indirectly affect cellular ROS levels. Earlier exper-
iments have linked plant annexins to other genes involved in
improved stress response [10,50,54]. To this end, transcript levels
of superoxide dismutase 1 (SOD1) (Fig. 6A), superoxide dismutase 2
(SOD2) (Fig. 6B), glutathione peroxidase 2 (GPX2) (Fig. 6C) and thio-
redoxin peroxidase 2 (TSA2) (Fig. 6D) were quantified by qRT-PCR.
The antioxidant genes were transcriptionally up-regulated in



Fig. 4. Modulation of H2O2-mediated ROS accumulation by BjAnn3. ROS was detected by DCF fluorescence using a confocal microscope; scale bars: 10 lm (A). Fluorescence
intensity was quantified from more than 100 cells in each replicate by using Image-J and expressed as a fraction of the control (untreated INVc cells) (B). Data represent
means ± S.D. from three measurements. Statistical analysis was carried out in SigmaPlot 11.0 by One-Way ANOVA with DMRT. (⁄) marks significant differences with p < 0.05
relative to the likewise treated wild-type.
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response to H2O2 treatment. As described earlier, SOD1, GPX2 and
TSA2 [40,55] were up-regulated in H2O2-treated ADYc cells. SOD2
was hardly regulated. Upon treatment, BjAnn3 overexpression re-
sulted in transcriptional activation of SOD1, SOD2, GPX2 and TSA2
in INV-ANNw cells, while only SOD1 and SOD2 in ADY-ANNw cells,
when compared with their respective wild-types. GPX2 showed no
difference, while TSA2 got down-regulated upon treatment in ADY-
ANNw compared to ADYc cells. Overexpression of BjAnn3 affected
antioxidant expression. The compensatory activation of these
antioxidants for TSA1 deficiency are in order of SOD2 <
SOD1 < GPX2 < TSA2 in ADYc compared to INVc cells. This order
exactly matched the progressive decrease in transcript level of
SOD2 < SOD1 < GPX2 < TSA2 in ADY-ANNw cells compared to ADYc
cells. The results from Fig. 6 show that, BjAnn3 interferes with
SOD1, SOD2, GPX2 and TSA2 expression, which in turn may help
to maintain cellular redox homeostasis. A direct regulatory effect
of BjAnn3 in antioxidant expression is unlikely, since annexins
are not reported to function as transcription factors (TFs). Probably,
BjAnn3 indirectly influences transcript accumulation by modula-
tion of cellular redox homeostasis followed by regulation of
redox-regulated TFs. On one hand, BjAnn3 positively regulates
these antioxidants upon treatment. But on the other hand, BjAnn3
appears to play a dual role which may either be antagonistic or
synergistic depending on the state of the cell.

This report characterizes the effects of heterologous expression
of a plant annexin in S. cerevisiae. S. cerevisiae lacks recognizable
annexin-like sequences [56], however, single copies are found in
certain yeast species [31]. Annexins are well known membrane



Fig. 5. Recombinant expression of BjAnn3C114S/C242S and its functional effect on the restoration of cell viability during H2O2-mediated oxidative stress. (A) Confirmation of
BjAnn3C114S/C242S expression in lane1, INV-ANNv and 2, ADY-ANNv cells. Sensitivity of yeast strains INVc, INV-ANNv, ADYc and ADY-ANNv to H2O2 was analyzed by spotting
(B) and fluctuation assay with cell survival rate in percent of untreated cells (C). Data represent means ± S.D. from three measurements. Statistical analysis was carried out in
SigmaPlot 11.0 by One-Way ANOVA with DMRT. (⁄) marks significant differences with p < 0.05 relative to the likewise treated wild-type.

Fig. 6. qRT-PCR analysis of mRNA transcripts of some antioxidant enzymes. All strains showed BjAnn3-mediated regulation upon treatment with 2.5 mM H2O2. SOD1 (A),
SOD2 (B), GPX2 (C) and TSA2 (D) transcripts were quantified as described above. ACT1 was used as reference gene. Data represent means ± S.D. from three measurements.
Statistical analysis was carried out in SigmaPlot 11.0 by One-Way ANOVA with DMRT. (⁄) marks significant differences with p < 0.05 relative to the likewise treated wild-type.
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binding proteins [1–3]. They have been studied for their function in
cellular-protection, membrane stabilization and ROS detoxification
in bacteria, plants and mammalian cell lines [4,10,12,19–23,27].
Here it is shown that, BjAnn3 protects yeast cells from oxidative
stress. Two scenarios are possible: (i) BjAnn3 could either directly
detoxify ROS or (ii) positively modulates the endogenous
antioxidant system and thereby affects ROS accumulation. Expres-
sion of BjAnn3 maintained the permeability barrier, which could
result either from membrane stabilization by binding [49] or from
ROS detoxification in a free or membrane-bound state [3]. Again,
ROS detoxification may be due to peroxidase activity of BjAnn3
or due to an interaction with native defense system within the cell.
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The methionine residue of S3 cluster often varies as in BjAnn3, but
the two cysteine residues remained conserved [12]. The absence of
both heme-binding histidine residue and S3 cluster in BjAnn3
might suggest that, the conserved cysteine residues are involved
in ROS detoxification. This hypothesis is proved from the fact that,
BjAnn3 with mutated cysteine residues was not able to compen-
sate the loss of TSA1 function significantly. Annexins are also
predicted to function as heme-free glutathione peroxidases, a
subgroup of peroxiredoxins, that using conserved cysteines reduce
hydroperoxides which act as electron acceptor [22,57,58]. Such a
thiol peroxidase activity might be the reason why BjAnn3 comple-
ments TSA1-deficient yeast. Our results indicate that, BjAnn3 inter-
feres with other antioxidant genes for ROS modulation. Their
evolutionary significance is well concluded form our results, based
on their role in transcriptional activation of antioxidant genes and
their cross talk with the defense system across kingdom, enabling a
cooperative cellular-protection. Despite partial compensation of
TSA1 by BjAnn3 in cell-viability tests, the over-complementation
in ROS-related features suggests the existence of both redundant
(e.g. ROS detoxification) and distinct features (e.g. membrane pro-
tection versus proximity-based redox regulator) of both proteins.
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