Optimal algorithms for online scheduling with bounded rearrangement at the end

Xin Chena, Yan Lanb, Attila Benkoc, György Dósac, Xin Hana,∗

a Software School, Dalian University of Technology, China
b Dalian Neusoft Institute of Information, China
c Department of Mathematics, University of Pannonia, Veszprém, Hungary

Abstract

In this paper, we consider an online non-preemptive scheduling problem on two related machines, where at most \(K \) jobs are allowed to be rearranged, but only after all jobs have been revealed and (temporarily) scheduled. We minimize the makespan, and we call the problem as Online scheduling with bounded rearrangement at the end (BRE), which is a semi-online problem. Jobs arrive one by one over list. After all the jobs have been arrived and scheduled, we are informed that the input sequence is over; then at most \(K \) already scheduled jobs can be reassigned. With respect to the worst case ratio, we close the gap between the lower bound and upper bound, improving the previous result as well.

Especially, for the lower bound, (i) for \(s \geq 2 \) an improved lower bound \(\frac{s^2 + s + 1}{s^2} \) is obtained, which is better than \(\frac{s(s+1)^2}{s^2+1} \) (Liu et al. (2009) [9]); (ii) for \(1 + \sqrt{5} \leq s < 2 \), an improved lower bound \(\frac{2(s^2 + s + 1)}{s^2} \) is obtained, which is better than \(\frac{s(s+1)^2}{s^2+1} \) (Liu et al. (2009) [9]). For the upper bound, (i) for \(s \geq 2 \) and \(K = 1 \), a new upper bound \(\frac{s^2}{s^2+1} \) is obtained, which is optimal and better than the one \(\frac{s^2}{s^2+1} \) in Liu et al. (2009) [9]; (ii) for \(1 + \sqrt{5} \leq s < 2 \) and \(K = 2 \), an upper bound \(\frac{4s^2}{s^2+1} \) is proposed, which is optimal and better than the previous one \(\frac{2(s+1)}{s+1} \) in Liu et al. (2009) [9]; (iii) for \(s < 1 + \sqrt{5} \) and \(K = 2 \), an upper bound \(\frac{(s+1)^2}{s^2+1} \) is obtained, which is also optimal and better than the previous one \(\min\{\frac{s+1}{s+1}, \frac{(s+1)^2}{s^2+1}\} \) in Liu et al. (2009) [9].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider an online non-preemptive scheduling problem on two related machines with bounded rearrangement to minimize the completion time, called Online scheduling with bounded rearrangement at the end, BRE for short, which is a semi-online problem. Jobs arrive one by one over list, i.e., after the incoming job has been assigned, the new job arrives. After all jobs have arrived, we are informed that there is no further job; then at most \(K \) already scheduled jobs can be reassigned, where \(K \geq 0 \) is a fixed integer. When \(K = 0 \) and \(s = 1 \), this problem degenerates into one of the most fundamental scheduling problems on two machines, assigning jobs online to identical parallel machines to minimize the completion time [6]; the fundamental (offline) scheduling problem is strongly NP-hard, if there are \(m \geq 2 \) machines, and \(m \) is not part of the input. [5].
Fig. 1. The thick curves are for our upper bounds which are equal to the lower bound of the problem, i.e., our upper bounds are optimal.

Related models: Our problem is related to three online models, considering the possibility of reassigning some jobs from one machine to another. The following online models have been investigated in the last years: (i) scheduling with bounded migration [10]; (ii) scheduling with a buffer [7,12,8,4,1,2]; (iii) scheduling with the possible rearrangement of any K jobs at any time when a new job comes, (without knowledge that the sequence is ended or not), denoted by BR for short [3].

Tan and Yu [11] defined three further similar problems where the rearrangement can be done only after all jobs are revealed and scheduled: (i), the last job of any machine can be rearranged to the other machine, (ii), the last K jobs of the sequence can be rearranged, (iii) any K jobs can be rearranged. In this paper we will deal with the third problem, what we denote as BRE. Problem BR seems to be more flexible than BRE, since in the latter case the rearrangement can be done only once, at the end of the sequence. But it is worthy to note an advantage of the latter condition comparing to the former one: in case of BRE, when we do the rearrangement, we are already informed that there is no further job, while in case of BR the rearrangement must be done in such a way, that we cannot know whether the sequence is to be continued, or not. Thus, at this moment we cannot state that BR is really more flexible than BRE.

Our contributions: In this paper, we use competitive ratio to evaluate online algorithms, which is one of the standard measures. If an online algorithm always achieves a solution within a factor ρ of the offline optimum, we say the online algorithm is ρ-competitive. Our results are summarized in Tables 1 and 2 (refer to Fig. 1).

2. Preliminaries

Scheduling on two related machines

Input: Given two machines M_1, M_2 with speed 1 and $s \geq 1$ respectively, and a set of jobs $J = \{j_1, \ldots, j_n\}$ associated with processing time $p : J \rightarrow \mathbb{R}_+$.

Output: Schedule J on M_1 and M_2 such that the maximal completion time of M_1 and M_2 is minimized.

If all the jobs are known in advance, then we say the problem is offline. If jobs are revealed incrementally, i.e., one by one, once the current job is given we have to immediately schedule or assign it and the assignment cannot be changed in the future, then this version of the problem is called online.

Rearrangement: After all jobs have been assigned to the machines, we are informed that the sequence is over, then at most $K \geq 0$ already scheduled jobs can be reassigned to other machines, where K is a constant. Then any algorithm consists of two main parts, the scheduling phase, and then (after being informed that the sequence is over), the reassignment phase.

In the problem of online scheduling with rearrangement on two related machines, if $K = 0$, the problem is totally online, if $K = n$, where n is the number of jobs in the input, then the problem is offline. In this paper, we mainly study the problem with $1 \leq K < n$, which is between online and offline versions.

Table 1

<table>
<thead>
<tr>
<th>$s \in$</th>
<th>Previous result</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[1, \frac{1+\sqrt{5}}{2})$</td>
<td>$\frac{(s+1)^2}{s+2}$</td>
<td>$\frac{(s+1)^2}{s+2}$</td>
</tr>
<tr>
<td>$[\frac{1+\sqrt{5}}{2}, 2)$</td>
<td>$\frac{s^2}{s^2+1}$</td>
<td>$\frac{s^2}{s^2+1}$</td>
</tr>
<tr>
<td>$[2, \infty)$</td>
<td>$\frac{s^2}{s^2+1}$</td>
<td>$\frac{s^2}{s^2+1}$</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>$s \in$</th>
<th>Previous result</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[1, \frac{1+\sqrt{5}}{2})$</td>
<td>$\min{\frac{1+\sqrt{5}}{4}, \frac{1+\sqrt{5}}{2}}$, $K = 1$</td>
<td>$\frac{s^2}{s^2+1}$, $K = 1$</td>
</tr>
<tr>
<td>$[\frac{1+\sqrt{5}}{2}, 2)$</td>
<td>$\frac{s^2}{s^2+1}$, $K = 2$</td>
<td>$\frac{s^2}{s^2+1}$, $K = 2$</td>
</tr>
<tr>
<td>$[2, \infty)$</td>
<td>$\frac{s^2}{s^2+1}$, $K = 1$</td>
<td>$\frac{s^2}{s^2+1}$, $K = 1$</td>
</tr>
</tbody>
</table>
Given an online algorithm A, if for any input j we have $A(j) \leq \rho \OPT(j)$, where $A(j)$ and $OPT(j)$ are the cost by online algorithm A and an optimal algorithm respectively, then we say online algorithm A is ρ-competitive. On the other side, if there is an input j for any deterministic online algorithm, we have $A(j) \geq \rho_1 \OPT(j)$, then we say ρ_1 is the lower bound of the problem. Furthermore some online algorithm A if $\rho = \rho_1$, we say algorithm A is optimal.

In the following, we denote (j_1, j_2, \ldots, j_t) as J_t for $t \geq 1$. Let L_i be the load of machine M_i after dealing with job j_i for $1 \leq i \leq 2$ in the scheduling phase. If time t is clear from the context or t is the current time, we use L_t to replace L_t^i.

Function $\rho(s)$ is defined as the competitive ratio of our online algorithm, for short, we use ρ.

3. Lower bounds

In this section, we give new lower bounds for problem BRE. And the analysis is similar with the one for problem BR in [3].

Lemma 1. For any $K \geq 1$, we have the lower bounds for problem BRE as below: (i) for $1 \leq s \leq \frac{1+\sqrt{5}}{2}$ no online algorithm has its competitive ratio strictly less than $\frac{(s+1)^2}{s^2+s+1}$; (ii) for $\frac{1+\sqrt{5}}{2} \leq s \leq 2$ no online algorithm has its competitive ratio strictly less than $\frac{s^2}{s^2+s+1}$; (iii) for $s > 2$ no online algorithm has its competitive ratio strictly less than $\frac{s^2}{s^2+s+1}$.

Proof. Let $\epsilon > 0$ be a sufficiently small number such that $1/\epsilon$ is integer. Let t be $1/\epsilon$. The first t jobs are small jobs, each one has a processing time exactly ϵ.

Case 1: $s \leq \frac{1+\sqrt{5}}{2}$. The following lower bound was first given in [9] for problem BR. Our proof is simpler than the one in [9]. For the sake of completion, the details of the proof are given below. After the t jobs have been assigned on machines, if $L_i^1 \geq \frac{s^2}{s^2+s+1}$ or $L_i^2 \geq \frac{s^2}{s^2+s+1}$, we are informed that job j_i is the last job. After the last job j_i is given, at most K jobs can be reassigned, where K is a constant, we have $L_i^1 \geq \frac{s^2}{s^2+s+1} - K\epsilon$ or $L_i^2 \geq \frac{s^2}{s^2+s+1} - K\epsilon$. On the other hand, the optimal value is at most $\frac{(s+1)^2}{s^2+s+1}$. So the competitive ratio is at least

$$\min \left\{ \frac{L_i^1}{s^2+s+1}, \frac{L_i^2}{s^2+s+1} + \epsilon \right\} \geq \frac{(s+1)^2}{s^2+s+1} - K\epsilon(s+1) \geq \frac{1}{1+\epsilon(s+1)},$$

as ϵ goes to zero the lower bound $\frac{(s+1)^2}{s^2+s+1}$ is implied. Else we consider the next scenario:

$$\frac{1}{s^2+s+1} \leq L_i^1 \leq \frac{s+1}{s^2+s+1}, \quad \frac{s^2}{s^2+s+1} \leq L_i^2 \leq \frac{s^2}{s^2+s+1}.$$

Then we are informed that job j_{i+1} has a processing time s and is the last job. Then the optimal value $OPT(j_{t+1}) = 1$. If j_{i+1} is assigned on M_1 after the possible rearrangements, then

$$L_{t+1}^1 \geq s + L_i^1 - K\epsilon \geq \frac{s^3 + s^2 + s + 1}{s^2 + s + 1} - K\epsilon \geq \frac{(s+1)^2}{s^2+s+1} - K\epsilon,$$

else M_2 accepts j_{i+1} then the completion time on M_2

$$L_{t+1}^2 \geq \frac{s^3 + s^2 + s + 1}{s^2 + s + 1} - K\epsilon \geq \frac{(s+1)^2}{s^2+s+1} - K\epsilon.$$

In both cases the lower bound $\frac{(s+1)^2}{s^2+s+1}$ is implied as ϵ approaches to zero.

Case 2: $\frac{1+\sqrt{5}}{2} \leq s \leq 2$, assume $L_i^2 \geq \frac{s^2}{s^2+s+1}$, then the last job j_{i+1} has a processing time $p(j_{i+1}) = s$. Then $OPT(j_{t+1}) = 1$. The completion time of any online algorithm is

$$\min \left\{ \frac{L_i^1 + s}{s}, \frac{L_i^2 + s}{s} + \frac{L_i^1}{s} \right\} \geq K\epsilon \geq \min \left\{ 1 + \frac{L_i^2}{s}, \frac{L_i^1 + L_i^2}{s} \right\} \geq \frac{1}{1+\epsilon(s+1)} - K\epsilon.$$

In this case, ϵ approaches to zero, the competitive ratio approaches to $\frac{s^2}{s^2+s+1}$.

Else if $L_i^2 < \frac{s^2}{s^2+s+1}$, then $L_i^1 \geq \frac{1}{s^2+s+1}$. Next two jobs j_{i+1} and j_{i+2} with $p(j_{i+1}) = \frac{s^2}{s^2+s+1}L_i^1$ and $p(j_{i+2}) = s \times p(j_{i+1}) - 1$ arrive and we are informed that job j_{i+2} is the last job. Note that $p(j_{i+2}) \geq p(j_{i+1})$. The optimal value $OPT(j_{t+2})$ is equal to $p(j_{i+1}) = \frac{s^2}{s^2+s+1}L_i^1$ by the following assignment: $j_{i+1} \rightarrow M_1$ and $j_{i+2} \setminus \{j_{i+1}\} \rightarrow M_2$. If j_{i+1} or j_{i+2} is assigned on M_1 then the completion time is at least

$$L_i^1 + p(j_{i+1}) - K\epsilon = \frac{s^2}{s^2+s+1} = \frac{s^2}{s - 1} - K\epsilon.$$
Else both j_{t+1} and j_{t+2} are assigned on M_2, then
\[
L^2_{t+2} \geq 1 - L^1_t + p(j_{t+1}) + p(j_{t+2}) - K\epsilon = \left((s + 1) \frac{s^2 - s + 1}{s - 1} - 1 \right) L^1_t - K\epsilon
\]
\[
= \frac{s^3 - s + 2}{s - 1} L^1_t - K\epsilon \geq \frac{s^3}{s - 1} L^1_t - K\epsilon \quad \text{(by } s \leq 2)\).
\]

The completion time $L^2_{t+2}/s \geq \frac{s^2}{s-1} L^1_t - K\epsilon$. In both cases, the competitive ratio approaches to $f_1(s) = \frac{s^2}{s^2-1}$ when ϵ approaches to zero.

Case 3: $s > 2$, assume $L^2_t \geq \frac{s^2}{s-1} L^1_t$, then job j_{t+1} with $p(j_{t+1}) = s$ arrives and it is the last job. Then $OPT(j_{t+1}) = 1$. The completion time of any online algorithm is
\[
\min \left\{ L^1_t + s, \frac{L^2_t + s}{s} \right\} - K\epsilon \geq \min \left\{ \frac{s+2}{s+1} \right\} - K\epsilon = \frac{s+2}{s+1} - K\epsilon \quad \text{(by } s > 2)\).
\]

In this case, when ϵ approaches to zero, the competitive ratio approaches to $\frac{s+2}{s+1}$.

Else if $L^2_t < \frac{s^2}{s-1}$, then $L^1_t \geq \frac{s}{s-1}$. Next two jobs j_{t+1} and j_{t+2} with $p(j_{t+1}) = (s + 1)L^1_t$ and $p(j_{t+2}) = s \times p(j_{t+1}) - 1$ arrive and the input ends. Note that $p(j_{t+2}) > p(j_{t+1})$ for $s > 2$. The optimal value $OPT(j_{t+2}) = (s + 1)L^1_t$ by the following assignment: $j_{t+1} \rightarrow M_1$ and $j_{t+2} \setminus \{j_{t+1}\} \rightarrow M_2$. If j_{t+1} or j_{t+2} is assigned on M_1, then the completion time is at least
\[
L^1_t + p(j_{t+1}) - K\epsilon = (s+2)L^1_t - K\epsilon.
\]

Else both j_{t+1} and j_{t+2} are assigned to M_2, then
\[
L^2_{t+2} \geq 1 - L^1_t + p(j_{t+1}) + p(j_{t+2}) - K\epsilon = s(s+2) L^1_t - K\epsilon.
\]

The completion time $L^2_{t+2}/s \geq (s+2)L^1_t - K\epsilon$. In both cases, the competitive ratio approaches to $\frac{s+2}{s+1}$ when ϵ approaches to zero.

4. Upper bounds

In this section, we give two optimal online algorithms for $s \leq 2$ and $s \geq 2$ respectively. In the optimal algorithm for $s \geq 2$, we allow to reassign only one job, i.e., $K = 1$. In the optimal algorithm for $s \leq 2$, we allow to reassign at most two jobs, i.e., $K = 2$. We first give some definitions and some useful observations.

Let $\theta_t = \max \left\{ \frac{s}{s+1}, \frac{P_t}{s+1} \right\}$, which is a natural lower bound for the problem, where l_t denotes the size of the longest job so far (among the first t jobs) and P_t denotes the total size so far. If $\theta_t = \frac{s}{s+1}$ we say that the lower bound is determined by the longest size (so far), otherwise we say that the lower bound is determined by the total size (so far).

Observation 1. $P_t \leq (s+1) \theta_t$.

Given a function $\rho(s) > 1$, consider a schedule just after assigning job j_t, if $L^1_t > \rho(s) \theta_t$ then we say that M_1 is overloaded else underloaded; if $L^2_t > s \rho(s) \theta_t$ then we say that M_2 is overloaded, else underloaded. If both machines are underloaded at time t, we say the schedule is underloaded. Note that both machines cannot be overloaded at the same time. Also note that in case the schedule is underloaded, then naturally the competitive ratio is not violated (at least at the current point of the running). But in the opposite case, if the schedule is overloaded, then the competitive ratio still can be valid, if the optimum value is bigger than the lower bound.

Lemma 2. If M_1 is overloaded then $L_1 > \frac{s \rho(s)}{s+1-\rho(s)} L_2$ and if M_2 is overloaded then $L_2 > \frac{s \rho(s)}{s+1-\rho(s)} L_1$.

Proof. If M_1 is overloaded then $L_1 > \rho(s) \theta_t$, then using **Observation 1**, we have $L_2 \leq (s+1) \theta_t - L_1 \leq (s+1 - \rho(s)) \theta_t$. Hence $L_1 > \frac{s \rho(s)}{s+1-\rho(s)} L_2$. If M_2 is overloaded then $L_2 > s \rho(s) \theta_t$ and $L_1 \leq (s+1) \theta_t - L_2 \leq (s+1 - s \rho(s)) \theta_t$. Hence $L_2 > \frac{s \rho(s)}{s+1-\rho(s)} L_1$. □
4.1. An optimal algorithm for \(s \geq 2 \)

We give an online algorithm with a competitive ratio \(\rho(s) = \frac{s+2}{s+1} \) for all \(s \geq 1 \) which algorithm uses only one arrangement, i.e., \(K = 1 \), and which is optimal for all \(s \geq 2 \). The ideas are as follows: before the input ends, we keep the slow machine underloaded all the time; when the input ends, if necessary, we find an appreciate job in \(M_2 \) and migrate it to \(M_1 \).

\[
\begin{array}{|l|}
\hline
\text{Algorithm LC (Largest Change)} \\
\hline
1. Let \(t \) with size \(p \) be the incoming job. Then update the lower bound \(\theta \).
2. Assign \(j \) to \(M_1 \), if \(L_1 + p \leq \rho(s) \theta \), else \(j \rightarrow M_2 \).
3. If the input does not end, goto Step 1.
4. Else if \(M_2 \) is overloaded then migrate a job from \(M_2 \) to \(M_1 \) such that the final makespan decreases as much as possible by the migration, (if there exists such job).
\hline
\end{array}
\]

Theorem 3. Algorithm LC is \(\rho = \frac{s+2}{s+1} \)-competitive for any \(s \geq 1 \).

Proof. Let \(\rho = \frac{s+2}{s+1} \). Let \(L_1 \) be the load on \(M_1 \) when the input ends for \(1 \leq i \leq 2 \) before the migration. Let \(L'_1 \) be the load on \(M_1 \) after the migration for \(1 \leq i \leq 2 \). It is trivial to see if \(\max(L'_1, L'_2/\rho) \leq \theta \), this lemma holds. On the other hand, according to the algorithm, if \(L_2 \leq sp\theta \) then \(\max(L'_1, L'_2/\rho) \leq \theta \). Hence we consider the case: \(\max(L'_1, L'_2/\rho) > \theta \). In this case, before the migration \(M_2 \) is overloaded. Assume

\[
L_2 = sp\theta + x
\]

with some \(x > 0 \). Then

\[
L_1 \leq (s + 1)\theta - L_2 = \left(s + 1 - \frac{s(s + 2)}{s + 1} \right) \theta - x = \frac{\theta}{s + 1} - x.
\]

Then we have two lemmas.

Lemma 4. If \(\max(L'_1, L'_2/\rho) > \theta \) then there is no job of size in \([x, x + \theta]\) on \(M_2 \) just before the migration.

Proof. Assume there is a job \(j \) with size \(p \in [x, x + \theta] \). Then from (1) we get \(L'_2 = L_2 - p \leq sp\theta \) and \(L'_1 = L_1 + p \leq \theta + \theta = \frac{s+2}{s+1} \theta = \theta \), which contradicts to the fact \(\max(L'_1, L'_2/\rho) > \theta \). Hence this lemma holds. \(\Box \)

Lemma 5. If \(\max(L'_1, L'_2/\rho) > \theta \) then just before the migration the total size of all the jobs with size in \((0, x)\) on \(M_2 \) is less than \(\frac{s+2}{s+1} \theta - \frac{\theta}{s+1} + x \).

Proof. Let \(X \) be the total size of all the jobs with size in \((0, x)\) on \(M_2 \). Assume this lemma does not hold, i.e. \(X > \frac{s+1}{s+1} \theta - \frac{\theta}{s+1} + x \). Let \(t \) be the time when the input ends. Let \(j_r \) with a size \(p \in (0, x) \) be the last job assigned on \(M_2 \), i.e., job \(j_r \) arrived at time \(1 \leq r \leq t \). Since \(X > 0 \), \(j_r \) is well-defined, i.e. there exists such job. According to the algorithm, if job \(j_r \) is assigned on \(M_1 \), then \(M_1 \) would be overloaded. So we have

\[
L_{r-1} + p > \rho \theta_r \geq \rho \frac{p}{s + 1} \geq \rho \frac{X + L_{r-1}}{s + 1}.
\]

Since \(L_{r-1} \leq L^1 \leq \frac{\theta}{s+1} - x \) by (2) and \(p < x \), we have

\[
X < (L_{r-1} + p) \frac{s + 1}{\rho} - L_{r-1} = \left(\frac{s + 1}{\rho} \theta - 1 \right) \frac{s + 1}{\rho} p
\]

\[
\leq \left(\frac{s + 1}{\rho} \theta - 1 \right) \left(\frac{\theta}{s + 1} - x \right) + \frac{s + 1}{\rho} x
\]

\[
= \left(\frac{s + 1}{s + 2} - 1 \right) \frac{\theta}{s + 1} + x = \frac{s + 1}{s + 2} \theta - \frac{\theta}{s + 1} + x,
\]

which causes a contradiction. The assumption is not true and this lemma holds. \(\Box \)

By (1), Lemmas 4 and 5, the total size of all the jobs with size larger than \(\theta + x \) is larger than

\[
sp\theta + x - \left(\frac{s + 1}{s + 2} \theta - \frac{\theta}{s + 1} + x \right) = \frac{s(s + 2)}{s + 1} \theta - \frac{s + 1}{s + 2} \theta + \frac{\theta}{s + 1}
\]

\[
= \left(\frac{s(s + 2) + 1}{s + 1} - 1 \right) \theta + \frac{1}{s + 2} \theta
\]

\[
= s \theta + \frac{\theta}{s + 2}.
\]
Observe that in an optimal schedule at least one job of size greater than \(\theta + x \) is assigned on \(M_1 \) or all the jobs with size greater than \(\theta + x \) are on \(M_2 \), hence we have

\[
OPT \geq \min \left\{ \theta + x, \frac{s \theta + \frac{\theta}{s+2}}{s} \right\} = \theta + \min \left\{ x, \frac{\theta}{s(s+2)} \right\}.
\] (4)

If \(OPT \geq \theta + \frac{\theta}{s(s+2)} \), then since \(\theta \geq P/(s+1) \), we have

\[
\max[L'_1, L'_2/s] \leq \frac{L_2}{s} \leq \frac{P}{s} \leq \frac{(s+1)}{s} \theta = \frac{s+2}{s+1} \cdot \frac{(s+1)}{s} (s+1) \theta \leq \rho OPT.
\]

Else \(OPT \geq \theta + x \), then by (1) and since \(\rho > 1 \), we have

\[
\max[L'_1, L'_2/s] \leq \frac{L_2}{s} = \frac{s \rho \theta + x}{s} = \rho \theta + \frac{x}{s} \leq \rho (\theta + x) \leq \rho OPT.
\]

Hence this theorem holds. \(\square \)

4.2. An optimal algorithm for \(1 \leq s \leq 2 \)

We propose an algorithm which rearranges at most two jobs at the end, and it is \(\rho(s) \)-competitive, refer to the following table. The competitive ratio matches the lower bound of the problem, thus the algorithm is optimal. We need two technical ratios \(b(s) \) and \(c(s) \), which are defined in the following table. We first give some lemmas which will be useful in analyzing our algorithm, then propose and analyze the algorithm.

<table>
<thead>
<tr>
<th>s</th>
<th>(\rho(s))</th>
<th>(b(s))</th>
<th>(c(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1) := (1 \leq s < \frac{1+\sqrt{2}}{2})</td>
<td>(\frac{(s+1)^2}{s^2+s+1})</td>
<td>(\frac{s^2+1}{s^2+s+1})</td>
<td>(\frac{s+1}{s})</td>
</tr>
<tr>
<td>(I_2) := (\frac{1+\sqrt{2}}{2} \leq s \leq 2)</td>
<td>(\frac{(s+1)^2}{s^2-s+1})</td>
<td>(\frac{s^2-2s+3}{s^2-s+1})</td>
<td>(\frac{s^3}{s+1})</td>
</tr>
</tbody>
</table>

We call a job big, if its size is bigger than \(b(s) \cdot \theta \) else call it small. Note that at any point of the execution, it is well defined whether a job is big or small. If a job is small at some time, it never becomes big. But a big job can become small at some time later, since the value of lower bound can increase.

The next Observation 2 can be checked easily for both cases regarding \(s \in I_1 \) or \(s \in I_2 \).

Observation 2. For \(1 \leq s \leq 2 \), we have \(b(s) = (\rho(s) - 1)(s+1) > \frac{1}{4}(s+1) \).

Lemma 6. Any time, the number of big jobs is at three.

Proof. It follows from that the total size of all jobs is \(P \leq (s+1) \theta \), while the total size of four big jobs would be more than \(4b(s) \theta > (s+1) \theta \) by Observation 2. \(\square \)

Observation 3. For \(1 \leq s \leq 2 \), we have \(\rho(s) \leq \frac{s+1}{s} = (1 + c(s))b(s) \).

To make easy checking the validity of the next observations we give here a table about the used expressions. Then the observations can be checked easily by some simple calculations.

<table>
<thead>
<tr>
<th>s</th>
<th>(\rho(s))</th>
<th>((s+1)(3-2\rho(s)))</th>
<th>(\frac{2-\rho(s)}{\rho(s)-1})</th>
<th>(\frac{4\rho(s)}{s+1-2\rho(s)})</th>
<th>(\frac{1}{c(s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>(\frac{(s+1)^2}{s^2+s+1})</td>
<td>(\frac{(s+1)(s^3-s+1)}{s^2+s+1})</td>
<td>(\frac{s^2+1}{s})</td>
<td>(s(s+1))</td>
<td>(\frac{s^2}{s+1})</td>
</tr>
<tr>
<td>(I_2)</td>
<td>(\frac{s^2}{s^2-s+1})</td>
<td>(\frac{s^2-2s+3}{s^2-s+1})</td>
<td>(\frac{s^2-2s+2}{s^2-s})</td>
<td>(s^3)</td>
<td>(s^2-s)</td>
</tr>
</tbody>
</table>

Observation 4. For \(s \in I_1, \frac{1+\sqrt{2}}{2} \), we have \(2\rho \geq (s+1), c(s) - 1 = \frac{2s-s-1}{1+s-s} > 0 \).

Observation 5. For \(1 \leq s \leq 2 \), we have \((s+1)(3-2\rho(s)) \leq \rho(s) \).

Proof. For \(s \in I_2 \), the solutions of equation \(s^2 = s^3 - 2s^2 + 3 \) are approximately as follows \(s = -0.87939, s = 1.3473 \) and \(s = 2.5321 \), thus \(s^2 \geq s^3 - 2s^2 + 3 \) holds if \(s \in I_2 \). \(\square \)

Observation 6. For \(1 \leq s \leq 2 \), we have \(\frac{2-\rho(s)}{\rho(s)-1} \leq \frac{4\rho(s)}{s+1-2\rho(s)} \).

Proof. For \(s \in I_2 \), to check \(s^2+2s+2 \leq s^3 \), one needs to validate \(s^2 + 2s + 2 \leq s^4 - s^3 \), i.e. \(s^4 - s^3 - s^2 + 2s - 2 = (s^2-s+1)(s^2-2) \geq 0 \) which holds in the considered interval \(s \in I_2 \). \(\square \)

Observation 7. For \(1 \leq s \leq 2 \), we have \(\frac{4\rho(s)}{s+1-2\rho(s)} > \frac{1}{c(s)} \).
The following table is for the next observations.

<table>
<thead>
<tr>
<th>s</th>
<th>$\rho(s)$</th>
<th>$\frac{1+\rho(s)}{1+\rho(s)}$</th>
<th>$\frac{\rho(s)}{s+1+\rho(s)}$</th>
<th>$\frac{sp(s)}{s+1+\rho(s)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>$\frac{(s+1)^2}{2^s+1}$</td>
<td>$\frac{s^2+1}{2^s+1}$</td>
<td>$\frac{s+1}{2^s+1}$</td>
<td>$\frac{s^4}{2^s+1}$</td>
</tr>
<tr>
<td>I_2</td>
<td>$\frac{s^2-s+1}{2^{s-1}+1}$</td>
<td>$\frac{s^2-s+1}{2^{s-1}+1}$</td>
<td>$\frac{s^2-s+1}{2^{s-1}+1}$</td>
<td>$\frac{s^4}{2^{s-1}+1}$</td>
</tr>
</tbody>
</table>

Observation 8. For $s \in [\frac{1+\sqrt{5}}{2}, 2]$, we have $\frac{c(s)}{1+c(s)} = \frac{1}{2^s+1}$.

Observation 9. For $1 \leq s \leq 2$, we have $\rho(s) + \frac{1+\rho(s)}{1+\rho(s)} \geq (1 + s)$, or in equivalent form $c(s) \leq \frac{\rho(s)}{s+1+\rho(s)}$.

Observation 10. For $1 \leq s \leq 2$, we have $\frac{s\rho(s)}{s+1+\rho(s)} \geq \frac{1+s}{s}$.

Proof. To check $\frac{s^4}{2^s+1} \geq \frac{1+s}{s}$ we need to see that $s^4 \geq (s+1)\left((s^3-s+1) = s^4-s^2+s+1\right)$ holds, which is the same as $s^2 \geq s+1$ which holds if $s \in I_2$. \(\square\)

Observation 11. For $1 \leq s \leq 2$, we have $2b(s) \geq c(s)(s+1-2b(s))$.

Lemma 7. Assume M_i is overloaded, for $i = 1, 2$. If M_i is overloaded after a job migrates from M_i to M_j, where $j = 3-i$, then the job must be a big job.

Proof. Note that the total size of processing times is at most $(s+1)\theta$. We have $L_1 > \rho(s)\theta$ if M_1 is overloaded, and $L_2 > sp(s)\theta$ if M_2 is overloaded. Let j be the job migrated from an overloaded M_i to M_j, where $j = 3-i$. After migration, M_j becomes overloaded. Then the size of job j must be bigger than $\rho(s)\theta + sp(s)\theta = (s+1)(\rho(s)-1)\theta = b(s)\theta$, where the last inequality holds from Observation 2. Hence job j is big. \(\square\)

Lemma 8. Suppose that a big job is assigned on M_2 (among other jobs or alone). Then M_2 cannot be overloaded.

Proof. If a big job is assigned to the slow machine, then $L_1 > b(s)\theta$. We have $L_2 \leq (s+1)\theta - L_1 < (s+1-b(s))\theta$, by Observations 2 and 6,

$$L_2/L_1 \leq \frac{s+1-b(s)}{b(s)} = \frac{2 - \rho(s)}{\rho(s)-1} \leq \frac{s\rho(s)}{s+1-s\rho(s)}.$$

Thus M_2 cannot be overloaded by Lemma 2. \(\square\)

4.2.1. An online algorithm and its analysis

In our algorithm, there are two phases, the scheduling phase and the reassignment phase. In the scheduling phase, we try to keep the next two properties through the whole execution, which also gives us a help in the reassignment phase. Let L_2 denote the total load of the slow machines assigned on M_2, without taking into account the big jobs, we call it as the restricted load.

P1: there are two small jobs on M_2 with size p' and p'' such that $(L_1 + p' + p'') \geq c(s)(L_2 + p' - p'')$, where p' and p'' can be zero. It means that after moving at most two small jobs from M_2 to M_1, in the modified schedule $L_1 \geq c(s) \cdot L_2$ holds.

P2: $(L_1 - p) \leq c(s) \cdot (L_2 + p)$, where p is the size of the last job assigned on M_1 ($p = 0$ if there is no job assigned on M_1).

<table>
<thead>
<tr>
<th>Scheduling phase of algorithm SMF (slow machine first)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Let job j with size p be the incoming job. Then update the lower bound θ and also L_2 since some big jobs may become small.</td>
</tr>
<tr>
<td>2. Job j is big: if $(L_1 + p) \leq \rho(s) \cdot \theta$ then $j \rightarrow M_1$; otherwise $j \rightarrow M_2$.</td>
</tr>
<tr>
<td>3. Job j is small: if $L_1 \leq c(s) \cdot L_2$ then assign job j to M_1 otherwise to M_2.</td>
</tr>
<tr>
<td>4. Update L_1, L_2, and L_2. If the input ends, goto the reassignment phase, else goto Step 1.</td>
</tr>
</tbody>
</table>

Lemma 9. If there are three big jobs in the input, at least one of the three jobs is assigned on M_1.

Proof. Let j_1, j_2, j_3 be the three big jobs, which have size larger than $b(s)\rho$. If one of the three jobs is assigned on M_1, then we are done. Without loss of generality, assume jobs j_1 and j_2 are assigned on M_2 and job j_3 arrives later than the two other jobs. We prove that job j_3 must be assigned to M_1 at Step 2 of the scheduling phase. According to the definition of the big job, after j_1 arrives, $L_2 \geq p(j_1) + p(j_2) > 2b(s)\theta$. If job j_3 is assigned on M_1, $L_1 < (s+1)\theta - 2b(s)\theta = (s+1)\theta - 2(s+1)(\rho(s)-1)\theta = (s+1)(3-2p(s)\theta) \leq \rho(s)\theta$ by Observations 2 and 5. \(\square\)

Lemma 10. For $1 \leq s \leq 2$, if properties P1 and P2 keep holding during the whole execution of the schedule phase, SMF is $\rho(s)$-competitive after the reassignment phase.

Proof. Suppose that the statement does not hold. Since machines M_1 and M_2 cannot be overloaded at the same time, we have the following two cases.
Reassignment phase of algorithm SMF (slow machine first)

1. If \(M_1 \) is overloaded then move the last job from \(M_1 \) to \(M_2 \).
2. Else if \(M_2 \) is overloaded then \{there are at most two big jobs on \(M_2 \}\}
 (a) If there exists a job \(j \) such that migrating \(j \) from \(M_2 \) to \(M_1 \) both machines are underloaded, then
 migrate job \(j \) from \(M_2 \) to \(M_1 \).
 (b) Else
 i. if there is at most one big job on \(M_2 \), then move two small jobs from \(M_2 \) to \(M_1 \) to ensure
 \(L_1 \geq c(s) \cdot l_2 \) in the modified schedule,
 ii. else if there are two big jobs on \(M_2 \),
 A. if \(L_1 > c(s) \cdot l_2 \), then move the last small job from \(M_1 \) to \(M_2 \) \{to ensure \(L_1 \leq c(s) \cdot l_2 \}.
 and
 B. move the smaller big job from \(M_2 \) to \(M_1 \).

Case A: \(M_1 \) is overloaded at the end of the scheduling phase. Let \(t \) be the current time. In this case we perform Step 1 of the reassignment phase. We prove that after the reassignment, both machines are underloaded. Let \(j_k \) be the last job assigned in the scheduling phase to \(M_1 \), where \(k \leq t \). If \(j_k \) was assigned on \(M_1 \) as a big job, then \(M_1 \) cannot be overloaded by the algorithm. Hence job \(j_k \) was assigned on \(M_1 \) as a small job. In the reassignment step, job \(j_k \) is migrated from \(M_1 \) to \(M_2 \). After the migration, if \(M_2 \) is overloaded then job \(j_k \) would have been big by Lemma 7, which contradicts the fact that job \(j_k \) is small. Hence after the reassignment, \(M_2 \) is still underloaded. Assume \(M_1 \) is still overloaded after the reassignment. Then

\[
L_{k-1}^1 > \rho(s) \theta_1.
\]

Note that job \(j_k \) was assigned on \(M_1 \) at Step 3 in the scheduling phase. Thus \(L_{k-1}^1 \geq \rho(s) \theta_1 + \frac{\rho(s) \theta_k}{c(s)} = \rho(s) (1 + \frac{1}{c(s)}) \theta_1 \geq (1 + s) \theta_1 \geq P,
\]

where we used Observation 9. Thus, the assumption that \(M_1 \) is overloaded does not hold, i.e., both machines are underloaded after the reassignment step in this case.

Case B: \(M_2 \) is overloaded at the end of the scheduling phase. By Lemma 8, there is no big job on \(M_1 \) after the scheduling phase. Let \(n_b \) be the number of big jobs on the input. By Lemma 6 we have \(n_b \leq 3 \). Since \(M_2 \) is overloaded, by Lemmas 8 and 9, all the big jobs are on \(M_2 \), thus \(n_b \leq 2 \). If the execution passes through Step 2(a) of the reassignment phase, then both machines are underloaded. Next we consider the case where the execution passes through Step 2(b) of the reassignment phase, there are the following three subcases.

Subcase 1: \(n_b = 0 \). By property P1 we can reassign two small jobs from \(M_2 \) to \(M_1 \) to make sure that \(L_1 \geq c(s) l_2 \). We claim that after the migration \(M_1 \) is underloaded. By Lemma 7, after migrating the first small job from \(M_2 \) to \(M_1 \), \(M_1 \) is still underloaded. Since the execution does not stop at Step 2(a) in the reassignment, after migrating the first small item \(M_2 \) is still overloaded. Again by Lemma 7, after the second migration \(M_1 \) is still underloaded. Moreover after the moving \(L_1 \geq l_2 c(s) \) holds by the guarantee of property P1. Since there is no big job, this is the same as \(\frac{L_1}{c(s)} \leq \frac{1}{c(s)} \). If this schedule would be \(M_2 \) overloaded, then \(L_2/L_1 > \frac{s \rho(s)}{s + 1 - s \rho(s)} \) by Lemma 2. However by Observation 7, \(\frac{s \rho(s)}{s + 1 - s \rho(s)} \geq \frac{1}{c(s)} \), which causes a contradiction. Hence after the reassignment \(M_2 \) is underloaded.

Subcase 2: \(n_b = 1 \). We reassign two small jobs from \(M_2 \) to \(M_1 \) to make sure that \(L_1 \geq c(s) l_2 \) by property P1. By the above argument, after the migration \(M_1 \) is underloaded. Suppose that the schedule is \(M_2 \)-overloaded after the migration. We have \(L_2 > s \rho(s) \theta \). Since the size of the big job is at most \(s \theta \), we have

\[
l_2 > s \rho(s) \theta - s \theta = (\rho - 1) s \theta, \quad \text{and} \quad L_1 \geq c(s) l_2 > c(s)(\rho - 1) s \theta.
\]

Then by Observation 9 the total size is

\[
L_1 + L_2 > c(s)(\rho - 1) s \theta + s \rho \theta = (c(s)(\rho - 1) + \rho) s \theta \\
\leq \left(\frac{\rho(\rho - 1)}{1 + s - \rho + \rho} \right) s \theta = s \theta \frac{s \rho}{1 + s - \rho} \geq (s + 1) \theta,
\]

where the last inequality holds from Observation 10, i.e. which causes contradiction. Hence \(M_2 \) is underloaded after the reassignment.

Subcase 3: \(n_b = 2 \). Let the two big jobs be \(j_i \) and \(j_j \), which are assigned on \(M_2 \), and both are bigger than \(b(s) \theta \). Assume job \(j_i \) is not larger than \(j_j \), i.e., \(p(j_i) \leq p(j_j) \). In this case, we reassign the last job \(j_k \) from \(M_1 \) to \(M_2 \) to get \(L_1 \leq c(s) l_2' \) by property P2, where \(l_2' \) is the load of \(M_1 \) just after the first migration and \(l_2' \) is the restricted load of \(M_2 \) just after the first migration, then reassign job \(j_k \) from \(M_2 \) to \(M_1 \).

After migrating job \(j_k \), on \(M_1 \), by Lemma 8 \(M_2 \) is underloaded. If \(M_1 \) is underloaded too, then we are done. Otherwise, assume that \(M_1 \) is overloaded. Next we prove this is not possible.
If M_1 is overloaded, then $L_1' + p(j_1) > \rho \theta$. Because the total size is $P \leq (s+1)\theta$, we have
\[
L_2' + p(j_2) < (s+1)\theta - L_1' - p(j_1) < (s+1)\theta - \rho \theta.
\] (5)

For $s \in [1, \frac{1+\sqrt{5}}{2})$, by Observation 4 we have
\[
\rho \theta < L_1' + p(j_2) \leq c(s)L_2' + p(j_2) = (c(s) - 1)L_2' + L_2' + p(j_2)
\[
< (s+1-\rho)\theta + c(s) - 1)
\[
\Rightarrow
\]
\[
(2\rho - s - 1)\theta < \frac{2\rho - s - 1}{1 + s - \rho}L_2',
\]
eso we have $L_2' > (s+1-\rho)\theta$, which contradicts with (5).

For $s \in [\frac{1+\sqrt{5}}{2}, 2)$, i.e., $s^2 > s + 1$, we are going to prove that after the rearrangement the load of M_1 is at most $\rho(s)OPT$, where OPT is the value by an optimal solution. In this case, an optimal algorithm schedules two big jobs together on one machine or separately on two machines, then we have a new lower bound, i.e.,
\[
OPT \geq \min \left\{ p(j_k), \frac{p(j_k) + p(j_y)}{s} \right\} = p(j_k).
\]

Since $L_1' < c(s)L_2'$, we have
\[
L_1' \leq \frac{L_1' + L_2'}{1 + c(s)} \leq \frac{(s+1)\theta - p(j_2) - p(j_y)}{1 + c(s)} \leq \frac{(s+1)\theta - 2p(j_2)}{1 + c(s)}
\]
\[
\leq \frac{s - 1}{s^2 - s + 1} \theta = \frac{(\rho - 1)\theta}{s^2 + s + 1} \leq (\rho(s) - 1)p(j_k)
\]
en then $L_1' + p(j_2) \leq \rho(s)p(j_2) \leq \rho(s)OPT$. Else $p(j_2) < \theta$ then
\[
L_1' + p(j_2) \leq \frac{(s+1)\theta - 2p(j_2)}{1 + s^2 - s} + p(j_2) = \frac{(s+1)\theta}{1 + s^2 - s} + \left(1 - \frac{2}{1 + s^2 - s} \right) p(j_2)
\]
\[
\leq \frac{(s+1)\theta}{1 + s^2 - s} + \frac{s^2 - s - 1}{1 + s^2 - s} p(j_2) \leq \frac{s - 1}{s^2 + s - 1} \theta = \rho(s)\theta.
\]

Hence M_1 is underloaded. □

Lemma 11. Properties P1 and P2 keep holding through the whole execution in the scheduling phase of the algorithm.

Proof. We use induction approach to prove this lemma. It is not difficult to see just after the first job of the sequence arrives, P1 and P2 hold. Assume properties P1 and P2 hold at time $t - 1$. Let job j_t be the next job, with size p.

Regarding property P2, if the current job j_t is assigned to M_2 by the algorithm, then property P2 still holds, since the restricted load of M_2, i.e., the value of L_2 can only increase. Thus consider the case j_t is assigned to M_1 next.

If j_t is assigned on M_1 as a big job, i.e., $p > b(s)\theta$, then M_1 is underloaded by the algorithm, i.e., $L_1 \leq \rho(s)\theta$, where θ is the lower bound at time t. This way have
\[
L_1 - p < (\rho(s) - b(s))\theta \leq c(s)b(s)\theta < c(s)p \leq c(s)(l_2 + p),
\]

since $\rho(s) - b(s) \leq c(s)b(s)$ holds by Observation 3. Else job j_t is assigned as a small job, i.e., it happens at Step 3 of scheduling phase. We have $L_1 - p \leq c(s)L_2 \leq c(s)(l_2 + p)$. Hence P2 holds at time t.

Let us consider the validity of property P1 at time t. (We suppose again that properties P1 and P2 hold at time $t - 1$.)

First we note that if the next job j_t is small and assigned to M_2 by the algorithm (in Step 3), then property P1 trivially holds, since reassigning only j_t to the slow machine, the inequality $L_1 + j_t \leq c(s)(l_2 - j_t)$ is satisfied by the algorithmic rule. Thus suppose in the following that j_t is big, or it is small and assigned to M_1.

Let S_t be the set of all the small jobs on M_2 at time t. (Thus $j_t \notin S_t$ follows by the previous note.) If $S_t = \emptyset$ then property P1 trivially holds without any rearrangement since $l_2 = 0$. Thus let us suppose that S_t is not empty. Let job $j_t \in S_t$ be that job which is assigned to M_2 at the latest time, where $r \leq t$, i.e., j_t is the last job what is ever assigned to M_2 and it is small at moment t. Then, since S_t is not empty, and $j_t \notin S_t$, follows that $r < t$. It means that all jobs which are assigned to M_2 after time r are big jobs when they come, and they remain big until time t. Since any time at any two big jobs can be assigned to M_2, at moment t there are at most two big jobs on M_2.

If there is no big job on M_2 at time r, then the value of L_2 cannot change until time t, that is, $L_2 = L_2'$. If there is one big job on M_2 at time r which becomes small until time t, let this job be denoted by j_t. Then $L_2' = L_2' + p(j_t)$ holds. Finally, if there are two big jobs on M_2 at time r which become small until time t, let these jobs be denoted by j_t and j_y, then $L_2' = L_2' + p(j_t) + p(j_y)$.
Furthermore, by the definition of job j_r, the inequality holds
\[
\ell^r_r \leq \ell^r_f,
\]
since all the jobs assigned on M_2 after time r are big at time t. Now we distinguish two cases.

Case 1. Job j_r was assigned on M_2 as a big job. This means that if j_r is assigned to M_1, then M_1 would become to be overloaded, i.e., $L^1_{r-1} + p(j_r) > \rho_1$. By Lemma 2 and Observation 9, we have
\[
\frac{L^1_{r-1} + p(j_r)}{L^2_{r-1}} > \frac{\rho}{s + 1 - \rho} \geq c(s).
\]
Since $L^2_r = L^2_{r-1} + p(j_r)$, by (6) we have
\[
L^1_r + p(j_r) \geq L^1_{r-1} + p(j_r) > c(s)L^2_{r-1} = c(s)(L^2_r - p(j_r)) \geq c(s)(\ell^r_r - p(j_r)).
\]

Case 2. Job j_r was assigned on M_2 as a small job. Then, as we have seen, there can be three cases, according to that how many big jobs are at moment r on the fast machine which jobs become to be small till moment t.

Case 2.1. If there is not such job, then $L^2_r = \ell^r_r$. Then property P1 holds trivially, since after time r the restricted load of the fast machine does not change, and the load of the slow machine can only increase, and at time r holds the next inequality, $L^1_r + p(j_r) > c(s)\ell^r_r$, since j_r is assigned to the fast machine. Thus by reassigning j_r to the slow machine at moment t property P1 holds.

Case 2.2. There is one big job on M_2, we denote it by j_s, which becomes to be small until time t. Then $L^2_r = \ell^r_r + p(j_s)$. Similarly to the previous case, by reassigning j_s and j_r to the slow machine, $L^1_r + p(j_s) + p(j_r) > c(s)(\ell^r_r - p(j_r) - p(j_s))$ holds.

Case 2.3. There are two jobs on M_2, j_s and j_y, which jobs become to be small until time t. Then $L^2_r = \ell^r_r + p(j_s) + p(j_y)$. Since jobs j_y and j_r was big at time r, $\min(p(j_y), p(j_y)) > b(s)\theta_r$. Hence
\[
\ell^r_r \leq (s + 1)\theta_r - p(j_y) - p(j_y) < (s + 1 - 2b(s))\theta_r, \quad \text{and}
\]
\[
2b(s)\theta_r < L^1_r + p(j_s) + p(j_y).
\]
By Observation 11, we have
\[
2b(s) \geq c(s)(s + 1 - 2b(s)).
\]
Thus we have
\[
L^1_r + p(j_s) + p(j_y) > c(s)(\ell^r_r - p(j_r) - p(j_s)).
\]
Hence this lemma holds. \(\Box\)

Remarks: in this paper we close the gap between the lower bound and upper bound for all cases except for $K = 1$ and $1 < s < 2$. So the open question is to close the gap for the case $K = 1$ and $1 < s < 2$.

Acknowledgements

The third author was partially supported by “Project TAMOP-4.2.2/B-10/1-2010-0025.” The last author was partially supported by “the Fundamental Research Funds for the Central Universities.”

References