
NOR'I~- HOLLAND 

Nonstandard Conjunctions 
and Implications in 

Fuzzy Logic 
Jfinos C. Fodor and Tibor Keresztfalvi 

E6tvJs Lor~nd University, Budapest, Hungary 

ABSTRACT 

We point out possible disadvantages of  considering exclusively t-norms and t-con- 
orms as proper models for conjunction and disjunction in fuzzy logic. We draw up a 
general framework for particular investigations, expressed by the so-called closure 
property. We suggest a constructive approach to the axiomatics of  generalized modus 
ponens (GMP). As a consequence, a system of functional equations is obtained. 
Idempotent as well as nonidempotent conjunctions fulfilling this system are studied. 
Three classes of  nonstandard conjunctions and implications are formulated so that all 
of  them satisfy the proposed axioms. 

KEYWORDS:  conjunctions; R- and S-implications; generalized modus po- 
nens. 

1. INTRODUCTION 

The proper  definition of connectives (conjunction, disjunction, negation, 
implication, etc.) is one of the most important problems in fuzzy logic. 
Nowadays it is needless to emphasize the dominance of t-norms, t-con- 
orms, strong negations, and related implications. Their  sound theoretical 
foundation as well as their wide variety have given them almost an 
exclusive role in different theoretical investigations and practical applica- 
tions. However, people are inclined to use them also as a matter of 
routine. The following examples support this statement and suggest the 
study of enlarged classes of operations for fuzzy sets and reasoning. 
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1. When one works with binary conjunctions and there is no need to 
extend them for three or more arguments, as happens e.g. in the 
inference pattern called generalized modus ponens (GMP for short), 
associativity of the conjunction is an unnecessarily restrictive condi- 
tion. The same is valid for the commutativity property if the two 
arguments have different semantical backgrounds and it makes no 
sense to interchange one with the other. 

2. In GMP, a number of intuitively desirable properties are not obtained 
using t-norms and implications defined by t-norms. For more details 
see Magrez and Smets [1]. 

3. Obviously, the properties of conjunctions, disjunctions, and negations 
have to be connected and to be in accordance with those of fuzzy 
implications. However, if one compares usual axioms for fuzzy impli- 
cations with properties of R- and S-implications defined by t-norms, 
t-conorms, and strong negations, then it can easily be observed that 
these two families have "much nicer" properties than would be 
axiomatically expected. For more details see Weber [2], Dubois and 
Prade [3], Fodor [4]. 

4. There is no way to define strict negations via t-norm-based residua- 
tion: the resulted negation is either degenerate or strong; see Remark 
4.2 and Theorem 4.3 in [2]. However, the so-called weak t-norms are 
appropriate conjunctions from this point of view: strict negations 
appear on using weak-t-norm-based residuation; see Fodor [5]. 

5. t-norm-based R- and S-implications are, in general, different. For 
continuous t-norms, these can coincide if and only if the underlying 
t-norm is isomorphic to the Lukasiewicz t-norm; see for instance 
Smets and Magrez [6]. Note that a new family of left-continuous 
t-norms has been found by Fodor [7] such that the corresponding R- 
and S-implications are the same. 

These observations, which are very often left out of consideration, have 
prompted us to revise definitions and properties of operations in fuzzy 
logic. A new unifying approach is suggested for the investigation of these 
connectives. It is supported by an important relationship between implica- 
tions and conjunctions expressed by Equation (4) below. 

The paper is organized as follows. After some necessary preliminaries 
we draw up the theoretical framework for further investigations. Starting 
from a binary conjunction, a sequence of conjunctions is introduced in a 
natural way. We want to exclude chaotic behavior of this sequence by 
requiring the existence of a member of this sequence which agrees with 
the starting conjunction. In other words, this sequence should be closed. 
This principle is expressed by a functional equation. Its solution is briefly 
recalled in Section 3. Generalized modus ponens is revisited in Section 4, 
by choosing a constructive way to investigate its properties. This leads us to 
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a system of functional equations for conjunctions and implications in 
GMP. Idempotent  solutions are studied first, which are useful also in 
dealing with redundancies in knowledge bases; see [3]. Then a particular 
class of noncommutative and nonassociative conjunctions and the corre- 
sponding class of implications is determined, providing appropriate models 
for connectives in GMP. Finally, some concluding remarks are presented. 

2. B A C K G R O U N D  A N D  T H E O R E T I C A L  F R A M E W O R K  

In this section we recall some definitions and results that are more or 
less known in the literature. Then a theoretical framework is outlined 
which seems to be appropriate for our further investigations. 

A funct ion n : [0, 1] --> [0, 1] is called a negation if it is nonincreasing and 
n(0) = 1, n(1) = 0. A negation n is called strict if n is continuous and 
decreasing. A strict negation n is called strong if n(n(x)) = x for every 
x ~ [0, 1]. 

A binary operation * on [0, 1] is called a fuzzy conjunction if it is an 
extension of the classical Boolean conjunction, i.e., 

x * y ~ [ O ,  1] forevery  x , y ~  [0,1] 

and 

0 . 0 = 0 . 1  = 1 . 0 = 0 ,  1 . 1  = 1. 

A canonical model of fuzzy conjunctions is the family of t-norms, i.e., 
functions T : [0, 1] × [0, 1] ~ [0, 1] which are commutative, associative, 
nondecreasing, and such that T(x, 1) = x for every x ~ [0, 1]. For more 
details see e.g. Weber  [2] and Schweizer and Sklar [8]. 

A binary operator  ~ on [0, 1] is a fuzzy implication if it is an extension 
of the Boolean implication, i.e., 

x ~ y ~ [ 0 , 1 ]  forevery  x , y ~ [ O ,  1] 

and 

0 - - - > 0 = 0 ~  1 =  1 ~  1 = 1, 1 ---> 0 = 0. 

Let q) be any binary operation on [0, 1]. The following transformations 
of (3 play a central role in this paper: 

xS°~(Q) y = n(xQn(y)) ,  (1) 

x ~ ( Q )  y = sup{z ~ [0 ,1] lx®z _< y),  (2) 

where n is a strong negation. 
Obviously, ~n ° ~n(Q) = q) for any binary operation G on [0, 1] (here o 

denotes composition). Moreover, ~ ( ~ )  is a fuzzy conjunction if ~ is a 
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fuzzy implication.  On  the o ther  hand,  if * is a fuzzy conjunction,  then  
S:~( * ) and ~ ' (  * ) are  fuzzy implications.  It  is clear  that  

I s ( x ,  y )  = x S:~ ( • ) y (S- implicat ion)  

is based  on the classical view of  implications,  while 

I n ( x ,  y )  = x ~ (  * ) y (R- impl icat ion)  

is based  on a res iduat ion concept ;  see e.g. Dubois  and Prade  [9] when  * is 
a t -norm,  and F o d o r  [4] when  * is an arbi t rary fuzzy conjunct ion in the 
above  wide sense. 

Suppose  * is a fuzzy conjunction.  T h e n  one  can define a sequence  of  
conjunct ions { * fl in the following way: 

• 0 : * '  

• j = ~ n  ° , ~ ( * j _ m  ),  j = 1 , 2 , 3  . . . . .  (3) 

In the sequel  we will consider  only those  conjunct ions * for  which the 
above sequence  { * j} is closed in the sense that  there  exists a m e m b e r  
• m ~ {* j} such that  

• m = *. (4) 

This p rope r ty  excludes undes i rable  (chaotic)  behav ior  of  { * j}, and it is the 
start ing point  in our  fur ther  investigations. 

3. CLOSURE THEOREMS 

All results of  this sect ion (with m o r e  details and proofs)  can be  found in 
F o d o r  [4, 5]. For tunate ly ,  it is sufficient to investigate the above p rob l em 
for  rn = 1 and m = 2, due to the following theorem.  

THEOREM 1 Let  { * j} be a sequence o f  conjunctions defined by (4). Then 
there exists *m ~ { *j} such that * m = * if  and only i f  either .1  = * or 

• 2 =  *. 

It  is clear  f rom the definit ion of  { * j} that  * 1 = * is equivalent  to 

2 ( * )  = ~ ( * ) ,  (5) 

while *2 = * means  that  

.~' o S:~ o ~ ( , )  = S:~( • ). (6) 

Moreover ,  (5) implies (6). The  si tuat ion descr ibed by Equa t ion  (6), which 
was invest igated by Dubo i s  and Prade  [9] in the case when  * is a t -norm 
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and by Fodor [4] in the general case, is illustrated in Figure 1. Complete 
characterizations of binary operations satisfying either Equation (5) or 
Equation (6) are given in the following theorem (for more details and 
proofs see [5]). 

THEOREM 2 A binary operation * on [0, 1] satisfies the equation 

(a) ~ (  * ) = S¢~( * ) if and only if 

x * z < y  ~ x * n ( y ) < n ( z )  Vx, y , z ~ [ O ,  1]; 

(b) ~ ' o ~  o ~ ' (*)  = S~,(*) if and only if 

x * z < y  ¢* z < x ~ ( * ) y  Vx, y , z ~ [ O ,  1]. 

It is worthwhile drawing up the corresponding results when * = T is a 
t-norm. 

COROLLARY 1 Let T be a t-norm (as a binary conjunction on [0, 1]). 

(a) T is continuous and satisfies Equation (5) if and only if there exists an 
automorphism q~ of the closed unit interval such that 

T ( x , y )  = q~-l(max{~0(x) + q~(y) - 1,0}) 

and 

n(x) = q~-l(1 - q~(x)); 

(b) T satisfies Equation (6) if and only if T is left-continuous in both 
places on (0, 1]. 

In other words, for continuous t-norms, t-norm-based R- and S-implica- 
tions coincide if and only if T is a ~transform of the Lukasiewicz t-norm. 

7~ 
* • In 

Figure 1. The second case. 
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No similar characterization is known when left-continuous t-norms are 
considered in (5). However, each of the following left-continuous t-norms 
(the nilpotent minimum family) satisfies (5). For more details on this 
family see Fodor [7]. 

Suppose q~ is an automorphism of the unit interval, and define a binary 
operation min,, 0 as follows. 

m in (x ,y )  = ( m i n ( x , y )  if ~o(x) + q~(y) > 1, 
~,0 0 if q~(x) + q~(y) < 1. (7) 

Let n be the strong negation generated by q~: 

n(x )=~o- l (1 -~o(x ) )  for all x ~ [0,1]. 

Then one can easily obtain the following formulas: 

) (1 i fx<__y,  
x~(~min~,o y =  max(n(x) ,y)  if x > y  

and 

) (1 if x_~y, 
x~(min~  ~,0 y = max(n(x),y) if x > y .  

That is, Equation (5) is satisfied by * = min~, 0. 
Another class of conjunctions, for which (5) also holds, will be character- 

ized in Section 5. This class of conjunctions satisfies some properties which 
makes it suitable for using in approximate reasoning, especially in the 
generalized modus ponens. 

4. GENERALIZED MODUS PONENS 

The generalized modus ponens (GMP), an inference pattern with fuzzy 
predicates, is given as follows: 

Rule if S 1 has property A then S 2 has property B 

Fact S 1 has property A' (8) 

S 2 has property B' 

where A, A' and B, B' are fuzzy sets of the universes X and Y respec- 
tively, i.e., A, A' e~ r (X)  and B, B' ~ ( Y ) .  We emphasize that these 
fuzzy sets are not necessarily normalized. 

B' is calculated as 

B'(y) = supM(A'(x),  I A _. B(X, y)), (9) 
X 
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where M is a fuzzy conjunction and I A _, B is a fuzzy binary relation 
(usually an implication) on X × Y. 

In general, GMP is expected to meet a number of intuitively desirable 
requirements. Most papers on GMP investigate this problem by first 
choosing particular classes of conjunctions (e.g. t-norms) and implications 
(e.g. S- or R-implications based on t-norms) and then testing whether the 
different requirements are fulfilled. There are lots of possible choices, but 
still no "best" one; see [1]. 

Opposed to these approaches, we choose a constructive way to investi- 
gate properties of GMP. First we fix only a few basic requirements to be 
fulfilled, in our opinion, by GMP. Then we state, in the form of axioms, 
some reasonable properties of conjunction and implication operators. This 
leads to a system of functional equations for M and I A _, 8. Then further 
properties of GMP are verified as consequences, though they usually 
appear as requirements in the rich literature on GMP (see e.g. the 
references in [1]). Finally, we show several classes of both idempotent and 
nonidempotent particular solutions for M and I A _, B" 

Notice that a different approach, a new model of fuzzy modus ponens, 
was established also in [1] in order to satisfy all the intuitively required 
properties. Instead, we keep GMP unchanged while conjunctions and 
implications are used in a broad sense. 

In the literature it is generally required that 
R1. i f A ' = A t h e n  B ' = B ( A , B  ~0) ;  
R2. if Supp A' n SuppA = Q then B' - 1 (A, B ~ 0); 
R3. B'(y) is nondecreasing with respect to A'(x) and B(y) and nonin- 

creasing with respect to A(x)  (monotonicity); 
R4. if A' = 0 then B' = 0. 

R1 reflects the coincidence of (9) with classical modus ponens. R2 forces 
the GMP to infer unknown when the fact A' has nothing to do with the 
antecedent A. R3 is clear, and R4 is also obvious: if nothing is observed, 
then nothing is inferred. 

We want to find at least one pair (M, I)  such that R1-R4 are satisfied 
by using (9). 

4.1 Axioms 

First we assume that I A ~ B is defined pointwise, that is, 
A1. I A__,B(x,y) depends only on A(x)  and B(y), i.e. IA_~ B ( x , y ) =  

J(A(x),  B(y)), and so (9) turns into 

B ' (y )  = supM(A' (x) ,  J ( A ( x ) ,  B(y)) ) .  (10) 
X 
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A2. J is nonincreasing with respect to its first argument and nondecreas- 
ing with respect to its second argument [briefly, J( ",~ , /~)]; 

A3. J(O, v) = 1 Vv e [0, 1]; 
A4. J(1, v) _< v Vv ~ [0, 1]. 
A& M is nondecreasing with respect to both arguments [briefly, 

M(/~ , ~)]; 
A6. M(0, v) = 0 Vv ~ [0,1); 
A7. M(u, v) <_ v Vu, v ~ [0, 1]. 

Obviously, these axioms are fulfilled when M = T is a t-norm and J is 
either an R-implication or an S-implication based on T. 

4.2 Conditions on M and J Implied by the Crisp Case 

Obviously, the GMP should satisfy properties R1-R4 also when 
A, A', B, B' are crisp sets, so we obtain from (10) on the basis of R1, R2, 
and R3 that 

max{m(0, J(0, 1)), m(1,  J(1, 1))} = 1, (11) 

max{M(0, J(0, 0)), m(1,  J(1,0))} = 0, (12) 

max{m(0, J(m, v)), m(1,  J(0, v))} = 1 (v ~ {0, 1}). (13) 

After simple calculations we finally get from the above equations and from 
R3 and R4 the following system of equations for any u, v ~ ]0, 1]: 

m(o,  J(u,  v)) = O, 

M(1, J(0, v)) = 1, 

M(u,  J(1,0))  = 0, 

m(1 ,  J(u,  1)) = 1. (14) 

Replacing A, A', and B by fuzzy singletons (fuzzy points) of height u 
and v respectively, we have from R1 for any u, v e [0, 1] the following 
equation: 

M(u,  J(u,  v)) = v. (15) 

Note that this last equation cannot be satisfied by using a t-norm T and R- 
or S-implication based on T. Indeed, if x, y e [0, 1] and x < y, then 

T(x ,  Iv(x ,  y))  = x < y, 

where IF(x, y) = sup{zlT(x, z) < y} is the R-implication defined by T. On 
the other hand, if x < y = 1 and J(x, y) = n(T(x,  n(y))) is the S-implica- 
tion defined by T, then we have 

T(x ,  J(x ,  y))  = T(x ,  J(x ,  1)) = T(x ,  1) = x < y = 1. 
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Therefore, we have to find solutions of (15) outside the class of t-norms 
and corresponding R- or S-implications. 

By using our axioms A1-A7, it is easy to see that we have 

M(1, v) = v, 

Y(1, v) = v, 

J(u,  1) = 1. (16) 

Then (15) and (16) together imply that 

M(u ,  1) = 1 Vu > 0. (17) 

Compare Equations (15), (17) and properties A5, A6, A7 with those of a 
modus ponens generating function in Trillas and Valverde [10]. 

Under some continuity conditions, any solution (M, J)  of (14)-(16) 
possesses further nice properties, as we prove in the following theorem. 

PROPOSITION 1 Suppose that ( M, J) is any solution of (14)-(16) satisfy- 
ing axioms A1-A8 and J is right-continuous in its first argument. Then the 
following properties are also satisfied by using (10): 

P1. irA' c A then B' c_ B; 
P2. irA' - 1 and inf x A ( x )  = 0 then B' -- 1; 
P3. irA =- 0 and A' ~ 0 then B' - 1. 

Proof To prove P1, we can write 

B' (y )  = s u p M ( A ' ( x ) ,  J ( A ( x ) ,  B ( y ) ) )  
x 

< s u p m ( A ( x ) ,  J ( A ( x ) ,  B ( y ) ) )  
x 

= B ( y ) ,  

by A6 and (15). 
Concerning P2, the following chain of equalities can be written: 

B' (y )  = s u p M ( A ' ( x ) ,  J ( A ( x ) ,  B ( y ) ) )  
x 

= supM(1, J ( A ( x ) ,  B ( y ) ) )  
x 

= : 

= J(O, B ( y ) )  = 1, 

where we have used (16) and the right continuity of J in its first place. 
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P3 is obvious because we have 

B ' ( y )  = s u p M ( A ' ( x ) ,  J ( A ( x ) ,  B ( y ) ) )  = sup M ( A ' ( x ) ,  1) = 1, 
x 

by (16) and (17). • 

4.3 Idempotent Solutions 

In this section we look for solutions (M, J )  of the system (14)-(16) such 
that both M and J are idempotent, i.e., 

M ( x , x ) = x  for all x ~ [ 0 , 1 ] ,  

J ( x , x )  = x  for all x ~ ( 0 , 1 ] .  

Note that idempotency of conjunctions is useful in dealing with redun- 
dancies in knowledge bases; see [3]. On the other hand, idempotency of 
implications is not a very common property. The equality J(x,  x)  = x can 
hold only on (0, 1], since J(0, 0) = 1. 

First consider M. Monotonicity and idempotency of M together imply 
that M should be a mean, i.e., the following inequality is satisfied for all 
u,v c [0, 1]: 

min(u, v) <_ M ( u ,  v) <_ max(u, v). 

The following simple result is easily obtained. 

LEMMA 1 For any idempotent M which satisfies (14)-(16), we have 

M ( u , v )  = v for u >_ v, u , v  c [0,1]. 

Proof Any solution M is nondecreasing (see A5) and satisfies M(1, v) 
= v [by (16)]. Therefore, we have for u >_ v that 

v = M ( v , v )  <_ M ( u , v )  <_ M ( 1 , v )  = v, 

which proves the lemma. • 

In addition to properties P1-P3  in Proposition 1, the following one also 
holds for idempotent M. 

PROPOSITION 2 Suppose that hypotheses of  Proposition 1 hold, M is 
assumed to be idempotent, and M is left-continuous in the first place. Then 
we have 

P4. if  A - 1 and hgt A' >_ hgt B, then B' = B. 
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P roof  P4 follows f rom the following equalities: 

B'(y) = supM(A'(x), J(A(x) ,  B(y))) 
x 

= x = M supA'(x), supM(A'(x) ,B(y))  ( x B(y)) 

= B(y),  

where  the left continuity of  M in its first a rgument  and L e m m a  1 are 
used. • 

Recall  that  in this section we want to find some part icular  idempoten t  
solutions (M,  J )  of  (14)-(16).  By the proper ty  M(u, 1) = 1 for u > 0 [see 
(17)], natural  candidates  for  M on the set 

{ ( u , v ) l u  < v, u , v  ~ (0, 1]} 

are members  of  the family given by 

m~(u,v) = ¢ - 1 ( 1  - [1 - q~(u)]"[1 - ~¢(v)]1-~),  (18) 

where  q~ is an au tomorph i sm of  the unit interval and a c [0, 1). Note  that 
= 1 is impossible, since in that  case we would have for 0 < u < 1 

m,(u, 1) = q~-l(1 - [1 - q)(u)]) = u < v = 1, 

a contradict ion with (17). 
For tunately ,  the family defined by (18) is useful for  determining a class 

of  solutions for (14)-(16),  as we prove now. 

THEOREM 3 For any automorphism ~ of the unit interval, the functions 
M~ and J~ defined by 

lo 1(1 - [1 - ~o(u)]~[1 - q~(v)] 1 -~)  if 0 < u < v, 

M¢(u,v) = if u > v ,  
if u = 0, 

[ ( (  1 - q~(v) ) 1~(l-a)) 
- 1 -  i f  O < u < v ,  q~ 1 

J~,(u, v) = i1 - q~(u)]" 

if u > v ,  
if u = 0 

with 0 < o~ < 1 are such that Equations (14)-(16)  are satisfied by ( M,, J,). 
Moreover, both M~, and J, are idempotent. 
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Proof Validity of (14): 

M~,(O, Jc(u,  v)) = 0, since My(0, x) = 0 for all x ~ [0, 1]; 

M~(1, J ,(O,v))  = J~(O,v) = 1; 

M,(u,J,p(1,O)) = M¢(u,O) = O; 

M,(1 ,  J~(u,1)) = M,(1 ,1)  = 1. 

To prove (15), consider two cases. 

Case 1: u > v. Then J,(u, v) = v, and thus we have 

g ¢ ( u , J ¢ ( u , v ) )  = M ~ ( u , v ) = v ,  

by definition of My. 
Case 2: O < u  <v .  It is easy to prove that in this case J ¢ ( u , v ) > u .  

Thus, by definition of Me and J~, we have 

-- q~-'(1 - [ 1  - q~(u ) ]~ [ l  - ~(J~o(u,u))] l-°t) M~(u , J¢ (u , v ) )  

¢- [1 1 - ¢ ( v )  ) 

= ~-1 1 - [1 - q,(u)l ~ [~ ; ~(u)]~ 

= U .  

Equation (16) follows by definition of M~ and J~. Idempotency is 
obvious. • 

In [11] we suggested another type of idempotent solution satisfying all 
the assumptions and the system (14)-(16) as follows: 

u if O < u < v ,  
M ( u , v )  = u + 1 - v (19) 

v if u > v, 
0 if u = O, 

i + u - u / v  if u<_v,  v:~O,  
J ( u , v )  = if u > v ,  

if u = v  = 0 .  
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It is worth observing that for u _< v we have 

u min(u,  v) 

u +  1 - v  m i n ( 1 - u , l - v ) + m i n ( u , v ) "  

That is, the solution (19) is constructed on the basis of symmetric sums 
studied by Silvert [12]. It is easy to extend the formulas (19), (20) for M, J 
by using an automorphism ~ of the unit interval. 

THEOREM 4 For any automorphism ~o of the unit interval, the functions 
M, and J, defined by [~-1 ~(u) 

M , ( u , v ) =  ( q~(u) + ~-- q~(v) ) if O < u < v' 

v if u > v, 
0 i f u = O .  

 -1(l + ) iS , o, 
J , ( u , v )  = 

v if u > v, 
1 /f u = v = 0  

are such that equations (14)-(16) are satisfied by ( M~, J~). Moreover, both 
My and Jv are idempotent. 

Proof The proof can be carried out simply by checking the required 
properties. • 

Note that is any particular (My, J~) defined either in Theorem 3 or in 
Theorem 4 is used in (10), then A' c A implies B' c B, which is a stronger 
property than P1 in Proposition 1. 

5. A CLASS OF N O N I D E M P O T E N T  SOLUTIONS 

In this section we look for appropriate new operations (both for con- 
junctions and implications) in the following form: 

T(x ,y )  

X 

where x ~ (0, 1] and y ~ [0, 1] and T is a t-norm. The choice of this form 
was motivated by a formula in [9]: 

I ) max ,0 . 
X 
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Thus, assume that T is a t-norm. Define a new binary operation on 
(0, 1] × [0, 1] by 

r(x, y) 
H ( x ,  y)  (21) 

x 

The operation H has the following basic properties, for any t-norm T: 
• H ( x ,  y) ~ [0, 1] for any (x, y) c (0, 1] × [0, 1]; 
• H is nondecreasing with respect to its second argument, but in 

general, nothing can be said about the first one; 
• H(x ,  1) = 1, H(x,O)  = 0 for any x ~ (0, 1]; 
• H(1, y) = y for any y ~ [0, 1]. 
We introduce an operation M by 

M ( x , y ) : =  I H ( x , y )  if x > 0 ,  (22) 
t o  otherwise 

if H is nondecreasing with respect to its both arguments, and an operation 
J by 

J ( x , y )  := / H ( x ' Y )  if x > 0 ,  (23) 

t 1 otherwise 

if H is nonincreasing with respect to its first argument and nondecreasing 
with respect to the second one. Then M is a fuzzy conjunction and J is a 
fuzzy implication in the broad sense of Section 2. 

We can define S- and R-implications based on M in the usual way, 
using the standard strong negation n(x)  = 1 - x: 

J s (x ,  y )  = 1 - M ( x ,  1 - y ) ,  (24) 

JR(X, y )  = s u p { z l M ( x ,  z )  < y}, (25) 

and similarly S- and R-conjunctions based on J by 

M s ( x ,  y )  = 1 - Y(x ,  1 - y ) ,  (26) 

MR(X, y )  = inf{z[J(x ,  z )  > y}. (27) 

Those continuous t-norms T for which (24) and (25) or respectively (26) 
and (27) coincide (see Figure 2) are characterized by Fodor and Kereszt- 

H c H I 

J R  ' " , I s  M R ,  " M s  

Figure 2. Coincidence  of R- and  S-transforms.  
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falvi [14] under an additional condition. By those results, the Hamacher 
family {Tr} ~ >_ 1 (see [13] for details on this family) of t-norms defined by 

xy 
Tr(x, y) -'= (28) 

3, + (1 - `/)(x + y - xy) 

is such that the functions 

Mr(u ,v )  = ` /+  ( 1 -  y)(u + v uv) ' u >0 ,  - 3 , > 1 ,  

O, u = O, 

are fuzzy conjunctions. In addition, for a given 3' > 1, the R- and S-impli- 
cations based on M r are the same, and their common expression is given 
as follows: 

y v + ( 1 -  y)uv 
J r ( u , v ) =  y + ( 1 - , / ) ( 1 - v + u v )  if u > O ,  

1 otherwise. 

The proof of the following proposition is left to the reader. 

PROPOSITION 3 Each pair (Mr, Jr)r >_ 1 of fuzzy conjunctions and implica- 
tions are solution of  our system (14)-(16), satisfying also axioms A1-A8. 

6. CONCLUSION 

In this paper we have investigated fuzzy conjunctions and implications 
from different points of view. By the results it became clear that one must 
be rather flexible in choosing connectives for particular reasons. In partic- 
ular, noncommutative and nonassociative conjunctions and the corre- 
sponding implications given in Theorems 3 and 4, or by (19) and (20), can 
fulfil the expected properties better than t-norms and related implications. 
Therefore, we would like to encourage readers to use more advanced 
operators not only in theoretical problems but also in practice. 
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