Module Structures on the K-Theory of Graded Rings

CHARLES A. WEIBEL

Department of Mathematics, Rutgers University, Hill Center, Busch Campus, New Brunswick, New Jersey 08903

Communicated by Barbara L. Osofsky

Received December 19, 1984

Let R be a commutative ring, $A = A_0 \oplus A_1 \oplus \cdots$ a graded R-algebra, and A_+ the graded ideal $A_1 \oplus A_2 \oplus \cdots$. Then $K_n(A) = K_n(A_0) \oplus K_n(A, A_+)$. We show that the groups $K_n(A, A_+)$ are naturally modules over the ring $W(R)$ of Witt vectors. They also have a natural filtration whose associated graded groups are R-modules. When R contains a field of characteristic zero, $K_n(A, A_+)$ is an R-module, and the filtration is by R-submodules.

Although algebraic K-groups are a priori nothing more than abelian groups, much of our ability to perform calculations rests on module structures which can be imposed on large parts of K-theory. This viewpoint originated in 1971 with van der Kallen's observation in [vdK] that when t is in a commutative ring R we have $K_2(R)[E]/(E') = K_2(R) \oplus \Omega_R$, where Ω_R is the R-module of absolute Kahler differentials of R. Four years later, Bloch generalized this, showing that the relative groups $NK_1(R) = K_1(R[x], x)$ and $\lim_n K_n(R[E]/(E^n), E)$ were modules over the ring $W(R)$ of Witt vectors over R. (See [B1, B2, S2]; a summary is given in [W1].) In this note, we fit these phenomena into a more general context.

THEOREM 0.1. Let $A = A_0 \oplus A_1 \oplus \cdots$ be a graded R-algebra, where R is a commutative ring (concentrated in degree 0). If A_+ denotes the graded ideal $A_1 \oplus A_2 \oplus \cdots$, then there is a continuous $W(R)$-module structure on each group $K_n(A, A_+)$. This $W(R)$-module structure is natural on the category of graded R-algebras, and agrees with the known module structures for $A = A_0[x]$ and $A = A_0[E]/(E^n)$.

If R contains \mathbb{Q} (the rational numbers), then each $K_n(A, A_+)$ has a natural R-module structure via the ring map $\lambda: R \to W(R)$.

* Supported by NSF Grant MCS81-02753.
The phrase "continuous $W(R)$-module" needs explanation. There is a descending filtration on $W(R)$ by ideals I_n, making $W(R)$ into a topological ring. For example, if R contains \mathbb{Q}, then as a ring we have

$$W(R) \simeq \prod_{i=1}^{\infty} R, \quad \text{while} \quad I_m \simeq \prod_{i=m}^{\infty} R.$$

Note that I_mI_n does not lie inside I_{m+n}.

Now let M be a $W(R)$-module. We say that M is a continuous module if the annihilator of every element of M is open in $W(R)$, i.e., if M is the union of the submodules $F^mM = \{m \in M | I_m m = 0 \}$. M is separated if the intersection of the I_mM is zero. I do not know whether or not the continuous $W(R)$-modules $K_t(A, A_+)$ are separated, although it is clear that the symbol part will be separated. However, if R contains \mathbb{Q}, it is clear that every continuous $W(R)$-module is separated. (I am grateful to Wilberd van der Kallen for pointing out the need for care here.) From these general comments we deduce

Corollary 0.2. Suppose that R contains \mathbb{Q}. Then the groups $I_nK_t(A, A_+)$ form a natural decreasing filtration on $K_t(A, A_+)$, whose intersection is zero. All groups involved are naturally R-modules, including the associated graded groups.

Example 0.3. Suppose that A_+ is nilpotent and commutative, so that $K_t(A, A_+)$ is the multiplicative group $1 + A_+$. The action of the element $(1 - rt^m)$ of $W(R)$ on $K_t(A, A_+)$ is given by the formula:

$$(1 - rt^m) \ast (1 - a) = (1 - r^{n/d}a^{m/d})^{d}, \quad a \in A_n, \quad d = \gcd(m, n).$$

The submodule $I_mK_t(A, A_+)$ is contained in $1 + A_{\geq m}$, $A_{\geq m} = A_m \oplus A_{m+1} \oplus \cdots$. If R contains the rational numbers, the R-module structure is given by the formula:

$$r \ast (1 + a) = (1 + a^r) = 1 + ra + \frac{r(r - 1)}{2} a^2 + \cdots.$$

In fact, the map sending a to e^a is an R-module isomorphism between A_+ and $K_t(A, A_+)$.

As another example, let $A = \mathbb{C}[x_0, \ldots, x_n]/I$ be the homogeneous coordinate ring of a smooth curve X embedded in complex projective n-space. Srinivas proved in [Sr] that when $H^1(X, O(1)) \neq 0$ the group $K_0(A, A_+)$ is an abelian group of uncountable rank. In fact, it is a vector space over \mathbb{C}.

A similar remark applies to the 2-dimensional normal domain
$A = C[x, y, z]/(x^2 + y^3 = z^2)$. We know that both $\tilde{K}_0(A) = K_0(A, A_+) \text{ and } K_{-1}(A) = K_{-1}(A, A_+)$ are nonzero. (This was originally due to Bloch and Murthy; see [Sr], [W3] and [Reid].) Hence $K_0(A)$ and $K_{-1}(A)$ are both nonzero vector spaces over C. As abelian groups, therefore, they are divisible of uncountable rank.

The outline of this paper is as follows. We define the action of $W(R)$ on $K_*(A, A_+)$ in Section 1 and prove that it is well defined in Section 2. In Section 3 we give another pairing, due to Bloch, and show that it agrees with our module structure. In Section 4 we establish some basic structural results for the module structure. We devote Section 5 to establishing formulas for the action on $K_2(A, A_+)$ when A_+ is nilpotent.

Throughout this paper, R will denote a commutative ring, and $A = A_0 \oplus A_1 \oplus \cdots$ will denote a graded R-algebra. R is to be concentrated in degree zero, and A_+ will denote the ideal $A_0 \oplus \cdots$ of A. The letters a, b (resp. q, r, s) will always denote elements of A (resp., of R), and the letters t, x and y will stand for indeterminates.

I would like to express my gratitude to Jan Stienstra and Wilberd van der Kallen for helpful conversations. In addition, I would like to point out that I presented the calculations in Section 5 in 1981 at the Topology Conference at the University of Western Ontario.

1. The Action of $W(R)$

The ring $W(R)$ of Witt vectors over R has as its underlying additive group the group $1 + tR[[t]]$. This is a topological group, the subgroups $I_n = 1 + t^n R[[t]]$ forming a basic family of open neighborhoods of the identity. Every element of $W(R)$ has a unique convergent expansion $\omega(t) = \Pi(1 - r_m t^m)$. Using $*$ for the ring product, the ring structure on $W(R)$ is completely determined by the formula:

$$(1 - rt^m) * (1 - st^n) = (1 - r^{n/d}s^{m/d}t^{mn/d})^d, \quad d = \gcd(m, n). \quad (1.1)$$

We want to make $K_r(A, A_+)$ into a continuous $W(R)$-module in a natural way. It is enough to define natural maps $(1 - rt^m) * : K_r(A, A_+) \to K_{r-1}(A, A_+)$ for every $r \in R$ and $m \geq 1$, and then to verify the following.

Axioms 1.2. For every v in $K_r(A, A_+)$:

(a) There is an $M \geq 0$ such that $(1 - rt^m) * v = 0$ for every $m \geq M$ and every r.

(b) Whenever $\Pi(1 - q_t t') \cdot \Pi(1 - r_m t^m) = \Pi(1 - s_n t^n)$ in the group $1 + R[[t]]$, then in $K_r(A, A_+)$:

$$\sum (1 - q_t t') * v + \sum (1 - r_m t^m) * v = \sum (1 - s_n t^n) * v.$$
(c) \((1-t) * v = v\). \((1-t)\) is the unit of the ring \(W(R)\).
(d) \([(1 - rt^m) \ast (1 - st^n)] \ast v = (1 - rt^m) \ast [(1 - st^n) \ast v]\).

To verify the Axioms (1.2) for every \(A\), it is enough to verify that (1.2) holds when \(A\) is the polynomial ring \(A_0[x]\) with \(x\) in degree one. To see this, let \(B\) denote the \(R\)-algebra \(A[x]\). Grade \(B\) by setting \(A\) in degree zero and \(x\) in degree one, so that the ring homomorphism \(\phi: A \to B\) which sends \(a_i\) in \(A_i\) to \(a_i x^i\) is a degree-preserving map. The induced map \(\phi^*: K(A, A_+) \to K(B, B_+)\) is an injection, because it is a summand of the map \(\phi^*: K(A) \to K(B)\), and this map is split by the nongraded map \(B \to A\) sending \(x\) to 1. If the Axioms (1.2) hold for \(K(B, B_+)\), then they must hold for \(K(A, A_+)\) as well.

In the remainder of this section, we define the map \((1 - rt^m) \ast \) on \(K(A, A_+)\). In the next section, we will verify the Axioms (1.2) for the special case \(A = A_0[y]\), proving that the \(K(A, A_+)\) are continuous \(W(R)\)-modules.

We will work with the category \(P(B)\) of finitely generated projective right \(B\)-modules. If \(F: P(B) \to P(C)\) is an additive functor, \(F(B)\) is a left \(B\)-module via the isomorphism \(B \cong \text{Hom}(B, B)\), and therefore a \(B-C\) bimodule, i.e., an object of \(B\text{-mod-}C\). The possibility of going back and forth between \(F\) and \(F(B)\) is made possible by the following elementary result, whose proof we omit (cf. [Bass, p. 57]).

Lemma 1.3. If \(B\) and \(C\) are rings, there is an equivalence of categories:

\[
\{\text{additive functors } P(B) \to P(C) \text{ and natural transformations}\} \cong \{ B-C \text{ bimodules in } P(C) \text{ and bimodule maps}\}.
\]

Under this equivalence, \(F\) corresponds to \(F(B)\) and the \(B-C\) bimodule \(P\) corresponds to the functor \(F_p(M) = M \otimes_B P\).

For the rest of this section, we fix \(r\) in \(R\) and an integer \(m \geq 1\). We want to define an additive functor \(F: P(A) \to P(A)\), and we do this by defining an \(A\)-bimodule \(P\). As a right module, \(P\) is free on basis \(\{e_0, \ldots, e_{m-1}\}\). For \(j \geq m\), we make the convention that \(e_j\) means \(e_{j - m} r\), and we define the left \(A\)-module structure by

\[a_i e_j = e_{i+j} a_i\quad \text{for } a_i \text{ in } A_i.\]

Remark 1.4. Here is another way to understand the functor \(F\). Set \(S = R[\tilde{s}] / (s^m - r)\), and let \(\sigma: A \otimes S \to A \otimes S\) be the graded \(S\)-algebra map sending \(a_i \otimes 1\) in \(A_i \otimes S\) to \(a_i \otimes s^i\). If \(j: A \to A \otimes S\) denotes the inclusion, then \(F\) is the functor

\[
P(A) \xrightarrow{j^*} P(A \otimes S) \xrightarrow{\sigma^*} P(A \otimes S) \xrightarrow{j_*} P(A).
\]
In fact, $P = F(A) = j \ast \sigma \ast j \ast A$ is just $A \otimes S$, with e_i in P corresponding to $1 \otimes s'$ in $A \otimes S$. For example, when $m = 1$ the ring map $\sigma: A \rightarrow A$ is $\sigma(a_r) = a_r r^i$ and F is the base-change map σ^*. If $m = 1$ and $r = 1$, F is the identity map. If $m = 1$ and $r = 0$, F is $i \ast p^*$, where

$$p: A \rightarrow A/A_+ = A_0 \quad \text{and} \quad i: A_0 \rightarrow A$$

induce the functors

$$p^*: \mathbf{P}(A) \rightarrow \mathbf{P}(A_0) \quad \text{and} \quad i^*: \mathbf{P}(A_0) \rightarrow \mathbf{P}(A).$$

On K-theory, the functors F, p^*, and i^* induce maps which we abusively write as $K_i F: K_i(A) \rightarrow K_i(A)$, $p_*^*: K_i(A) \rightarrow K_i(A_0)$, and $i^*: K_i(A_0) \rightarrow K_i(A)$. Since $p: A_0 \rightarrow A_0$ is the identity, we obtain a direct sum decomposition $K_i(A) = K_i(A_0) \oplus K_i(A, A_+)$.

Lemma/Definition 1.5. The induced functor $K_i F: K_i(A) \rightarrow K_i(A)$ respects the direct sum decomposition $K_i(A) = K_i(A_0) \oplus K_i(A, A_+)$ and is multiplication by m on the summand $K_i(A_0)$. The map $(1 - rtm)^*: K_i(A, A_+) \rightarrow K_i(A, A_+)$ is defined to be the restriction of $K_i F$ to the summand $K_i(A, A_+)$.

Proof. Let $F_0: \mathbf{P}(A_0) \rightarrow \mathbf{P}(A_0)$ by $F_0(M) = M \otimes A_0^m = M \oplus \cdots \oplus M$. Since $P \cong A^m$ as left A_0-modules we have $F_i = i F_0$. Since $(A/A_+) \otimes_A P \cong P \otimes_A (A/A_+) \cong A_0^m$ as A_0-bimodules, we have $F_0 p \cong p F$. This implies that $K_i F$ respects the decomposition of $K_i(A)$, and is $K_i F_0$ on $K_i(A_0)$. The fact that $K_i F_0$ is multiplication by m is standard.

Before moving on, we should clear up an apparent notational problem, namely the case $r = 0$. For clarity, let us write P_m and F_m for the A-bimodule and functor constructed for $r = 0$, and our chosen integer m.

Lemma 1.6. If $r = 0$, the map $(1 - 0tm)^*: K_i(A, A_+) \rightarrow K_i(A, A_+)$ induced from F_m is the zero map for all m.

Proof. We have already observed that $F_1 = i \ast p^*$, so the case $m = 1$ follows from Lemma 1.5. Inductively, note that the subbimodule $e_m A$ of P_{m+1} is isomorphic to P_1, and that the quotient bimodule is P_m. This yields a short exact sequence of functors $\mathbf{P}(A) \rightarrow \mathbf{P}(A)$,

$$0 \rightarrow F_1 \rightarrow F_{m+1} \rightarrow F_m \rightarrow 0.$$

By the additivity theorem [Q, p. 106], $K_i F_{m+1} = K_i F_m + K_i F_1$. Hence we have $(1 - 0tm + 1)^* = (1 - 0tm)^* + (1 - 0t)^* = 0.$
2. The Case $A = A_0[x]$.

In this section, A will denote the polynomial ring $A_0[x]$ with x in degree one, and we will write $NK_i(A_0)$ for $K_i(A_0[x], x)$. It is a result of Bloch and Stienstra that the groups $NK_i(A_0)$ are continuous $W(R)$-modules; in this section we shall write $\omega \circ v$ for the Bloch-Stienstra product of $\omega \in W(R)$ and $v \in NK_i(A_0)$. We will show that the map $\left(1 - rt^m\right)^*$ of the last section produces the same endomorphism of $NK_i(A_0)$ as the Bloch-Stienstra map $\left(1 - rt^m\right) \circ$. This will prove that the maps $\left(1 - rt^m\right)^*$ satisfy the axioms (1.2) for every graded R-algebra A, since the $\left(1 - rt^m\right) \circ$ satisfy (1.2) for $A = A_0[x]$. These axioms imply that the $K_i(A, A_+)$ are naturally continuous $W(R)$-modules.

Under the Bloch-Stienstra module structure on $NK_i(A_0)$, multiplication by $\left(1 - rt^m\right)$ is induced from the functor

$$P(A_0[x]) \xrightarrow{i^*} P(A_0[y]) \xrightarrow{\rho^*} P(A_0[y]) \xrightarrow{i^*} P(A_0[x]),$$

where $i : A_0[y] \to A_0[x]$ and $\rho : A_0[y] \to A_0[y]$ are the A_0-algebra maps given by $i(y) = x^m$, $\rho(y) = ry$. (The fact that this yields a $W(R)$-module structure on $NK_i(A_0)$ is asserted on p. 316 of [B2] and proven in [S2]. A discussion may be found in [W1].)

By 1.3, the functor $i^* \rho^* i_*$ is determined by the A-bimodule $Q = i^* \rho^* i_*(A)$. As a right A-module, Q is free on basis $\{f_0, \ldots, f_{m-1}\}$. Making the convention that f_{j+m} means $f_j(rx^m)$, the left A-module structure on Q is given by the formula:

$$(a_0 x^i) f_j = f_{j+i} a_0 \quad \text{for } a_0 \text{ in } A_0.$$

Fixing $m \geq 1$, let us write P_r and Q_r for the A-bimodules corresponding to $\left(1 - rt^m\right)^*$ and $\left(1 - rt^m\right) \circ$, respectively. Write F_r and G_r for the respective functors $P(A) \to P(A)$ they induce. With respect to the bases $\{e_0, \ldots, e_{m-1}\}$ and $\{f_0, \ldots, f_{m-1}\}$ of P_r and Q_r, left multiplication by x is represented by the respective matrices

$$\begin{pmatrix}
0 & rx \\
x & 0 & \ddots & \vdots \\
& \ddots & \ddots & 0 \\
& & x & 0
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
0 & rx^m \\
& & & \\
& & 1 & 0 \\
& & & & 0
\end{pmatrix}.$$

Define the right module map $\eta_A : P_r \to Q_r$ by the formula $\eta_A(e_j) = f_j x^{m-1-j}$, $0 \leq j \leq m-1$. For example, $\eta_A(e_0) = f_0 x^{m-1}$ and $\eta_A(e_{m-1}) = f_{m-1}$. Since $x \eta_A(e_j) = \eta_A(x e_j)$ for all j, it follows that η_A is a left A-module map as well. By 1.3, η_A induces a natural transformation $\eta : F_r \to G_r$.
PROPOSITION 2.1. The two functors \(F_r = j^*_\sigma^* j^* \) and \(G_r = i^* \rho^* i_* \) induce the same maps \(K_r(A) \to K_r(A) \) and \(NK_r(A_0) \to NK_r(A_0) \).

Proof. Let \(C_r \) be the cokernel of the injection \(\eta_A : P_r \to Q_r \). As a right \(A \)-module, it has finite homological dimension. The functor \(H_r(M) = M \otimes_A C_r \) maps \(P(A) \) to the exact category \(H(A) \) of finitely generated right \(A \)-modules with finite homological dimension. There is a short exact sequence

\[
0 \to F_r \to G_r \to H_r \to 0
\]

of exact functors from \(P(A) \) to \(H(A) \). By the additivity theorem [Q, p. 106],

\[
K_r H_r = K_r G_r - K_r F_r : K_r(A) \to K_r(H(A)) = K_r(A).
\]

However, it is easy to see that the \(A \)-bimodule \(C_r \) is independent of the choice of \(r \). Taking \(r = 0 \), Lemma 1.6 yields the desired equation,

\[
K_r H_r = K_r H_0 = K_r G_0 - K_r F_0 = 0 - 0 = 0.
\]

COROLLARY 2.2. The \(W(R) \)-module structure on \(NK_r(A_0) \) given in Section 1 agrees with the Bloch–Stienstra module structure.

3. BLOCH’S PAIRING

There is another way to define a \(W(R) \)-module structure on the groups \(K_r(A, A_{+}) \), implicitly due to Bloch [B2, p. 315]. Bloch begins with the biexact functor

\[
\text{P}(R[t]) \otimes \text{Nil}(A) \to \text{P}(A), \quad \text{M} \otimes (N, v) = \text{M} \otimes_{R[t]} N,
\]

where \(N \) is considered to be a left \(R[t] \)-module with \(t \) acting via the nilpotent endomorphism \(v \). This produces a map from \(K_q(R[t]) \otimes K_p \text{Nil}(A) \) to \(K_{p+q}(A) \). Identifying \(W(R) \) with \(K_1(R[t], t) \) and \(K_{p+1}(A[x], x) \) with the kernel of the forgetful map \(K_p \text{Nil}(A) \to K_p(A) \) we obtain a pairing

\[
W(R) \otimes K_{p+1}(A[x], x) \to K_{p+1}(A).
\]

Now suppose that \(A \) is graded. Using the injection \(\phi^* : K_r(A, A_{+}) \to K_r(A[x], x) \) of Section 1, we obtain pairings for each \(i \geq 1 \),

\[
W(R) \otimes K_r(A, A_{+}) \to K_r(A, A_{+}).
\]

This is Bloch’s pairing.
PROPOSITION 3.1. Bloch's pairing agrees with the action of $W(R)$ on $K_*(A, A_+)$ that we defined above. In particular, Bloch's pairing makes $K_*(A, A_+)$ into a continuous $W(R)$-module for every graded R-algebra A.

Proof. By the trick of section 1 involving $\phi: A \to A[x]$, it is enough to prove the result for $A = A_0[x]$. In this case, Stienstra showed in [S2, (9.23)] that Bloch's pairing agrees with the Bloch–Stienstra pairing we cited in Section 2. We are done by Corollary 2.2.

Remark 3.2. Bloch defined his pairing only for $A = R[x]$ and $R[\varepsilon]/(\varepsilon^n)$, but the construction in [B1, B2] extends word for word to graded A. In [B1, B2], Bloch asserted, but did not prove, that his pairing made these rings into $W(R)$-modules. In [B1, (II.2.1.4)], Bloch proved that $\lim_n K_i(R[\varepsilon]/(\varepsilon^n), \varepsilon)$ was a $W(R)$-module by verifying axioms (1.2). Using the presentation for K_2 of a radical ideal, Stienstra showed in [S0] that the $K_2(R[\varepsilon]/\varepsilon^n, \varepsilon)$ were $W(R)$-modules. We can now see that Bloch's assertion was correct.

4. STRUCTURAL RESULTS

In this section, we collect several results that are useful in calculations. First note that the group $K_*(A, A_+)$ is a graded module over the graded ring $K_*(R)$. We have

PROPOSITION 4.1 (Product formula). For $\gamma \in K_m(R)$, $\nu \in K_n(A, A_+)$, and $\omega(t) \in W(R)$ we have the formula in $K_{m+n}(A, A_+)$,

$$\omega(t) \ast \{\gamma, \nu\} = \{\gamma, \omega(t) \ast \nu\}.$$

Proof. By additivity, we can assume that $\omega(t)$ is $1 - rt^n$. Since the $K_*(R)$-module structure arises from the biexact pairing $\otimes: P(R) \times P(A) \to P(A)$, sending (L, M) to $L \otimes_R M$, the product formula follows from the equation $(L \otimes_R M) \otimes_A P \cong L \otimes_R (M \otimes_A P)$, i.e., from commutativity up to natural isomorphism of the diagram:

$$
\begin{array}{ccc}
P(R) \times P(A) & \xrightarrow{1 \times (\otimes_A P)} & P(R) \times P(A) \\
\otimes & & \otimes \\
P(A) & \xrightarrow{\otimes_A P} & P(A).
\end{array}
$$

Next, we consider the effect of changing the grading on A. For our pur-
poses, a grading on A is a decomposition $A = \Pi A_i$; we say that A is regraded by a factor of n if we give it the decomposition $A = \Pi B_j$, where

$$B_j = \begin{cases} A_i & \text{if } j = ni, \\ 0 & \text{if } j \equiv 0 \pmod{n}. \end{cases}$$

Proposition (4.2) (Change of grading). If A is regraded by a factor of m, the resulting $W(R)$-module structure $*'$ on $K_i(A, A_\pm)$ is the pullback of the original $W(R)$-module structure $*$ along the Frobenius ring map $F_m: W(R) \to W(R)$. That is, we have

$$\omega *' v = (F_m \omega) * v \quad \text{for } \omega \in W(R) \text{ and } v \in K_i(A, A_\pm).$$

Proof. For clarity, let us write B for the graded ring $A = \bigoplus B_i$. We grade $A[y]$ and $B[x]$ with A, B in degree 0 and x, y in degree 1, and let ϕ be the graded map of Section 1. Finally, let i be the ungraded A-algebra map $A[y] \to B[x]$ given by $i(y) = x^m$. We have a commutative diagram

$$
\begin{array}{ccc}
A & \xrightarrow{\phi} & A[y] \\
\downarrow & & \downarrow i \\
B & \xrightarrow{\phi} & B[x].
\end{array}
$$

The induced map $i^*: K_i(A[y], y) \to K_i(B[x], x)$ is called V_m in [B2] and [S2], where they show that $V_m((F_m \omega) * v) = \omega * (V_m v)$ for every $\omega \in W(R)$ and $v \in K_i(A[y], y)$. (Beware the typo in (2.7.1) of [B2].) This establishes the commutativity of the right-hand face in the following cube:
The front and back faces commute by naturality. The top and bottom faces commute by the above discussion, the ϕ^* being split injections. Thus the left-hand face also commutes, which was to be shown.

Remark 4.2.1. If R contains the rational numbers, the injection $\lambda_i : R \to W(R)$ is invariant under the Frobenius, i.e., $F_n(\lambda_i(r)) = \lambda_i(r)$. Hence regrading A does not affect the R-module structure on $K_i(A, A_+)$. It does change the filtration on $K_i(A, A_+)$, however, as can be seen in Example 0.3.

Proposition 4.3 (Morita invariance). If A is Morita equivalent over R to B, then the natural isomorphism $NK_i(A) \cong NK_i(B)$ is an isomorphism of $W(R)$-modules.

Proof. If L is an $R[\pi]$-bimodule and M is an $A-B$ bimodule, then there is an isomorphism $L \otimes_R M \cong M \otimes_R L$ of $A[x] - B[x]$ bimodules. For example, the Morita equivalence $A \approx B$ of R-algebras is induced by a functor $\otimes N: \mod-A \to \mod-B$, where N is an $A-B$ bimodule, and the $A[x] - B[x]$ bimodule $R[x] \otimes_R N \cong N \otimes_R R[x]$ induces a Morita equivalence $A[x] \approx B[x]$. On the other hand, if P is the $R[x]$-bimodule such that P induces $(1 - r\iota^n)*$ on $NK_i(R)$, then $P \otimes_R A \approx A \otimes_R P$ induces $(1 - r\iota^n)*$ on $NK_i(A)$, and similarly for $P \otimes_R B$. There is an $A[x] - B[x]$ bimodule isomorphism

\[
(P \otimes_R A) \otimes_{A[x]} (R[x] \otimes_R N) \cong P \otimes_R N \cong N \otimes_R P \cong (N \otimes_R R[x]) \otimes_{B[x]} (B \otimes_R P).
\]

This establishes commutativity up to natural transformation of

\[
P(A[x]) \xrightarrow{N \otimes_R R[x]} \to P(B[x]) \quad \text{and} \quad P(A[x]) \xrightarrow{R[x] \otimes N} P(B[x]).
\]

On the K-theory level, this implies that the Morita isomorphism $NK_i(A) \cong NK_i(B)$ commutes with $(1 - r\iota^n)*$, whence the result.

If we want to discuss Morita invariance of graded R-algebras, we have to discuss graded Morita equivalences. Rather than pursue this tangential issue, we content ourselves with a special case. If A is a graded R-algebra, so is the matrix ring $M_n(A) = M_n(A_0) \oplus M_n(A_1) \oplus \cdots$, and the corresponding isomorphisms $K_i(A) \cong K_i(M_n(A))$ and $K_i(A_0) \cong K_i(M_n(A_0))$ induce a natural isomorphism $K_i(A, A_+) \cong K_i(M_n(A), M_n(A_+))$.
Corollary (4.4). The natural isomorphism $K_0(A, A_+)$ is an isomorphism of $W(R)$-modules.

Proof. The maps $A \to \phi A[x] \to M_n(A[x])$ and $A \to M_n(A) \to A_{\phi}$ agree, so the Morita isomorphism $K_0(A[x]) \cong K_0(M_n(A[x]))$ sends the summands $\phi K(A)$ and $\phi K(M_nA)$ to $\phi K(M_n(A[x])$. Hence it sends $\phi K(A, A_+)$ to $\phi K(M_nA, M_nA_+)$, so we can deduce this result from 4.3.

5. Examples

In this section, we give some formulas to illustrate the $W(R)$-module structure. The action of $W(R)$ on $K_0(A, A_+)$ is completely determined by the action of the Witt vectors $(1 - \tau^m)$, so we concentrate on their effect.

The action on $K_0(A, A_+)$ is clear from the construction in Section 1: if M is a projective A-module with $M/A_+M \cong (A/n)^n$, then $[M]/n$ is an element of $K_0(A, A_+)$ and $(1 - \tau^m) *[M]/n = [M \otimes_A P]/n = mn$.

The action on $K_1(A, A_+)$ is more complicated, but can be written down directly from the left action of $GL_n(A)$ on $A^n \otimes_A P \cong A^{mn}$. Here is one special case:

Lemma 5.1. If v is a nilpotent $n \times n$ matrix with entries in A, $(i \neq 0)$, the action of $W(R)$ on the corresponding element $(1 - v)$ of $K_1(A, A_+)$ is given by $(1 - \tau^m) * (1 - v) = (1 - r^{\gcd(m, i)})$, $d = \gcd(m, i)$.

Proof. Using the embedding ϕ^* of $K_1(A, A_+)$ in $K_1(A[x], x)$, we can assume that $A = A_0[x]$ and $v = \alpha x^i$ for α a nilpotent matrix with entries in A_0. By Morita invariance, we can replace A_0 by $M_\phi(A_0)$ to assume α is in A_0. Replacing R and A_0 by $R[x]$, we can assume that $A = R[x]$. But the formula is well-known in this case (see, e.g., [Bl, II.2.3]).

Next, consider the case in which R contains the rational numbers. In this case, there is a ring map $\lambda_\phi: R \to W(R)$ sending r to $(1 - t)^\gamma = \sum (-t)^\gamma$. The abelian groups $K_0(A, A_+)$ become R-modules in this way. Our next result describes the R-module structure on $K_1(A, A_+)$ when A_+ is nilpotent.

Proposition 5.2. Suppose that A contains the rational numbers and that A_+ is nilpotent. Then every element of $K_1(A, A_+)$ is represented by a unit $(1 - f)$, $f \in A_+$, and the R-module structure is given by $r * (1 - f) = (1 - f^\gamma)$. If we let $[A, A_+]$ denote the subgroup of A generated by all $af - fa$, $a \in A$ and $f \in A_+$, then there is an R-module isomorphism

$$\exp: A_+/[A, A_+] \to K_1(A, A_+)$$
Proof. It is well known that every element of $K_1(A, A_+)$ is represented by a unit $1 - f$ of A with f in A_+. In the Appendix, we show that \ln and \exp induce an isomorphism of $A_+/[A, A_+]$ with $K_1(A, A_+)$, so if $(1 - f) = \Pi(1 - f_i)$ then $(1 - f)'$ and $\Pi(1 - f_i)'$ represent the same element of $K_1(A, A_+)$. Therefore, to see that the module structure is given by $r \cdot (1 - f) = (1 - f)'$, we can factor $1 - f$ into terms $(1 - f_i)$ with f_i in A_i. Replacing A by $R[f_i]$, we can assume A commutative. Via the R-module injection $\phi^*: K_1(A, A_+) \to K_1(A[x], x)$ we can assume $A = R[x]$. The result in this special case is well-known (see, e.g., [S0, II.5.10; B1, II.3.5; W1, p. 4803]).

Example 5.3. Let $A = R[\varepsilon, x]/(\varepsilon^n)$, where for convenience R is a field. There are several ways to grade A, and each gives a different $W(R)$-module structure on $NK_*(R[\varepsilon], \varepsilon)$. To illustrate this, consider the product $(1 - r\varepsilon^m) \cdot (1 - r\varepsilon^n)$. Set $v = \varepsilon x^i$, $d = \gcd(m, i)$ and $e = \gcd(m, j)$. When $A_0 = R[x]$ and deg$(\varepsilon) = 1$, the product is $(1 - r^i\varepsilon^m/d)^d$, when $A_0 = R[\varepsilon]$ and deg$(x) = 1$, the product is $(1 - r^i\varepsilon^m/e)^e$. This clarifies the remark on p. 480 of [W1] that there are different $W(R)$-module structures on $NK_*(R[\varepsilon], \varepsilon)$. In fact, they arise from different gradings of $A = R[\varepsilon, x]$.

We now turn to the action of $W(R)$ on the relative K_2 group. We will assume that A_+ is a nilpotent ideal and that A is commutative, so that we know that $K_2(A, A_+)$ is additively generated by symbols $\langle a, s \rangle$ and $\langle a, b \rangle$, where $s \in A_0$, $a \in A_1$, and $b \in A_j$ ($i, j \neq 0$). First, we describe the R-module structure in characteristic zero. To do this, we shall adopt the convention that the expression $(1 - (1 - ax)^r)/x$ means the polynomial

$$a \sum_{k=0}^{\infty} \frac{r}{k+1} (-ax)^k = ra - \left(\frac{r}{2}\right) a^2 x + \left(\frac{r}{3}\right) a^3 x^2 - \cdots.$$

Proposition 5.4. Suppose that A is commutative, that R contains the rational numbers, and that A_+ is nilpotent. Then the R-module structure on $K_2(A, A_+)$ is given by the formulas ($s \in A_0$, $a \in A_1$, and $b \in A_j$ ($i, j \neq 0$)),

$$r \cdot \langle a, s \rangle = \left\langle \frac{1 - (1 - as)^r}{s}, s \right\rangle$$
$$r \cdot \langle a, b \rangle = \left(\frac{i}{i+j}\right) \left\langle \frac{1 - (1 - ab)^r}{b}, b \right\rangle + \left(\frac{j}{i+j}\right) \left\langle \frac{a, 1 - (1 - ab)^r}{a} \right\rangle$$

$$= \left\langle \frac{1 - (1 - ab)^r}{b}, b \right\rangle + \left(\frac{j}{i+j}\right) \left\langle ab, \frac{1 - (1 - ab)^r}{ab} \right\rangle$$

Proof. To compute $r \cdot \langle a, s \rangle$ we can reduce to the generic case $R = Q[r, s]$, $A = R[a]/(a^n)$. For this A, $K_2(A, A_+)$ embeds in $K_2(A[s^{-1}])$,
\(A_+ [s^{-1}] \), so we can assume that \(s \) is a unit of \(R \). But then the product formula yields
\[
 r \ast (a, s) = r \ast \{1 - as, s\} = \{r \ast (1 - as), s\} = \{(1 - as)^r, s\}
\]
\[
= \left(\frac{1 - (1 - as)^r}{s} \right), s\).
\]
To compute \(r \ast \langle a, b \rangle \), we apply \(\phi^* \) to get
\[
r \ast \langle ax^i, bx^j \rangle = r \ast (\langle abx^i, x^j \rangle + \langle ax^{i+j}, b \rangle)
\]
\[
= \left(\frac{j}{i+j} \right) r \ast \langle ab, x^{i+j} \rangle + r \ast \langle ax^{i+j}, b \rangle
\]
\[
= \left(\frac{j}{i+j} \right) \langle ab, (1 - abx^{i+j})^r \rangle + \left(\frac{(1 - abx^{i+j})^r}{b}, b \right)
\]
\[
= \left(\frac{j}{i+j} \right) \langle a, \frac{(1 - abx^{i+j})^r}{a} \rangle + \left(\frac{i}{i+j} \right) \left(\frac{(1 - abx^{i+j})^r}{b}, b \right)
\]
\[
= \left(\frac{j}{i+j} \right) \langle ax^i, \frac{(1 - abx^{i+j})^r}{ax^i} \rangle + \left(\frac{i}{i+j} \right) \left(\frac{(1 - abx^{i+j})^r}{bx^j}, bx^j \right)
\]
\[
- \left(\frac{j}{i+j} \right) \left(\frac{(1 - abx^{i+j})^r}{x^i}, x^j \right) - \left(\frac{i}{i+j} \right) \left(\frac{(1 - abx^{i+j})^r}{x^i}, x^j \right)
\]
\[
= \left(\frac{j}{i+j} \right) \phi^* \left(\langle a, (1 - ab)^r \rangle \right) + \left(\frac{i}{i+j} \right) \phi^* \left(\langle \frac{1 - ab)^r}{b}, b \rangle \right)
\]
Since \(\phi^* \) is an injection, we deduce the formula for \(r \ast \langle a, b \rangle \).

Here are the general formulas for the module structure on \(K_2 \) when \(A_+ \) is nilpotent:

Proposition 5.5. Let \(A \) be a commutative graded \(R \)-algebra with \(A_0 = R \) and \(A_+ \) nilpotent. The \(W(R) \)-module structure on \(K_2(A, A_+) \) is completely determined by the formulas:

(a) \((1 - r^m) \ast \langle a, s \rangle = d \langle a^{m/d}, r^{i/d}, s^{m/d - 1}, s \rangle \), where \(r, s \in R, a \in A, \) and \(d = \gcd(m, i) \)

(b) \((1 - r^m) \ast \langle a, b \rangle = (um + iv) \langle a^k b^{k-1} r^n, b \rangle - ju \langle a^{k-1} b^k r^n, a \rangle + jv \langle (ab)^k r^n - 1, r \rangle + j(d - 1) \langle -(ab)^k r^n, -1 \rangle \), where \(a \in A_+, b \in A_+, r \in R, d = \gcd(i + j, m), k = m/d, n = (i + j)/d \) and \(u \) and \(v \) are integers such that \(d = um + v(i + j) \).

Proof. We compute as in \([W1, (4.4)]\), using the formulas (and symbols) on p. 62 of \([S0]\) (which may be derived from Sect. 2 of the published
version [S1]). These formulas give the \(W(R) \)-module structure on
\(K_2(A[x], x) \). One of these formulas is
\[
(1 - rt^m) * \langle ax^i, s \rangle = d \langle a^{m/d} r^{i/d} s^{m/d - 1} x^{im/d}, s \rangle, \quad d = \gcd(m, i).
\]
Now this is just \(\phi * \) applied to formula (a), so 5.5(a) holds in \(K_2(A, A_+) \).
The second formula from [S0] is (in the notation of (b)),
\[
(1 - rt^m) * \langle cx^{i+j-1}, x \rangle
= um \langle c^k r^nx^{mn-1}, x \rangle + u \langle c_k r^{n-1} x^{mn}, r \rangle
- v \langle c_k r^{n-1} x^{mn}, c \rangle + (d - 1) \langle -c_k r^n x^{mn}, -1 \rangle
= um \langle cx^{nd-1}, x \rangle + u \langle c_k r^{n-1} x^{mn}, r \rangle
- v \langle cx^{nd}, c \rangle + (d - 1) \langle -cx^{nd}, -1 \rangle,
\]
where \(z = r^n(cx^{nd})^{k-1} \). Now \(\phi^*(\langle a, b \rangle) = \langle ax^i, bx^j \rangle = j(\langle abx^{i+j-1}, x \rangle + \langle ax^{i+j}, b \rangle) \). Set \(c = ab \), so that \(c^k x^{mn} = \phi(c^k) \) and \(z = \phi(r^n c^{k-1}) \). The two cited formulas yield in \(K_2(A[x], x) \) that
\[
(1 - rt^m) * \langle ax^{i+j}, b \rangle = d \langle a^{k} r^{n} b^{k-1} x^{mn}, b \rangle = d \langle ax^{nd}, b \rangle;
(1 - rt^m) * \langle ax^i, bx^j \rangle = jum \langle czx^{nd-1}, x \rangle + \phi^*(\beta)
- jv \langle zx^{nd}, c \rangle + d \langle azx^{nd}, b \rangle,
\]
where \(\beta = jum \langle c_k r^{n-1}, r \rangle + j(d - 1) \langle -c_k r^n, -1 \rangle \). Since \(j \langle czx^{nd-1}, x \rangle = \langle czx', x' \rangle \) and \(iv = -um + d - jv \), we obtain
\[
(1 - rt^m) * \langle ax^i, bx^j \rangle - \phi^*(\beta)
= um(\langle azx', bx^j \rangle - \langle azx^{i+j}, b \rangle) + d \langle azx^{i+j}, b \rangle
- jv(\langle azx^{i+j}, b \rangle + \langle bx^{i+j}, a \rangle)
= um \langle azx', bx^j \rangle + iv \langle azx^{i+j}, b \rangle - jv \langle bx^{i+j}, a \rangle.
\]
The result now follows from the observation that
\[
\phi^*(i \langle a^k b^{k-1} r^n, b \rangle - j \langle a^{k-1} b^k r^n, a \rangle)
= i \langle azx', bx^j \rangle - j \langle bx^j, ax^i \rangle
= i \langle azx^{i+j}, b \rangle - j \langle bx^{i+j}, a \rangle
\]
because
\[
i \langle abzx^i, x' \rangle = ij \langle abzx^{i+j}, x' \rangle = j \langle abzx', x' \rangle.
\]
The complicated formula for \((1 - r t^m) \ast \langle a, b \rangle\) simplifies quite a bit when \(m\) and \((i + j)\) are units of \(R\), for then we can divide by these elements in \(K_2(A, A_+)\). This is because \(m\) and \((i + j)\) are units in the ring \(W(R)\). First, note that \(j(d - 1) \langle - (ab)^k r^n, -1 \rangle = 0\), because either \((d - 1)\) is even or else \(1/2\) is in \(A\). Second, note that \((1/k) \langle a, b^k \rangle = \langle ab^{k-1}, b \rangle\) for \(a\) or \(b\) in \(A_+\). Thus formula (5.5)(b) becomes

\[
(1 - r t^m) \ast \langle a, b \rangle
= d \langle a^k b^{k-1} r^n, b \rangle - j v \langle (ab)^k r^n, ab \rangle + j u \langle (ab)^k r^{n-1}, r \rangle
= (d/k) \langle a^k r^n, b^k \rangle - (jv/k) \langle r^n, (ab)^k \rangle + (ju/n) \langle (ab)^k, r^n \rangle
= (d/k) \langle a^k r^n, b^k \rangle + (j/nk) \langle (ab)^k, r^n \rangle
= (d/k - j/nk) \langle a^k r^n, b^k \rangle + (j/nk) \langle a^k, r^n b^k \rangle.
\]

In summary, we have derived the

Simplification 5.6. When \(m\) and \(i + j\) are units in \(R\) we have the simpler formula

\[
(1 - r t^m) \ast \langle a, b \rangle = \left(\frac{i}{nk} \right) \langle a^k r^n, b^k \rangle + \left(\frac{j}{nk} \right) \langle a^k, r^n b^k \rangle
\]

\((a \in A_1, b \in A_j, r \in R, d = \gcd(i + j, m), k = m/d, \text{ and } n = (i + j)/d)\).

We conclude with an application of these ideas to the paper [vdK-S] of Stienstra and van der Kallen. Let \(A = R[y_1, ..., y_r, ..., y_s]/I\), where \(I\) is an ideal generated by monomials of \(R[y_1, ..., y_r]\) and containing some power of each of \(\{y_1, ..., y_r\}\). We grade \(A\) by putting \(A_0 = R[y_{r+1}, ..., y_s]\) and letting \(y_1, ..., y_r\) belong to \(A_1\). For \(x = (x_1, ..., x_s)\) an \(s\)-tuple of nonnegative integers, write \(y^x\) for \(\Pi y_i^{x_i}\). If \(y^x\) belongs to \(I\) and \(x_i \neq 0\), Stienstra and van der Kallen define group maps

\[
\Gamma_{x,i}: (1 + x R[x])^* \to K_2(A, A_+),
\]

\[
\Gamma_{x,i}(1 - xf(x)) = \langle f(y^x)(y^x/y_i), y_i \rangle,
\]

and use these maps to completely describe \(K_2(A, A_+)\) when \(R\) is a perfect field of characteristic \(p\). (See [vdK-S, (2.6)].) Our observation is

Theorem 5.7. Given \(x\), let \(e = \deg(y^x) = x_1 + \cdots + x_s\), and identify \((1 + x R[x])^*\) with the ideal \(V_{\ast} W(R)\) of \(W(R)\) via \(x = t^e\). Then

(a) If \(i > r\), the map \(\Gamma_{x,i}\) is a \(W(R)\)-module homomorphism.

(b) If \(i \leq r\) and \(R\) is a perfect field of characteristic \(p \neq 0\), the map \(\Gamma_{x,i}\) is a \(W(R)\)-module homomorphism.
Proof: The ideal $V, W(R)$ is generated by $1 - x$, so it is enough to check that $(1 - r'^m) \ast \Gamma_{2,i}(1 - x) = \Gamma_{2,i}(1 - r'^m) \ast (1 - x))$. Write $d = \gcd(m, e)$, so that the right-hand side is $d \langle r'^{d'\frac{m}{d'}}/y_i, y_i \rangle$. If $i > r$ then $y_i \in A_0$, and part (a) follows immediately from formula (5.5)(a).

If $i \leq r$ the formula is more complicated. Set $e = nd$, $m = kd$ and choose u, v so that $1 = uk + vn$. Formula (5.5)(b) then reads

$$(1 - r'^m) \ast \Gamma_{2,i}(1 - x) = d \langle r^n y^{kx}/y_i, y_i \rangle + v \langle y^x, r^n y^{(k - 1)x} \rangle$$
$$+ u \langle y^x, r^a r^{n - 1}, r \rangle + (d - 1) \langle -r^n y^{kx}, -1 \rangle.$$

Since $\text{char}(R) \neq 0$, the last term is zero. Since R is perfect we can extract pth roots of r, and therefore $\langle y^{kx} r^{n - 1}, r \rangle$ is p-divisible. As $K_2(A, A_\ast)$ is a p-group, this must also be zero. The theorem will now follow once we show that $\langle y^x, r^n y^{(k - 1)x} \rangle = 0$ for all k. If $p \nmid k$, this term equals $(1/k) \langle y^{kx}, r^n \rangle = 0$. We now proceed by induction on k, using [S1, p. 414],

$$0 - p \langle y^x, s y^{(k - 1)x} \rangle - \langle y^x, s^p y^{p(k - 1)x} r^{(p - 1)x} \rangle$$
$$= \langle y^x, s^p y^{p(k - 1)x} \rangle.$$

Since $r^n = s^p$ for some s in R, this establishes the result.

APPENDIX

In this Appendix, we give a proof that $K_1(A, I)$ carries a natural module structure in characteristic 0 whenever I is nilpotent.

Theorem A.1. Let A be a ring containing Q, and I a nilpotent ideal of A. Then there is a natural isomorphism $K_1(A, I) \cong I/\langle A, I \rangle$, where $[A, I]$ is the subgroup of I generated by all $[a, x] = ax - xa$ with $a \in A$ and $x \in I$.

Before giving our proof, we note that Goodwillie has proven that for any nilpotent ideal there is an isomorphism

$$K_1(A, I; Q) \cong HC_{i-1}(A \otimes Q, I \otimes Q).$$

Here HC denotes cyclic homology over Q, and our indexing convention is such that $HC_i(A) \to HC_i(A/I) \to HC_{i-1}(A, I) \to HC_{i-1}(A)$ is exact. When A contains Q, we know from [W2, 1.4] that $K_1(A, I; Q) = K_1(A, I)$. This yields a more general result:

Theorem A.2. Let A be a ring containing Q, and I a nilpotent ideal of A. There is a natural isomorphism $K_i(A, I) \cong HC_{i-1}(A, I)$ for all i. In par-
ticular, these groups are modules over the center of A. The case $i = 1$ yields the isomorphism $K_1(A, I) \cong H^0_c(A, I) \cong I/[A, I]$ of Theorem A.1.

To be more explicit about the isomorphism, we use a more explicit description of $K_1(A, I)$, due to Vaserstein. For any radical ideal I in any ring A, let $W(A, I)$ denote the subgroup of $1 + I$ generated by all $(1 + ax)(1 + xa)^{-1}$ with $a \in A$ and $x \in I$. Then

$$K_1(A, I) \cong (1 + I)/W(A, I).$$

(See Theorem 2.1 of [Sw].) We will show that the power series expansions for \ln and \exp provide the isomorphisms in Theorem A.1.

We shall also need the Campbell–Hausdorff formula, which may be found in [J, pp. 170–174]. It states that for x, y in a complete radical ideal I that there are u, v in I such that

$$\exp(x) \exp(y) = \exp(x + y + [u, x] + [v, y]).$$

The actual formula is explicit enough to see that if $y \in I^n$ then $u \in I^n$. In fact, $u = \frac{1}{2}y + \frac{1}{12}[x, y] + \cdots$ is in the closure of the ideal AyA.

As an application, consider the set map $\ln: (1 + I) \rightarrow I$, whose inverse is the set map \exp. The Campbell–Hausdorff formula shows that \ln is not a group homomorphism. In fact, for x, y in I it yields

$$\ln((1 + x)(1 + y)) = \ln(1 + x) + \ln(1 + y) + [u, \ln(1 + x)]$$

$$+ [v, \ln(1 + y)].$$

We summarize this computation:

Lemma A.3. If I is any complete radical ideal which is also a \mathbb{Q}-vector space, then \ln induces a group epimorphism

$$1 + I \xrightarrow{\ln} I/[I, I].$$

Corollary A.4. If I is a complete radical ideal in a ring A which contains \mathbb{Q}, then \ln induces a surjection $K_1(A, I) \rightarrow I/[A, I]$.

Proof. Fix $a \in A$ and $x \in I$, and set

$$y = x + \sum_{i=1}^{\infty} x(-ax)^i/(i+1) = x + \sum_{i=1}^{\infty} (-xa)^i x/(i+1).$$

Then modulo $[A, I]$ we have that

$$\ln((1 + ax)(1 + xa)^{-1}) = \ln(1 + ax) - \ln(1 + xa) = ay - ya = 0.$$
In trying to construct an inverse to the map of A.3, we are led to consider \(\exp([I, I]) \). Note that for every \(n \) the set \(\exp([I, I^n]) \) is a subgroup of \(1 + I \) by Campbell–Hausdorff.

Lemma A.5. If \(a \in A \), \(x \in I \) and \(y \in I^n \), then

(i) \(\exp(x + y) \exp(-x) \exp(-y) \) is in \(\exp([I, I^n]) \).

(ii) \(\exp(xa) \exp(-ax) \) is in \(W(A, I) \).

Proof. There are \(u, v, u' \in I \) and \(v', v'' \in I^n \) such that

\[
\exp(x + y) \exp(-x) \exp(-y) = \exp\left(y + [u, x] + [v, y]\right) \exp(-y) = \exp\left([u, x] + [v, y] + [u', y] + [v', [u, x]] + [v'', [v, y]]\right).
\]

We claim that \([u, x]\) is in \([I, I^n]\). To see this, note that by the Campbell–Hausdorff formula we can write \(u = u_1 + u_2 \), where \(u_1 \in I^n \) and \([u_2, x] = 0\). This establishes (i). For (ii), note that

\[
z = x + \sum_{i=1}^{\infty} x(ax)^i/(i+1)! = x + \sum_{i=1}^{\infty} (xa)^i x/(i+1)!
\]

satisfies \(1 + za = \exp(xa) \) and \((1 + az)^{-1} = \exp(ax)^{-1} = \exp(-ax) \).

Proposition A.6. When \(I \) is a nilpotent ideal which is also a \(\mathbb{Q} \)-vector space, then

(i) \(\exp([I, I]) = W(\mathbb{Q} \oplus I, I) \).

(ii) \(\exp \) induces a (well-defined) group epimorphism:

\[
I \xrightarrow{\exp} (1 + I)/W(\mathbb{Q} \oplus I, I) = K_1(I).
\]

Proof. Since \([\mathbb{Q} \oplus I, I] = [I, I]\), A.4 implies that \(W(\mathbb{Q} \oplus I, I) \) lies in \(\exp([I, I^n]) \). We show by descending induction on \(n \) that \(\exp([I, I^n]) \) lies in \(W(\mathbb{Q} \oplus I, I) \), the case \(n = 0 \) being given. For \(x \in I \), \(y \in I^n \) we have

\[
\exp([x, y]) \exp(yx) \exp(-xy) = \exp(xy + [u, [x, y]] + [v, xy]) \exp(-xy) = \exp(w), \quad w \in [I, I^{n+1}].
\]

The result follows from A.5.
THEOREM A.7. Let I be a nilpotent ideal in a ring A containing \mathbb{Q}.

(i) $W(A, I) = \exp([A, I])$

(ii) \exp and \ln induce an isomorphism $K_i(A, I) \cong I/[[A, I]]$.

Proof. We need only show that $\exp([A, I])$ is contained in $W(A, I)$, since we can then cite A.4 and A.6. But modulo $W(Q \oplus I, I)$, Lemma A.5 shows that $\exp(\Sigma [a_i, x_i]) = \Pi \exp([a_i, x_i])$, which is in $W(A, I)$.

REFERENCES

