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Abstract 

A preliminary study on the interaction between molecules of absorbent for CO2 absorption was undertaken using 
Gaussian 03 molecular simulation software. The results indicate that the molecular interaction energy has strong 
correlations with Henry’s constant. The lower interaction energy between molecules, solvent molecules form an 
"associated complex" more stability, and therefore the worse the effect of CO2 absorption. 
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1 Introduction 
In an effort to mitigate CO2 emissions, a result of the world-wide consumption of fossil fuels [1], 

the United States Department of Energy is expected to develop commercial fossil fuel conversion systems 
by the year 2020, which would remove at least 90% of CO2, and keep the increase in the cost of 
electricity below 10% [2]. One vision of such innovative clean energy is to produce power from coal 
using the integrated gasification combined cycle (IGCC) [3].  IGCC combined with “Carbon dioxide 
Capture and Storage (CCS)” technology has attracted wide attention in the field of CO2 emission 
reduction. However, the cost of existing CO2 capture technologies is still too high. Utilization of large-
solubility and low-cost absorbent for CO2 capture in IGCC can effectively reduce the electricity price 
increase caused by addition of CO2 removal unit. As it needs to trap CO2 before combustion under high 
pressure in IGCC, physical absorption is considered to be a better choice [4]. A large number of physical 
solvents have been developed, such as H2O [5-7], methanol [8-11], propylene carbonate [12.13] and 
polyethylene glycol dimethyl ether[14.15], but the absorption performance of these solvents is not very 
good and capture cost is still very high.  
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How to choose an excellent absorbent is the key of reducing capture cost. As screening only 
depending on experiments is time-consuming it is urgent to develop the effective theoretical model to 
guide the screening of absorbent.  In the past more than 30 years, several theories and approaches have 
been presented, such as solubility parameter model [16-19], excess Gibbs free enthalpy model [20, 21]. 

However the above models are always semi-empirically obtained through thermodynamic correlations 
and lack of support of basic molecular interaction theory. This makes application of the theory by a 
certain degree of limitation. It is necessary to explore further in prediction of absorbent based on 
microscopic interaction. 

Molecular interaction is always a hot research area in chemistry sciences [22]. It also is the basis 
revealed physical and chemical properties of substance. In early 30 s London classified the molecular 
interaction into four parts, electrostatic interaction, dispersion, exchange-repulsion and induction, referred 
to as Van der Waals interaction. In 1935, with the proposal of hydrogen bond  the molecular 
interaction study entering into a new stage of development. Theoretically exact calculation of molecular 
interaction has become the most important tools revealing the physical and chemical properties of 
substances. Gaussian simulation approach is one of theory of the fastest growing in recent years [23-27]. 
Based on molecular orbital theory of electron motion and through solution of Schrodinger equation it can 
reveal the information of molecular structure, charge distribution, binding energy between atoms, etc.  

Due to the better predicting results in this paper Gaussian approach is used to simulation and study the 
absorption performance of absorbent for CO2.

2 Simulation and Experimental 
It is reported that [16] solubilization of gas solute in a physical solvent accompanied with the de-

construction of solvent molecule association. The stronger interaction of solvent molecule and the more 
stable association, the more gas is not dissolved into solvent. So study on interaction of solvent molecule 
can provide the assistance for screening of absorbent. 

Molecular interaction E is calculated as: 

i
iT EEE

Where, ET is the total energy of association system, Ei is the energy of sub-system, i
i

E  is the sum of 
all sub-system energy. 

In this paper in order to simplifying calculation the total energy of solvent is approximated by 
interactions between two molecules. So, formula (1) can be rewritten as  

)(2)2( AEAEE
In the above calculation, balance calibration method (CP) [41] is used to eliminate the basis function 

overlap errors (BSSE). After correction formula (3) is rewritten as  

BSSEAEAEE )(2)2(
On this basis, through explore the correlation between the interaction energy and the Henry’s constant 

obtained by experiments, it will provide assistance to predict the absorption performance of absorbents.  
2.1 Simulating approach 
(1) Optimization of molecular structure 

Continuously adjust dihedral angles of bond orbit until interaction minimum, the optimum molecular 
structure is achieved. 
(2) Calculation of interaction energy 

Moller-Plesset MP approach is used in calculation of interaction energy in formula (3). MP 
method is a high-level molecular orbital theory based on quantum chemical calculation methods.This 
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method is based on Hartree-Fock self-consistent field theory can provide the approximate solution of 
multi-electron system with adapting of micro perturbation theory. As considering fully the electro impacts 
MP approach has been used widely in studies of molecular interactions [28-37].

In above calculation, 6-311++G(d p) basis sets including dual-polarization functions and diffuse 
functions were chosen as the basis functions. The final results were calculated by Gaussian 03. 
2.2 Experimental 

CO2 of 99.99 (vol. %) purity was supplied by BeiWen Gas in Beijing. The solvent, Ethylene glycol 
mono-ethyl ether acetate (EGEA), 2,3-pentane-dione, 2,3–butanedione, 2-heptanone, butyl acetate, propyl 
acetate, ethyl acetate, Dimethoxy methane, 2 – Pentanone, Diethyl carbonate, methyl acetate, 2-butanone, 
Dimethyl malonate, dimethyl carbonate, acetone, Diethylene glycol mono-ethyl ether(DGME), 
Diethylene glycol monomethyl ether (DGMM), Propylene carbonate, Ethylene glycol monoethyl ether 
(EGME), ethylene glycol mono-methyl ether (EGMM), n-Butanol, iso-propanol, n-propanol, 1,3-
Propylene glycol,ethylene glycol,  were all purchased from Aladdin-reagent Company in Shanghai with 
the same weight fraction of 0.999. All components were used without further purification. 

Apparatus and data procedure in this work was based on the constant volume method and reported in 
previous work [38]. 

 
3 Results and Discussion 

The molecular interaction energy calculated of solvents by Gaussian 03 and Henry’s constants of 
solvents are listed in Table 1. 

Table 1 Molecular interaction energy and Henry’s constants of solvents (25 C) 
Solvents 

Name   
Molecular 
formula 

Esolvent 
/kcal mol-1 

Esolvent-Solvent 
/kcal mol-1 

E/kcal mol-1 Henry’s 
constant/25  

      

EGEA C6H12O3 -460.031628 -920.071025 -0.007769 3.8136 

2,3-Pentane-dione  C5H8O2 -344.663571 -689.335333 -0.008191 4.13 

2,3- Butane-dione C4H6O2 -305.519286 -611.047142 -0.00857 4.64 

2-Heptanone C7H14O -349.113624 -698.236129 -0.008881 5.0127 

Butyl acetate C6H12O2 -385.012402 -770.033728 -0.008924 5.02 

Propyl acetate C5H10O2 -345.85888 -691.726853 -0.009093 5.1803 

Ethyl acetate C4H802 -306.690174 -613.389511 -0.009163 5.372 

Di-methoxy methane C3H8O2 -268.664262 -537.337734 -0.00921 5.4561 

2 - Pentanone C5H10O -270.804838 -541.618968 -0.009292 5.5744 

Diethyl carbonate C5H10O3 -420.89244 -841.794252 -0.009372 5.6851 

Methyl acetate C3H6O2 -267.499132 -535.007859 -0.009595 5.9125 

2-Butanone  C4H8O -231.65029 -463.310268 -0.009688 6.0576 

Dimethyl malonate C5H8O4 -494.758441 -989.526648 -0.009766 6.1375 

Dimethyl carbonate C3H6O3 -342.573596 -685.157018 -0.009826 6.1823 

Acetone  C3H6O -192.497978 -385.005758 -0.009802 6.2091 

DGME C6H14O3 -461.152038 -922.314271 -0.010195 7.45 

DGMM C5H12O3 -421.999548 -844.009407 -0.010311 8.13 

Propylene carbonate C4H6O3 -380.572929 -761.156354 -0.010496 8.3451 
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EGME C4H10O2 -307.829947 -615.670416 -0.010522 8.3775 

EGMM C3H8O2 -268.667585 -268.689019 -0.010717 9.5669 

n-Butanol  C4H10O -232.806437 -465.62377 -0.010896 12.3107 

Iso-Propanol C3H8O -193.660937 -387.333067 -0.011193 12.5717 

n-Propanol C3H8O -193.652959 -387.317177 -0.011259 12.8466 

Ethanol C2H6O -154.499799 -309.011395 -0.011797 13.2959 

Methanol  CH4O -115.340861 -230.693673 -0.011951 13.621 

1,3-Propylene glycol C3H8O2 -268.693717 -537.400626 -0.013192 38.123 

Ethylene glycol C2H6O2 -229.532702 -459.079782 -0.014378 47.6813 

Interaction energy data in Table 1 are correlated with the Henry’s constant and shown in Fig.1. 

Interaction energy E/ Kcal mol-1
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Fig 1 Correlation between interaction energy with Henry’s constant 

It is indicated that the interaction energy quantifying calculated by Gaussian 03 without any 
empirical parameters can predict the absorbent performance. As shown in Fig.2, Solvent interaction 
energy the higher the absolute value, the worse the effect of solvent absorption, As hydrogen bond 
interaction is stronger, alcohols have the high molecular interaction energy and poor absorption effects. 
While ethers, esters have significantly smaller molecular interaction, therefore these solvents are more 
suitable for capture CO2 as an absorbent. 

 
 4 Conclusions 

A preliminary study on the interaction between solvent molecules was undertaken using Gaussian 
03 molecular software. The results indicate that the relevance between molecular interaction energy and 
Henry’s constant is very high. The lower interaction energy between molecules, solvent molecules form a 
"polymer" more stability, and therefore the worse the effect of CO2 absorption.This means that the 
Gaussian 03 software can provide the reference framework for prediction of CO2 absorbent. 
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