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Hemocyanin transports oxygen in the hemolymph of many molluscs and arthropods and is therefore a
central physiological factor in these animals. Molluscan hemocyanin molecules are oligomers composed of
many protein subunits that in turn encompass subsets of distinct functional units. The structure and evolu-
tion of molluscan hemocyanin have been studied for decades, but it required the recent progress in DNA se-
quencing, X-ray crystallography and 3D electron microscopy to produce a detailed view of their structure and
evolution. The basic quaternary structure is a cylindrical decamer 35 nm in diameter, consisting of wall and
collar (typically at one end of the cylinder). Depending on the animal species, decamers, didecamers and
multidecamers occur in the hemolymph. Whereas the wall architecture of the decamer seems to be invariant,
four different types of collar have been identified in different molluscan taxa. Correspondingly, there exist
four subunit types that differ in their collar functional units and range from 350 to 550 kDa. Thus, molluscan
hemocyanin subunits are among the largest polypeptides in nature. In this report, recent 3D reconstructions
are used to explain and visualize the different functional units, subunits and quaternary structures of mollus-
can hemocyanins. Moreover, on the basis of DNA analyses and structural considerations, their possible evo-
lution is traced. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.

© 2013 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Hemocyanins are the blue respiratory proteins in the hemolymph
of many molluscs and arthropods. They have a binuclear copper ac-
tive site, with two copper ions complexed by six histidine residues.
Between the two coppers, a dioxygen molecule is reversibly bound
(Fig. 1A). This copper type-3 center is also present in the tyrosinases,
catecholoxidases and phenoloxidases, and it is assumed that the he-
mocyanins evolved from tyrosinase-like ancestral oxygen-binding
proteins [1–6]. According to DNA sequencing, molecular phylogeny
and molecular clock calculations this occurred ca. 740 million years
ago in case of molluscan hemocyanin [7,8] and, independently, less
than 600 million years ago in case of arthropod hemocyanin [9].
Apart from their similar active site, molluscan and arthropod hemocya-
nins have in common that they are very large, multimeric, extracellular
proteins. Moreover, they readily dissociate at alkaline pH (e.g. pH 9.6)
into functional subunits and reassemble at near-to-neutral pH
(e.g. pH 7.5) into their original quaternary structure; in many cases,
icroscopy; FU, functional unit;
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the latter additionally requires the presence of Ca2+ and Mg2+ ions
(for review, see [1]). On the other hand, the primary, ternary and
quaternary structure of arthropod and molluscan hemocyanin is so dif-
ferent that they are considered as two distinct protein superfamilies.

In this review, arthropod hemocyanins are not further discussed.
For recent data on the structure and evolution of arthropod hemocy-
anins, see [4,10–18]. The present report will exclusively focus on mol-
luscan hemocyanins, combine recent results of DNA sequencing and
3D electron microscopy and trace the evolution of the different mol-
luscan hemocyanin structures that have been discovered to date. I
will not review here the wealth of functional studies on molluscan
hemocyanins. They reveal the specific oxygen-binding properties of
many different hemocyanins, and attempt to connect these specific-
ities to specific physiological and/or environmental constraints of
the respective animal (for a review of such data, see [1]). Molluscan
hemocyanin is synthesized in special cell types [19–21] and then re-
leased into the hemolymph.

Molluscan hemocyanins are based on a subset of paralogous func-
tional units (FUs). They usually have a molecular mass of 45–50 kDa
corresponding to ca. 420 amino acids (Fig. 1B). Crystal structures of
several FU types are in the databases [22–25]. The usual number of
FU types within the subunit is eight, termed FU-a to FU-h. They
are sequentially arranged like a pearl chain along the polypeptide
subunit, with connecting peptide linkers 10–20 amino acids in length
(Fig. 1C). From a variety of molluscan hemocyanins, the complete
subunit sequence is now available (e.g. [7,26–31]). The subunits
form very large quaternary structures that can be readily seen in the
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Fig. 1. Structure of the molluscan hemocyanin subunit. (A) Active site with two copper ions (orange), six histidine residues and a bound dioxygen molecule (red). (B) A functional
unit, with the atoms of the single active site highlighted as spheres (PDB-ID 1JS8 [22]). The hinge connecting the α-helical core domain and the β-sandwich domain allows some
movement which influences the oxygen binding [4]. (C) Scheme of a molluscan hemocyanin subunit with eight different functional units (as in many gastropods). N, N-terminus;
C, C-terminus.

1841J. Markl / Biochimica et Biophysica Acta 1834 (2013) 1840–1852
transmission electron microscope (Fig. 2). The basic molluscan hemo-
cyanin quaternary structure is the decamer, a cylinder 35 nm in di-
ameter and 18 nm in height, containing ten subunits with identical
sequence. In its most simple but rarely seen form [32], the decamer
is exclusively consisting of a wall (Fig. 2A). Usually, it is not hollow
but partially filled by a structure designated as the collar. Moreover,
in the majority of taxa two decamers are assembled into didecamers,
and also tubular multidecamers occur (Fig. 2B). An exception from
this common scheme is the recently detected mega-hemocyanin
[33] that is completely filled with an internal structure (Fig. 2C).
100 nm

*

B

A 100 nm

Fig. 2. Electron microscopy of three gastropod hemocyanins. (A) Biomphalaria glabrata hemocy
top views; note lack of a collar. Insert: A side view from another micrograph, exhibiting the th
hemocyanin. In top view orientation (asterisk), the outer wall and the internal collar are direct
arrow), but solitary decamers (arrow) and tridecamers (triple arrow) are also present. Trideca
closed faces pointing outwards) and a decamer (attachedwith its open face to a closed face of th
length (not shown). (C) Leptoxis carinatamega-hemocyanin. Note the presence of tridecamers (
(A) for comparison. Mega-didecamers (double arrow) andmega-decamers (arrow) are also pre
a Tecnai-12 electron microscope by Dr. Wolfgang Gebauer.).
For studying molluscan hemocyanin quaternary structures, trans-
mission electron microscopy (EM) is the method of choice. The first
molluscan hemocyanin model based on EM images was published
in 1972 in the classical work of Mellema and Klug [34] and was
refined two years later in a fundamental paper by Siezen and van
Bruggen [35]. In the following decades the overall subunit and qua-
ternary structure, and disassembly/reassembly properties, of many
molluscan hemocyanins were studied, notably by the van Bruggen
group in the Netherlands (e.g. [36–40]), the Lontie group in Belgium
(e.g. [41–45]), the Herskovits group in the USA (e.g. [46–56]), the
C

100 nm

anin. This hemocyanin is exclusively present as solitary decamers [32] and visible here as
ree-tiered wall (larger diameter due to flattening on the EM grid). (B) Lymnaea stagnalis
ly visible. As in most gastropods, the major hemocyanin particle is the didecamer (double
mers consist of a didecamer (i.e. two decamers assembled at their open faces, with their
e didecamer). Attachment of additional decamers yields tubularmultidecamers of varying
triple arrow) that are completelyfilledwith amass [33]. See the semi-hollow tridecamer in
sent. (The sampleswere negatively stainedwith 2% uranyl acetate and images recorded in



Table 1
Subunit structures of molluscan hemocyanins discovered up to now.

Major groups Subtaxa Subunit structure1 Ref.

Gastropoda Patellogastropoda
Patella, Lottia

Lack hemocyanin DNA 2

Vetigastropoda
Megathura, Haliotis

a–b–c–d–e–f–g–h [7, 8, 27, 101]

Caenogastropoda
Neogastropoda Rapana

a–b–c–d–e–f–g–h
a–b–c–d–e–f + g–h

[75, 99]

Caenogastropoda
Cerithioidea Melanoides

a–b–c–d–e–f–g–h
a–b–c–d–e–f –f1–f2–
f3–f4–f5–f6

[33]; DNA 2

Heterobranchia
Opisthobranchia Aplysia

a–b–c–d–e–f–g–h [30]

Heterobranchia
Pulmonata
Helix

a–b–c–d–e–f–g–h [31]

Biomphalaria a–b–c–d–e–f 3 [32]
Bivalvia Protobranchia a–b–c–d–e–f–g–h [29]

All others Lack hemocyanin [1]
Cephalopoda Nautiloidea

Nautilus
a–b–c–d–e–f–g [28,100]

Octopodiformes
Octopus

a–b–c–d–e–f–g [26]

Decapodiformes
Sepia

a–b–c–d–d *–e–f–g [59, 98]
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Lamy group in France (e.g. [57–63]), the van Holde group in the
USA (e.g. [22,26,64–68]) and our group in Mainz, Germany
(e.g. [7,8,27,28,30,68–86]), but also by many others (e.g. [31,87–99]).
Over time models of the quaternary structure gradually improved
with the raise of 3D electron microscopy (3D-EM), a method that was
first applied to molluscan hemocyanins by the Lamy group [58–63]. Ul-
timately, by using shock-frozen specimens, advanced 3D-EM methods
and the currently available digital imaging computer power, our
group published 3D reconstructions of two molluscan hemocyanins at
sub-nanometer resolution, and their atomistic models [100,101].

The different molluscan hemocyanin structures will be explained
here, and the combined structural knowledge will be used to trace
their evolution. Instead of original 3D reconstructions of the quater-
nary structure, in most cases simulated hybrid models are shown
here for better clarity. They were simulated at 7 Å resolution by the
software UCSF Chimera [102], using the PDB model of the respective
whole molecule as template. These holistic PDB models have been
obtained as published [100,101]: Homology models of the different
functional units were calculated by using their amino acid sequence
as target and published crystal structures as template. Then, the indi-
vidual FUmodels were docked to the 3D density map of the quaterna-
ry structure that was obtained by 3D electron microscopy.
Polyplacophora a–b–c–d–e–f–g–h [70,108];
DNA 2

Monoplacophora a–b–c–d–e–f–g–h DNA 2

Scaphopoda Lack hemocyanin DNA 2

Caudofoveata a–b–c–d–e–f–g–h [85]
Solenogastres Lack hemocyanin [85]

1 Note that in the different taxa only a small percentage of the species has been studied.
2 Unpublished DNA analysis (Bernhard Lieb, Jürgen Markl and colleagues).
3 Subunit structure as predicted from EM images of the decamer. In all other cases, the

subunit structure was deduced from direct biochemical data and/or the amino acid
sequence.
2. Hemocyanin sequences and gene structures are available from
different molluscan taxa

The usual and most probably the ancestral number of different
functional units in molluscan hemocyanins is eight, resulting in a
400 kDa polypeptide subunit (ca. 3400 amino acids) with the struc-
ture a–b–c–d–e–f–g–h (see Fig. 1C). The first complete sequence of
a molluscan hemocyanin FU was unraveled in 1987 [103]. In 1998,
the full-length sequence of a cephalopod hemocyanin subunit (from
Octopus=Enteroctopus dofleini) was published [26]; this subunit has
the seven-FU structure a–b–c–d–e–f–g (Table 1). The different FU
types share sequence identities of ~45% and are similar in size (45–
50 kDa; ~420 amino acids). The first complete sequence of a gastro-
pod hemocyanin (from Haliotis tuberculata), published in 2000,
allowed construction of a phylogenetic tree and calculation of a mo-
lecular clock [7]. The Haliotis hemocyanin sequence also included
FU-h (see Table 1). This C-terminal FU type has a molecular mass of
60 kDa, due to an additional tail of ca. 100 amino acids. The sequence
of this tail was found to be unrelated to hemocyanin and also to all
other proteins in the databases. However, X-ray crystallography re-
cently revealed a relationship to the cupredoxins [24].

Comparison of the gene structure of Octopus and Haliotis hemocy-
anin unraveled a concatenation of exons encoding the different FUs
[68]. These exons are connected by strictly conserved phase 1 “linker
introns” and may be interrupted by varying “internal introns” (Fig. 3).
This suggests that the linker introns are very ancient; presumably,
they are required for correct transcription of the hemocyanin gene.
In contrast, the internal introns have been inserted significantly
later in evolution and might lack a functional meaning [68].

Hemocyanin subunit sequences are available, in full length, also
from other molluscs, e.g. the opisthobranch gastropod Aplysia [30] and
the bivalve Nucula [29]. The present review will focus on six hemocya-
nins that have been completely sequenced and together allow discus-
sion of the different molluscan hemocyanin quaternary structures and
their possible evolution: Nautilus pompilius hemocyanin (NpH), Sepia
officinalis hemocyanin (SoH1), two isoforms of keyhole limpet hemocy-
anin (KLH1 and KLH2), and two isoforms of Melanoides tuberculata
hemocyanin (MtH1 and MtH2). A phylogenetic tree encompassing the
functional units of these six hemocyanin species is shown in Fig. 4. The
eight FU types constituting the subunit structure a–b–c–d–e–f–g–h
evolved together in the late Precambrian, most probably by subsequent
exon duplication and evolution events [7,68]. Later in evolution, several
additional FU types branched off from FU-d and FU-f, respectively, and
also losses of certain FU types occurred in specific taxa (see Table 1).
3. Most FU types have two domains, but FU-h has a third domain
that is cupredoxin-like

For FU-g, FU-e and FU-h crystal structures are available [22–25].
They each show a single active site (see Fig. 1B) and the distribution
of secondary structure elements within a core domain and a
β-sandwich domain (Fig. 5A, B). This distribution is very similar in
the three crystallized FU types. The other FU types share these struc-
tural features, as deduced from their sequences. This then allowed
reliable homology modeling of those FU types for which no crystal
structure is yet available [100,101].

FU-h is different in that its additional 100 amino acids constitute a
third domain (Fig. 5C, D). Although the sequence identity is too low to
detect a phylogenetic relationship by BLAST searches, comparative
crystal structure analyses unraveled a cupredoxin-like fold of this
tail [24,25]. Cupredoxins are usually mono-copper proteins but some-
times have lost their copper active site, which is also the case with the
cupredoxin-like domain in FU-h. Originally, this domain in hemocya-
nin might have served to replenish lost copper to the active site as is
the case with the “caddy protein” of some tyrosinases [6]. Today this
domain is a structural element of the collar: It serves as a bridge with-
in the antiparallel FU-h dimer that occurs not only in the protein
crystal (see Fig. 5D), but also in the quaternary structure ([101]; see
Fig. 8D). Correspondingly, the association mode of the antiparallel
FU-g dimer found in the protein crystal (see Fig. 5B) exists also in
the native oligomer ([100,101]; see Fig. 8B, C). In contrast, the trimer-
ic repeating unit in the FU-e crystal [23] does not correspond to any
FU arrangement within the quaternary structure [100,101].
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Fig. 3. Gene structure of the hemocyanin subunit from a mollusc (Haliotis tuberculata). The exons encoding the eight functional units are separated by phase 1 “linker” introns and
interrupted by “internal” introns. The linker introns are strictly conserved in position and phase, the internal introns can vary from species to species in number, position and phase
[68]. S, region encoding the signal peptide.
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4. Ten copies of a–b–c–d–e–f constitute the conserved wall of the
hemocyanin decamer

Biomphalaria glabrata is a planorbid snail using, as oxygen carrier,
multimeric hemoglobin instead of hemocyanin [32]. In addition,
traces of a “rudimentary” hemocyanin are expressed. It is a decamer
exclusively consisting of only a wall (see Fig. 2A). This molecule
demonstrates that the quaternary structure of molluscan hemocy-
anin remains stable even if the collar is lacking. Biomphalaria
hemocyanin is based on a 300 kDa subunit with six FUs and the
tentative FU structure a–b–c–d–e–f ([32]; see Table 1). As de-
duced from the combined biochemical and electron microscopical
data collected until now, the cylinder wall of molluscan hemocya-
nin is generally formed by ten copies of the subunit segment a–b–
c–d–e–f, whereas the remaining FU types constitute the collar
[1,100,101].

Moreover, the structural repeating unit of the 35 nmmolecule is not
the subunit, but the subunit dimer (Fig. 6A); the decamer is constituted
by five obliquely oriented subunit dimers [35,72]. The architecture
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X. KLH1/KLH2, keyhole limpet (Megathura crenulata) hemocyanin type 1 and type 2 (Ge
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of the cylinder wall was solved by 3D electron microscopy at sub-
nanometer resolution of N. pompilius hemocyanin (NpH) and keyhole
limpet hemocyanin (KLH1), yielding overall atomistic models. They
were constructed by docking homology-modeled FUs to the respective
cryo-EM structure, and revealed the following features [100,101]:
(i) Within the subunit dimer of both hemocyanins, the two a–b–c–d–
e–f segments are arranged in an antiparallel manner, exhibiting perfect
two-fold (dyad) rotational symmetry (see Fig. 6A). (ii) The subunit
pathwaywithin thewall could be reliably traced (Fig. 6B) andwas iden-
tical in the cephalopod and the gastropod hemocyanin. (iii) In the atom-
istic model of the wall (Fig. 6C, D), themolecular interfaces between FU
types could be defined at the level of individual amino acid residues
[100,101].

Docking of FUs to the cryo-EM structures was greatly facilitated by
our discovery that the ovoid crystallographic dimer of OdH-g (see
Fig. 5B) fitted exactly the “morphological units” that constitute the
wall [100,101]. Morphological units are visible, in low resolution
structures of molluscan hemocyanins, as single masses and represent
FU dimers [58,80]. In other words, the specific dimeric association
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rmed MtH2550; entry KC405576); NpH, chambered nautilus (Nautilus pompilius) hemo-
the second isoform SoH2 is omitted here). Note that FU-h is missing in the two ceph-
ovel functional units evolved.
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mode of OdH-g in the crystal is also characteristic for the six wall FU
types. This pairing occurs within each subunit, in the combinations
a+b, c+f and d+e (see the brackets in Fig. 6B; see also Fig. 8B).

5. A collar consisting of ten g–h segments might be archetypical

Most gastropod hemocyanins are based on a 400 kDa subunit,
encompassing the canonical wall segment a–b–c–d–e–f plus the collar
segment g–h (see Fig. 1C). This eight-FU hemocyanin subunit also
occurs in Bivalvia [29] and has been found in members of the
Polyplacophora, Monoplacophora and Caudofoveata (see Table 1). As
deduced from the FU phylogeny (see Fig. 4) and molecular clock, the
subunit structure a–b–c–d–e–f–g–h evolved ca. 740 million years ago
[7,8,85]. This is significantly older than the Cambrian “explosion” of
the animal kingdom that dates back ca. 540 million years. Therefore,
decamers constituted by this 400 kDa subunit should represent the
molluscan hemocyanin archetype. Within the collar of such decamers,
the five FU-g pairs form five “arcs” connecting adjacent subunit dimers
[58,60,80], whereas the five FU-h pairs form the single peripheral annu-
lus [79,104,105]. This endows the semi-hollow decamer with an “open
face” and a “closed face” (Fig. 7A,B).

The atomistic model of KLH1 [101] revealed the subunit pathway
in the wall (Fig. 7C), and the shape and FU topology of the subunit
dimer (Figs. 7D, E and 8A). It also showed the FU pairing within the
three types of morphological unit constituting the wall (Fig. 8B; see
also Fig. 6B). This association mode is known from the crystal
structure of OdH-g (see Fig. 5B); it is also observed within the five
arcs (FU-g pairs) of KLH1 (Fig. 8C). The structure of the FU-h ring is
Fig. 7. The typical gastropod hemocyanin decamer. Structure simulated at 7 Å resolution from
FU-g copies (cyan) assembled in pairs (as in Fig. 5B). (B) Top view, exposing the closed fa
Fig. 5D). (C) Side view, with a subunit dimer and the FU-h ring highlighted in colors. Note
tiers, whereas FU-d (orange) and FU-e (purple) occupy the central tier of the wall. Also not
dimer. Note that the FU-h pair (for the latter, see Fig. 5D) connects the two constituent sub
subunit dimer of Nautilus hemocyanin; see Fig. 10). Note the gap between both FU-g copie
FU-g pairs visible in (A) connect adjacent subunit dimers. The original 9 Å cryo-EM structu
different, due to the additional third domain (Fig. 8D). The peculiar
switch from an antiparallel subunit pairing in the wall to a parallel
pairing in the collar could be explained on the basis of two distinct
subunit conformers [100,101]. They possess the same primary struc-
ture but differ in the spatial arrangement of their collar FUs (see
Fig. 8A). These FU conformers have previously been designated as
g1–h1 and g2–h2 [100,101]. However, this led to their confusion
with hemocyanin isoforms such as KLH1 and KLH2. (For example, in
ref. [106] Fig. 11, subunit structure images that have been taken
from ref. [101] Fig. 3, are misinterpreted.) Therefore, I use here g–h
and g′–h′ for discriminating the conformers (see Fig. 8).

The atomistic model of KLH1 (available under PDB-ID 4BED) fits
also the 7.8 Å cryo-EM structure of Haliotis diversicolor hemocyanin
(HdH1) recently deposited by a group in China (EMDB-ID 1648).
The cryo-EM structures of KLH1 and HdH1 differ slightly in size, but
reducing the voxel size of the HdH1 structure from 1.05 to 1.03 yields
a perfect fit. (This size difference might result from mutual tiny cali-
bration deviances during the independent reconstruction processes.)
The 7.8 Å cryo-EM structure of HdH1 shows many α-helices and other
striking details. They are perfectly correlated with corresponding struc-
tures in our atomistic model of KLH1, thereby fully confirming the
latter.

6. The subunit type a–b–c–d–e–f–g–h allows formation of
di- and multidecamers

In samples of gastropod hemocyanin, single decamers are occa-
sionally observed, but the majority of molecules are didecamers in
the atomistic model of KLH1 [101]. (A) Top view, exposing the open face; note the ten
ce; note the annulus consisting of ten FU-h copies (golden) assembled in pairs (as in
that FU-a (red), FU-b (yellow), FU-c (green) and FU-f (blue) occupy both peripheral
e the FU-h ring protruding from the closed face of the decamer. (D) Extracted subunit
units. (E) Extracted subunit dimer with FU-h removed (thereby corresponding to the
s (cyan), illustrating that they have no contact within the subunit dimer. Instead, the
re is available under EMDB-ID 1569.
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Fig. 8. Wall and collar elements of the typical gastropod hemocyanin. Structures simulated at 7 Å resolution from the atomistic model of KLH1, and ribbon representations of the
latter. (A) Subunit dimer viewed from inside the cylinder cavity. The two symmetrically assembled wall segments a–b–c–d–e–f are depicted in light and dark gray, respectively. The
asymmetrically arranged collar segments g–h (light subunit) and g′–h′ (dark subunit) are different conformers of the same type of polypeptide. Note that FU-g and FU-g′ are well
separated, in contrast to the situation in (C). (B) The six wall FUs in their typical pairing that occurs within each subunit (see also Fig. 6B). Each pair represents a morphological unit
and is assembled like the OdH-g pair in the crystal structure (see Fig. 5B). (C) The complete collar, with the FU-h ring viewed from the side and the five FU-g pairs underneath. Note
that g–h and g′–h′ stem from adjacent subunit dimers, in contrast to the situation in (A). Also note that dimerization of FU-g occurs as in the crystal structure of OdH-g (see Fig. 5B).
The protrusion (arrow) of FU-g′ is the stretched linker to FU-f which in the adjacent conformer FU-g is folded in a different way. (D) Terminal annulus of the collar composed of five
FU-h dimers; note that the arrangement of the constituent FUs is exactly as in the crystal structure of KLH1-h (see Fig. 5D).
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which the two decamers dimerize at their open faces (see Fig. 2B). To
a “nucleating” didecamer, an additional decamer is often attached by
its open face, resulting in a tridecamer (see Fig. 2B); attachment of
further decamers yields multidecamers that can be remarkably long
(for images, see [73]). Also, some bivalve hemocyanins are capable
of forming such multidecamers [29,96]. The biological role of these
tubular multimers is unclear, but their structure has been elucidated
by 3D electron microscopy [33,101]: Within the didecamer, the two
decamers are rotated, with respect to each other, by 36° around the
fivefold axis of symmetry (Fig. 9A, B). In tri- and multidecamers
(Fig. 9C), the additional decamers are attached with the same rotation
angle of 36° [33].

Within the Gastropoda, there are species with excessive
multidecamer formation, and other species with complete restric-
tion to the didecamer level. Even within the same animal, different
hemocyanin isoforms can behave differently in this respect: In case of
keyhole limpet (Megathura crenulata) hemocyanin, isoform KLH2
forms a mixture of di- and multidecamers, whereas isoform KLH1 is
limited to the didecamer level, at least in vivo. Only in some experimen-
tal in vitro buffer systems, KLH1 produces multidecamers as well [76].
Structural comparison of KLH1 and KLH2 demonstrated that their FU
complement coincides [78,83]. Moreover, due to the D5 pointgroup
symmetry of the wall, the amino acid residues at the potential
inter-decamer interfaces are identical at both cylinder openings of a
given hemocyanin; from this it would not matter at which face the
two decamers assemble. The only difference between the two faces is
the FU-h ring. Indeed in KLH1, a sugar side chain protruding from
FU-h seems to impede docking of a decamer at the closed face of the
cylinder [101].

The opposite phenomenon occurs in some polyplacophoran
(chiton) hemocyanins in that they are restricted to the decamer
level, whereas the hemocyanin of other chiton species is didecameric.
Despite this difference, they all possess the classical eight-FU subunit.
Sequence analyses revealed that the chiton taxon with decameric he-
mocyanin shows a specific deletion at the inter-decamer interface
(Bernhard Lieb, Jürgen Markl and coworkers, unpublished data).

7. The cephalopod hemocyanins lost FU-h, and the ten-armed
cephalopods doubled FU-d

Cephalopodhemocyanin does not assemble beyond single decamers
and lacks FU-h [1]. Octopus and Nautilus hemocyanin are based on a
seven-FU subunit a–b–c–d–e–f–g of 350 kDa ([26,28]; see Table 1).
The exact pathway of this subunit within the subunit dimer, with
the segment a–b–c–d–e–f in the wall and FU-g in the collar
(Fig. 10A-C), has been traced by docking homology-modeled FUs to
a sub-nanometer cryo-EM structure of the Nautilus hemocyanin
decamer [72,100]. This subunit pathway has been confirmed by our
study on KLH1 [101] and differed in some aspects from all themodels
published previously (see discussion in [100]).

Moreover, we discovered that like in KLH1, the five FU-g pairs
(arcs) break the perfect dyad symmetry of the decamer by being
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Fig. 10. Cephalopod hemocyanin decamers. (A) Top view of a decamer simulated at 7 Å reso
FUs are highlighted in colors. (The original 9 Å cryo-EM structure of Nautilus hemocyanin i
shifting of the collar towards one of the cylinder openings. This is based on two FU-g conform
This asymmetry breaks the perfect dyad symmetry of the wall. (C) Scheme of the subunit dim
Sepia officinalis hemocyanin (SoH); note FU-d* as an additional collar component. (E) To
(Arne Moeller, Christos Gatsogiannis and Jürgen Markl, unpublished); a subunit dimer and

Fig. 9. Assemblies of the typical gastropod hemocyanin decamer. Structures simulat-
ed at 7 Å resolution from the atomistic model of KLH1 [101]. (A) Cut-open view of a
decamer, with the open face pointing downwards. (B) Cut-open view of a didecamer.
Note association at the open faces, and the shift of both collars towards the cylinder
openings. The rotation angle between the decamers around their major fivefold
axis of symmetry is 36°. (C) Cut-open view of a tridecamer. Note that the additional
decamer is attached to the didecamer with its open face; the rotation angle is again
36° [33].
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shifted towards one of the two cylinder openings (see Fig. 10B). None
of the previous models predicted this asymmetry in cephalopod
hemocyanin [58,60,72], which is established by the capability of the
subunit to fold into two different conformers [100]. This is apparently
a relic of the primordial subunit containing FU-h, because in Nautilus
hemocyanin the ten copies of FU-g occupy exactly the same topologic
positions as in KLH1 (see Fig. 8A). Thus, apart from the lack of the
peripheral FU-h ring, the cephalopod and the gastropod hemocyanin
decamer are completely equivalent. The absence of FU-h in cephalo-
pods might represent a secondary loss as proposed [26,28], because
the phylogenetic tree and the molecular clock suggest that FU-h
evolved together with FU-a to FU-g in the late Precambrian, whereas
the cephalopods occurred much later, ca. 520 million years ago in the
Cambrian (see Fig. 4 and [7,8]). Revealing this local asymmetry within
the otherwise D5 symmetrical decamer by 3D-EM was technically
difficult [100]. However, this experience helped us when we subse-
quently reconstructed KLH1 (see Figs. 7 and 8), and Sepia hemocyanin
(Fig. 10D, E).

Hemocyanin of the cuttlefish S. officinalis, and also of other ten-
armed cephalopods such as Loligo, contains an additional functional
unit (see Fig. 10D) that is inserted between FU-d and FU-e [1,59].
Two similar isoforms of Sepia hemocyanin, termed SoH1 and SoH2,
have been sequenced by the Preaux/Gielens group in Belgium
(GenBank entries ABD47515 and ABD47516). These primary struc-
tures suggest that the additional FU type evolved by gene duplication
of FU-d, and that the remaining seven FU types correspond to those in
Nautilus/Octopus hemocyanin (see Fig. 4). Since the original FU
nomenclature of Sepia hemocyanin is confusing, I designate here the
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lution from the atomistic model of NpH [100]; a subunit dimer and the additional collar
s available under EMDB-ID 1434). (B) Cut-open side view of the decamer in (A). Note
ers [100], termed here g and g′. They differ mostly in the fold of the FU-f→FU-g linker.
er of NpH (for a more realistic model, see Fig. 7E). (D) Scheme of the subunit dimer of
p view of a decamer simulated at 7 Å resolution from the atomistic model of SoH
the additional collar FUs are highlighted in colors.
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additional functional unit as FU-d*. This yields the subunit structure
a–b–c–d–d*–e–f–g (see Table 1 and Fig. 10D).

Sepia hemocyanin is a decamer, but its collar has a more compact
appearance than in Octopus or Nautilus hemocyanin; it has therefore
been assumed that the ten copies of FU-d* are incorporated in the col-
lar [1]. This has been confirmed by the Lamy group through 3D-EM of
the Sepia hemocyanin decamer [57,59,62,98]; however, at the resolu-
tion reached at that time, the subunit pathway remained obscure. We
recently obtained a better resolved cryo-EM structure, and an atomistic
model of Sepia hemocyanin, revealing the architecture of the
collar (see Fig. 10E) and the exact subunit pathway (Arne Moeller,
Christos Gatsogiannis and Jürgen Markl, unpublished). The addi-
tional FU type makes the decamer more rigid against deformation,
as deduced from its significantly reduced flattening on EM grids,
and probably relates to the exceptionally high cooperativity of Sepia
hemocyanin (n50 up to 5.9; see [107]).
8. Expression of two distinct hemocyanin isoforms is an evolutionary
trend in molluscs

Expression of different hemocyanin isoforms, in most cases two
like KLH1 and KLH2, occurs in several molluscan species (see Fig. 2
in [8]). On the other hand, some well-studied examples like Nautilus
and Aplysia possess only a single hemocyanin [28,30]. Octopus ex-
presses two hemocyanin sequences with 97% identity (GenBank en-
tries P12659 and O61363) that might represent alleles rather than
isoforms [26]. In Helix lucorum, three different isoforms have been se-
quenced [31]. In the abalone Haliotis tuberculata, two distinct hemo-
cyanin isoforms (termed HtH1 and HtH2) have been detected and
sequenced [7,27]. Their sequence identity is ca. 70%, and molecular
clock estimations revealed that they diverged ca. 360 million years
ago (see Fig. 2 in [8]). KLH1 and KLH2 are their respective correlates
in Megathura, with the Megathura/Haliotis split dating back ca.
260 million years (see Fig. 2 in [8]). The significant difference be-
tween HtH1/KLH1 and HtH2/KLH2 strongly suggests that they repre-
sent distinct isoforms and not different alleles. Apparently, they
evolved by duplication of the entire hemocyanin gene and subse-
quent independent evolution of the daughter genes. KLH1 and KLH2
are differentially expressed; under certain physiological conditions,
KLH1 completely disappears from the hemolymph [83].

In the present phylogenetic context, three observations are inter-
esting to note with respect to molluscan hemocyanin isoforms:
(i) The pattern of internal introns in hemocyanin genes varies be-
tween the major molluscan taxa [68], but this pattern remained virtu-
ally unchanged in the cluster HtH1/KLH1+HtH2/KLH2 [8]. This
means that in the genes of these vetigastropod hemocyanins, all
“intron late” events were terminated 360 million years ago. (ii) Several
molluscan taxa evolved their hemocyanin isoforms independently. For
example, HtH1/KLH1 and HtH2/KLH2 are not equivalent to MtH1 and
MtH2 of Melanoides hemocyanin (see Fig. 4). Likewise, the two
hemocyanin isoforms in the bivalve Nucula nucleus bifurcated
independently ([29]; see also Fig. 2 in [8]). (iii) As deduced from
the degree of sequence identity, the hemocyanin isoform pairs in
gastropods and bivalves evolved much earlier than the hemocyanin
duplets in cephalopods.

After our publication of the KLH1 didecamer structure [101] we
have also reconstructed the KLH2 didecamer (Christos Gatsogiannis,
Erik Schnittger, Julia S. Markl, Frank Depoix, Wolfgang Gebauer and
Jürgen Markl; cryo-EM structure deposited under EMDB-ID 2320).
Although both isoforms differ in many amino acid residues, their 3D
structures are very similar. The atomistic model of KLH1 could be
convincingly docked to the cryo-EM structure of KLH2. However,
the number and spatial distribution of potential attachment sites for
N-glycans is significantly different in KLH1 and KLH2, and this
might be the basis of their differential katabolic regulation [83].
9. Did mega-hemocyanin boost the adaptive radiation of
cerithioid snails?

A large variety of molluscan hemocyanins has been studied [1], and
several species of the gastropod superfamily Cerithioidea (supertaxon
Heterobranchia) are very abundant, even populating many fish tanks.
Nevertheless, the existence of an atypical hemocyanin that we now
call mega-hemocyanin remained hidden. In 2008 we studied, by
chance, a sample of Leptoxis carinata hemocyanin in the electronmicro-
scope, and found that it differs significantly from a typical gastropod
hemocyanin such as KLH1 [33]. It occurs as a tridecamer (see Fig. 2C),
with two “normal” decamers at either side of a central deviant mega-
decamer (Fig. 11A-C). The subunit constituting the flanking decamers
is a 400 kDa polypeptide (termed MtH1400) and has a structure like
KLH1 (Fig. 11D, D′). Isolated MtH1400 readily reassembled into typical
decamers, didecamers and even multidecamers [33].

In contrast, the subunit constituting the central mega-decamer
has a mass of 550 kDa and contains 12 functional units. In the
550 kDa subunit (termed MtH2550), the segment a–b–c–d–e–f is
present and constitutes the canonical molluscan hemocyanin cylinder
wall. FU-g and FU-h are missing; instead, six consecutive variations of
FU-f (termed FU-f1 to FU-f6) form an atypical collar (Fig. 11C, E; see
also Table 1). Consequently, instead of only 20 FUs as in the collar
of the typical decamer, the collar of the mega-decamer contains 60
FUs. The published biochemical and electron microscopical data on
this novel hemocyanin [33] have more recently been confirmed by
the complete amino acid sequence of MtH1400 and MtH2550 (see
Fig. 4; GeneBank entries KC405575 and KC405576 by Meik Neufurth,
Bernhard Lieb and Jürgen Markl). Moreover, an improved 3D recon-
struction showing the FU structure of the atypical collar much better
than in Fig. 11C has been elaborated by Christos Gatsogiannis.
Manuscripts on these data are in preparation.

With respect to the oxygen binding properties, typical molluscan
hemocyanins seem to be unable to evolve into high affinity forms
that are required in hypoxic environments. This is the putative reason
why planorbid snails possess hemoglobin instead of hemocyanin [32].
However, mega-hemocyanin has the capacity to evolve into high
affinity, medium affinity and low affinity forms, depending on the an-
imal species [33]. Moreover, differential expression of the 400 kDa
versus the 550 kDa polypeptide might allow acclimatization of indi-
vidual snail populations to changing environmental conditions [33].
Phylogenetically, we assume that the twelve-FU subunit MtH2550
evolved from an ancestral eight-FU precursor (400 kDa) in two
steps: (i) loss of FU-h and FU-g, respectively of the collar, resulting
in a molecule as shown in Figs. 2A and 6; (ii) gain of FU-f1 to FU-f6,
creating the mega-decamer collar, by subsequent duplication and
fusion events of the exons encoding FU-f. Preliminary molecular
clock calculations suggest that this was correlated with the radiation
of the Cerithioidea, and therefore might be adaptive.

10. Evolved molluscan hemocyanin from an FU dimer preceding
the central wall tier?

In 2001, we proposed a model for the evolution of the 35 nm
hemocyanin cylinder that started with an FU-h dimer forming, as
the crucial step, a decameric ring [68]. With the recent more detailed
insight in the structure of these molecules, notably the common
modes of FU dimerization and subunit dimerization in the wall, I
propose here a different scenario (Fig. 12) with the following steps:
(i) An ancestral one-FU protein, termed here y, formed an anti-
parallel homodimer y↔y, with the same assembly mode as in the
crystallographic FU-g dimer (Fig. 12A, B). (ii) A gene duplication
yielded heterodimer x↔z that was then transformed, by gene fusion,
into the two-FU protein x–z (Fig. 12C, D). (iii) Subunit x–z acquired
the ability to dimerize and to form a 35 nm ring from five such dimers
(Fig. 12E). For symmetry reasons, this primordial hemocyanin might
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be represented today by the central wall tier of the decamer, and con-
sequently, FU-x and FU-z would be ancestral forms of FU-d and FU-e.
(iv) Stacks of three rings yielded a primitive three-tiered hemocyanin
molecule (Fig. 12 F). Subsequently, from the two-FU subunit the
six-FU wall segment a–b–c–d–e–f (see Fig. 6) evolved by gene dupli-
cation, fusion, and diversification events. (v) Starting from FU-f, the
collar evolved by gene duplication, fusion and diversification events,
and ultimately, the cupredoxin-like domain of FU-h was adopted.
The shift of the collar towards one cylinder opening has been
explained by the need for the ten FU-h copies to form a closed ring
within the collar [101]. Logically, this can only occur at one and not
at both ends of the cylinder, and it also shifts the five FU-g dimers
(arcs) into an asymmetric position (see Fig. 8).

Whether this specific scenario is realistic remains hidden in the
Precambrian, but it is based on our current structural knowledge of
this highly complex oxygen transporter. Moreover, it subdivides its
evolution into steps such as duplication, fusion and diversification of
genes, or antiparallel association and ring formation of polypeptide
subunits that are all very common in the protein world.

11. Concluding remarks

Science is full of strange examples of coincidence, and I add here
another to the list. After decades of hemocyanin research, we were
able to publish the atomistic model of a gastropod hemocyanin
didecamer (KLH1), thereby solving many long-standing structural
questions [101]. We received the article proofs in November 2008
and were convinced that the structure of gastropod hemocyanin
was now clarified. On the same day, Bernhard Lieb returned from a
field trip to Potomac River, near Washington D.C., and brought some
mysterious little snails into our laboratory. Another day later we dis-
covered mega-hemocyanin. Its atypical composition was unraveled
within a couple of weeks by using the structural knowledge just col-
lected for KLH1.

The major primary, ternary and quaternary structures of mollus-
can hemocyanins are now solved, and atomistic models of the
35 nm molecules are available. Moreover, we now have hypotheses
of the evolution of these structures that are less speculative than
formerly. According to molecular clock calculations, the eight typical
molluscan hemocyanin functional units (FU-a to FU-h) evolved to-
gether ca. 740 million years ago [7]. However, the chronological
order of their appearance remains obscure: neither the exon nor the
intron sequences helped us to elucidate this aspect. Nevertheless,
structural considerations led to two scenarios for the stepwise evolu-
tion of the 35 nm hemocyanin, both with the formation of a ring-like
decamer as the crucial step: Previously, we proposed the peripheral
FU-h ring (see Fig. 8D) as the nucleating structure [68], whereas on
the basis of the more recent findings I now propose that the mollus-
can hemocyanin cylindrical decamer started from the FUs of the cen-
tral wall tier (see Fig. 12).

With respect to the phylogenetic tree of functional units (see Fig. 4),
it should be mentioned that the cupredoxin-like domain of FU-h is ex-
cluded from such analyses because it is absent in the other FU types. It
is therefore not certain whether it is as ancient as the other two do-
mains of FU-h. However, its existence not only in gastropods, but also
in the hemocyanins of bivalves, polyplacophorans, monoplacophorans
and the Caudofoveata (see Table 1) suggests that it indeed belonged
to the molluscan hemocyanin archetype.

It has emerged as a general scheme that the architecture of the
molluscan hemocyanin wall is strictly conserved, whereas the collar
is more variable in that collar functional units disappeared or second-
arily evolved. In addition to their overall fivefold symmetry, the
decamers show a perfect dyad symmetry in the wall, but possess an
asymmetric collar (see Fig. 8). Also, many other structural questions
heavily debated at previous oxygen carrier meetings are now solved,
as for example the exact shape and pathway of the subunits within
the quaternary structure [100,101]. This is useful knowledge for
disassembly–reassembly studies [93], and applications of KLH as im-
munological tool [104,105]. In particular, the atomistic models identi-
fied the amino acid appositions at the interfaces between adjacent
FUs, subunits, subunit dimers, and decamers [100,101]. This provides
a firm basis for unraveling at these interfaces changes during oxygen
binding, in order to elucidate the chemo-mechanical force transfer
within the hemocyanin molecule during allosteric interaction.

In combination with the wealth of functional data available on
molluscan hemocyanins, this structural knowledge should allow
deeper insight in their biological function as oxygen carriers. On the
other hand, even the small vertebrate hemoglobins still bury many
surprises (see this Special Issue), although they have been studied in-
comparably more detailed than the hemocyanins. Therefore, it might
be too ambitious at the moment to expect a deep chemo-mechanical
understanding of an oxygen transporter such as KLH1 that contains
ca.1 million atoms. In my opinion, what we can hope by applying
techniques already available is a structural understanding of the
fully oxygenated versus the fully deoxygenated hemocyanin state. In
this context, we compared two sub-nanometer 3D reconstructions
of Nautilus hemocyanin that had been obtained under oxy and
deoxy conditions, respectively, and we found significant differences.
What we saw when comparing the atomistic models of both confor-
mations was a rearrangement of numerous salt bridges (Arne Moeller
and Jürgen Markl, unpublished). To verify this, and to reliably pin
down structural details at the various molecular interfaces, we
require 3D reconstructions of the oxy and the deoxy state at signifi-
cantly higher resolution, preferably close to 5 Å. The techniques to
achieve this are available today.
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During the final proof stage of this paper, a 3D reconstructionwith a
resolution of 4.5 Å of the hemocyanin didecamer of another gastropod,
the abalone Haliotis diversicolor, was published [109]. This superior
structure confirmed our atomistic model derived from KLH1 except of
the two d→e connections within the subunit dimer. This single differ-
ence yields an alternative subunit pathway. Even so, the localization,
spatial orientation and mutual contacts of the eight types of functional
unit are identical in both models.
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