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Friedman and Shimony exhibited an anomaly in Jaynes’ maximum entropy 
prescription: that if a certain unknown parameter is assumed to be characterized a 
priori by a normalizable probability measure, then the prior and posterior probabili- 
ties computed by means of the prescription are consistent with probability theory 
only if this measure assigns probability I to a single value of the parameter and 
probability 0 to the entire range of other values. We strengthen this result by 
deriving the same conclusion using only the assumption that the probability measure 
is u-finite. We also show that when the hypothesis and evidence to which the 
prescription is applied are expressed in certain rather simple languages, then the 
maximum entropy prescription yields probability evaluation in agreement with one 
of Catnap’s X-continuum of inductive methods, namely X = 00. We conclude that 
the maximum entropy prescription is correct only under special circumstances, 
which are essentially those in which it is appropriate to use h = co. 

I. INTRODUCTION 

In the past two decades Jaynes [12- 171 has developed an influential 
program concerning inductive inference and the foundations of statistical 
mechanics, by proceeding from two premisses. 

1. The concept of probability which is deployed in those two disciplines 
should usually be interpreted in the “logical” sense. That is to say, a 

*This paper is based upon the Ph.D. thesis submitted by one of us (P. D.) to the Graduate 
School of Boston University in 1979. The research of one of us (A. S.) was supported in part by 
the National Science Foundation, and of the other (P. D.) by the Organization of American 
States. 

172 

Copyright Q 1981 by Academic Press, Inc. 
All rights Of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82621859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


MAXIMUM ENTROPY PRINCIPLE 173 

sentence involving probability, such as “the probability of hypothesis h 
upon data d is the real number r ” -which may be abbreviated as “I’( h ) d ) 
= r “- should be interpreted as “the reasonable degree of belief in h, if d is 
the total available evidence, is r.” (Jaynes does not disallow the possibility 
of other interpretations, such as the frequency interpretation, which has 
probably been favored by the overwhelming majority of statistical physicists 
in the past, but he claims that there are great advantages in clarifying and 
justifying the procedures both of inductive logic and of statistical mechanics 
if the logical interpretation is employed systematically.) 

2. In order to evaluate P(hld) quantitatively, one should apply the 
maximum entropy principle, whenever d has a form which permits this 
principle to be employed. The concept of entropy involved in this principle 
is that of information theory [25]: that is, if one is considering a set of n 
mutually exclusive and exhaustive hypotheses {hi} and if d is the total body 
of data, then the entropy in this situation is defined as 

(1.1) 

where pi = P( hi 1 d) and C is an arbitrary positive real number. Suppose 
now that the data consist of numerical values of the averages cl,. . . ,cr of r 
quantities E’ , . . . , E’, where Ej has a definite value E;i f Ej( hi) in case the 
hypothesis hi is true; here r is a nonnegative integer, possibly 0, the latter 
case corresponding to null evidence. These data presumably are factual in 
character, but the way one obtains them is irrelevant at the present abstract 
level of treatment so long as it is legitimate to assert the equalities 

EE,jpi = c,. 0.2) 

With these preliminaries, the maximum entropy principle can be explicitly 
formulated: the numerical values P( hi/d) G pi must be such as to maxi- 
mize the entropy S( p ,, . . . ,p,,), subject to the constraints of Eq. (1.2) and of 
zp, = 1. 

Parts of Jaynes’ program can be found in the work of earlier authors. The 
logical interpretation of probability was advocated by Keynes [ 191, Jeffreys 
[ 181, Carnap [2] and perhaps even by Laplace [20]. Shannon [25] defined the 
concept of information-theoretical entropy and showed how it must be 
expressed in terms of probabilities if certain reasonable desiderata are to be 
satisfied. However, the combination of ideas in Jaynes’ program is original. 
He uses information theoretical entropy as a fundamental concept in 
statistical mechanics, and under appropriate conditions (primarily that the 
maximum entropy principle be used to calculate the probabilities pi) he 
even identifies this kind of entropy with that of thermodynamics [13, pp. 
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196-1971. And he proposes that the perennial difficulty of the logical 
probability theorists-the problem of providing a systematic and objective 
procedure for numerically evaluating probabilities-can be solved in large 
part by using the maximum entropy principle (e.g., [ 15, pp. 228ffj). Jaynes’ 
striking achievement, which has attracted a considerable following to his 
ideas, is the derivation of the generalized Boltzmann distribution from his 
small set of premisses, in remarkably few steps and without recourse to 
ergodicity or other special physical assumptions. The maximization of S in 
Eq. (l.l), subject to the constraints of Eq. (1.2) and the normalization 
condition Zp, = 1, can be carried out by the usual method of Lagrange 
multipliers. The result is 

exp 

pi = Z(&...$J ' 

where 

W , ,. . .,&) = i exp 
i=l 

(1.3) 

(1.4) 

In the special case where r is 1 and E’ is taken to be the energy E, there is 
only a single parameter 8, = p, and this can be identified with l/(H), 
where T is the absolute temperature and k is the Boltzmann constant. One 
then has the usual Boltzmann distribution for a system with n states, in 
contact with a heat bath at temperature T: 

exp( - E,/kT) 

“I xexp(-E,/kT) ’ 
(l-5) 

Despite the ease of Jaynes’s derivation of the Boltzmann distribution, 
many scientists have remained skeptical, mainly because they were unsure 
of the rationale for the maximum entropy principle (e.g., [31, p. 248; 22, p. 
441). Jaynes himself offers an epistemological justification of the probability 
distribution obtained by means of the maximum entropy principle: it “is 
uniquely determined as the one which is maximally noncommittal with 
regard to missing information” [12, I, p. 6231, and it “provides the most 
honest description of what we know” [16, p. 971. Between this quite 
plausible justification and the residual suspicion that somehow too much 
knowledge has been extracted from ignorance there may appear to be a 
deadlock. 
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An additional consideration against the maximum entropy principle was 
presented by Friedman and Shimony [9], to be abbreviated henceforth by 
“FS.” They showed that in certain circumstances, the posterior probabili- 
ties, calculated by means of the maximum entropy principle when one 
constraint of the form (1.2) is given, and the prior probabilities, calculated 
with no constraints other than Zp, = 1, cannot be made consistent both 
with each other and with the general rules of probability theory unless a 
special and highly implausible condition is satisfied. Specifically, they 
consider background information b which specifies 

(i) that there are n mutually exclusive and exhaustive hypotheses 
h h ,,..‘, “7 

(ii) that the quantity E has the value Ei if hi is true, 
(iii) that not all the Ei, . . . , E,, are equal, and 
(iv) that one of these values- say, the m th-is the average of all of 

them, i.e., 

E,,, = (l/n)xEi. (1.6) 

The prior probability of hi is pp E P(h,l b). If the data d, assert that the 
average of E is c, then the posterior probability of hi relative to d, (which 
will sometimes be called simply “the posterior probability”, when it is clear 
from context what body of data has been assumed) is pi E P( hi 1 b & d,). 
Since the average of E is a monotonically decreasing function of the 
parameter #3 when the Boltzmann distribution (1.5) is used, there is a 
one-one mapping of the range of e onto the range of /3, and therefore the 
data 2, can equally well be expressed as the data $. Consequently, pi can be 
expressed as P( hiI b & dB). The background information does not specify 
the value of E and hence not of j3, but from the point of view of the logical 
interpretation of probability it makes sense to speak of the probability 
distributions of e and of /3, given b. Hence FS assumed that there are well 
defined distribution functions F( p ] b) and &(=(E ] b) such that 

F( /3 I b) = the probability that the parameter has a value equal to or less 
than p, given b, 

F( E ] b) = the probability that the average energy has a, value equal to or 
less than E, given b. 

For F to be a distribution function means that it is monotonically nonde- 
creasing and continuous on the right and that 
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and likewise for l? The existence of the distribution function F is, of course, 
equivalent to the existence of a probability measure p such that for every 
Bore1 subset S of R, 

I.49 = pw9 (1.7) 

and 

p(R)= 1. (l-8) 

FS then pointed out that according to the general rules of probability 
theory the prior and posterior probabilities are connected by the equation 

P(hilb) =JP(hij~~~~)dF(Plb)v (1.9) 

for each i = 1 , . . . , n. If the prior and posterior probabilities are computed in 
accordance with the maximum entropy principle and inserted into Eq. (1.9), 
one obtains 

1 
J 

e-BE, 
-- 
n- @@lb). (1.10) 

They then inquired what restrictions are imposed upon the distribution 
function F by Eq. (1.10) and proved that F is determined uniquely 

F(W) = 0 P < 0, 

F(Blb) = 1 PLO, 
(1.11) 

or equivalently, 

PW>) = 1, ,u(R - {O})=O. (1.12) 

A proof of this result is given in Appendix A. The result is dangerous to 
Jaynes’ program, for it shows that the repeated application of the maximum 
entropy principle is compatible with the general rules of probability theory 
only if there is probability 1 upon the background information b (which is 
quite meagre information) that the parameter /3 will be found to be 0. But to 
assert this much seems to be inconsistent with Jaynes’ cardinal epistemologi- 
cal maxim that one should be honest about the extent of one’s ignorance. 
Seidenfeld [24] states some important related criticisms. 

Several attempts have been made to refute FS on the grounds that they 
have not properly understood the logical concept of probability [ 10, 111, but 
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these refutations seem to us unconvincing [7, 271. It was suggested by FS 
that either the domain of definition of the logical concept of probability 
might be restricted, or the domain of applicability of the maximum entropy 
principle could be limited; but to our knowledge no one has worked out a 
limited version of Jaynes’ program along either of these lines. 

There is another possible defense against the difficulty raised by FS, 
which seems not to have been mentioned previously in the literature. That is 
the possibility that they made too restrictive an assumption about the 
distribution function F and the related probability measure p. Expectation 
values and other probabilistic quantities of interest can be computed even 
when the probability distribution is not normalizable- i.e., when 

or equivalently, 

p(R) = 00. (1.14) 

It is important to explore whether the prior and the posterior applications of 
the maximum entropy principle are consistent with each other, with proba- 
bility theory, and with the general maxims of Jaynes if appropriate nonnor- 
malizable functions of /3 are used. Sections II and III of this paper are 
devoted to an examination of this possible line of defense, and the results 
indicate that it will not succeed. Specifically, in Section II the assumption 
that F( p 1 b) is normalizable, or equivalently that p(R) = 1, is replaced by 
the assumption that p is a u-finite measure, i.e., that p(S) is finite for any 
bounded Bore1 subset of R; all the other assumptions of FS are retained. It 
is shown that even with this relaxation of an assumption, the implausible 
Eqs. (1.11) and (1.12) can be derived. In Section III we investigate a 
distribution function which is not associated with a u-finite measure. It 
turns out that there are ambiguities in the expressions for expectation values 
in terms of this distribution function; but when the ambiguities are removed 
in such a way as to obtain Eq. (l.lO), then one again obtains the result that 
the a priori probability of finding /3 = 0 is unity. 

These difficulties indicate that Jaynes’ program should be curtailed. 
Nevertheless, it seems that some part of it should be rescued, since there is 
something attractive about the maximum entropy principle and since the 
principle does yield some important results, notably the Boltzmann distribu- 
tion, which we believe to be correct for independent reasons. Section IV is 
devoted to an investigation of the circumstances under which it is legitimate 
to apply the maximum entropy principle. The procedure of this Section is to 
compare Jaynes’ probability evaluations with those given by each of Carnap’s 
“continuum of inductive methods” [3], which is a family of methods 
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parametrized by a single variable A such that 0 I h I cc. We show that 
Jaynes’ method agrees with the method corresponding to X = cc and 
disagrees with all others. Since h = cc is the method which assigns equal 
probabilities to all states compatible with the evidence, we conclude that 
Jaynes’ method is legitimate in circumstances when that assignment is 
justifiable, but not otherwise. 

II. U-FINITE MEASURES ON THE PARAMETER SPACE 

In this Section we shall consider probability distributions which need not 
be normalizable, but which have all the other properties assumed in Section 
I. That is, F(/3Jb) is real, monotonically nondecreasing, and continuous on 
theright,withlimF(/3]b)=Oas/3goesto -cc; butwepermitlimF(filb) 
as /3 goes to cc to be either a positive real number or infinite. It follows that 
P.(S) = kww is finite for every bounded Bore1 subset S of R, and 
hence is a u-finite measure. The expectation value of a function A(& 
relative to F can be expressed as follows: 

Similarly, Eq. (1. lo), which expressed the relation imposed by probability 
theory upon the prior and posterior probabilities resulting from the maxi- 
mum entropy principle, must be generalized: 

For every positive real number K which is large enough that p ([ -K, K’]) > 
0 we can define a probability measure 

pK@)= 
4s n [-KU 

PlHXll ’ 

with the obvious property that 

CLK(R)= 1. 

(2.3) 

(2.4) 
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Then Eq. (2.2) can be restated as 

The remainder of Section 11 will be devoted to proving the following 

THEOREM. Equation (2.2) (or equivalently Eq. (2.5)) implies that F’(Plb) 
= 0 for /3 < 0 and F( /I\ b) = c for /I 2 0 (or equivalently, that p ({ 0}) = 
p(R) = c), where c is a finite positive real number. 

The background information b mentioned in this theorem is the same as 
in Section I. In the first of two lemmas used to prove the theorem, we use m 
to designate the integer mentioned in one of the conditions contained in b, 
such that 

E,,, = l/nzE,. 0.6) 

LEMMA 1. If we define 

t;(P) =s, i = l,...,n, 

then &,,(/?) is strictly increasing for /I C 0 and strictly decreasing for p > 0, 
and therefore it has an absolute maximum at 8 = 0. 

Proof. If the expectation value c of the quantity E is expressed as a 
function 

(2.6) 

then it is well known that e’ < 0, where a prime denotes differentiation by 
j3. From e(O) = E,,, it follows that C( /?) > E, if /3 < 0 and E(P) < E,,,. if 
/3 > 0. From t&(/3) = &J/3) [E(B) - E,,J it follows that <k(O) = 0; and 
p = 0 must be an absolute maximum, since j3 < 0 implies [;(/3) > 0 while 
j? > 0 implies Z;(p) < 0. Q.E.D. 

From Eq. (2.5) and the fact that i takes on only a finite number n of 
values it follows that for any positive integer A4 there is an integer N(M) 
(which can be selected so that M’ > M implies A’( M’) > N(M)) such that 

(2.7) 
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for all i = 1 , . . . , n. The following notation will be convenient: 

l&4 = / “2M d/-+(M,, 
-1/2/w 

di = J m 4%(M)? 
1/2M 

Pi = I 
-“2MdpN(M), 

-co 

and 

Clearly, 

and 
1 I I - -p*F < M-3. 
n 

We can now prove the following 

LEMMA 2. lim ,iJ-r~&~ - &f) = O* 

Proof By Lemma 1, j3 < - 1/2M implies 

/ -;‘2M&,,(P, dp N(M) 5 !Gf5*(-1/2M)~ 

j3 > 1/2M implies 

and - 1/2M I p I 1/2M implies 

Hence, by Eqs. (2.8a), (2.8b), (2.8c), (2.9), (2.10), and (2.11), 

and 
0 5 l/n(l - &f) - p&i,(1/2W - Pi&(- VW 

1 
5; -p,“< M-3, 

(2.8a) 

(2.8b) 

(2.8~) 

W) 

(2.10) 

(2.11) 

(2.12) 
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whence 

0 5 (1 - p&,[ f - &A- l/W] - Plf[5,ww - &A- VW] 

< itc3. (2.13) 

By Taylor’s theorem, 

[,( 2 1/2M) = ; - A( f. 1/2M)215;(o)l + R2( t 1/2M), 

where the formula for the remainder is 

Hence Ineq. (2.13) becomes 

0 I(1 - &)[f(l/2M)215;(0)1 -:(1/2M)35;(6/2M)] 

- /A;[[;( 6/2M) + <;( -@/2M)] {( 1/2M)3 < M -3. 

We have used 0 for the case of - 1/2M and 6 for the case of 1/2M in the 
remainder formula. Since l<:(O)\ > 0, we can multiply by 8M2/1<k(0)l and 
rearrange terms, to obtain 

0 5 (1 - &f) < MI(;(O)l (8 -i(l - l4&LzwwM) 

+ &&[t;( 6/2M) + 5;( -@/2M)]). (2.14) 

Since PL I 1, (1 - &,,) I 1, and <g(p) is continuous and therefore 
bounded in the interval [ - 1, 11, it follows that the expression in curly 
brackets is bounded by a number independent of M, and hence lim,,,, ,( 1 
- p”,) = 0. Q.E.D. 

We can now complete the proof of the theorem by showing that 0 < 
~((0)) < 00 and that p(R - (0)) = 0. Suppose first that p(R) = cc. Then 
for any divergent monotonically increasing sequence {ti} of positive real 
numbers there is a sequence of integers {K;}, which can be chosen increas- 
ing without loss of generality, such that 

Since lim M+m(l - &) = 0, and since N(M) as defined just before Eq. 
(2.7) is a monotonically increasing function of M, one can pick out a 
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monotonically increasing sequence of positive integers {Mi} such that 

N(Mi) > Ki for each i 

and 

1 - /A&, <+ for each i. 

Hence 

P([- 1/2Mi9 1/2Mil) ,i 
pk - p([--N(Mi),N(Mi)] 2’ 

Therefore, 

/~([-1/2Mi,1/2Mi]) >t~([--(Mi>vN<M~)]) >fP([-Ki,KiI) ’ Ii* 
Since the interval [ - 1, l] contains the interval [ - 1/2Mi, 1/2Mi] for each i, 
we obtain 

P([-l7 ll) > li9 for all i, 

contrary to the hypothesis that p is a u-finite measure. Therefore the 
supposition that p(R) is infinite has led to a contradiction. But if p(R) is 
finite, then p is normalizable, and we can define 

P(S) 
P(S) -jJjqy /Ii(R) = 1. 

The theorem of FS then states that fi({O}) = 1 and p(R - (0)) = 0. Hence 
0 < ~((0)) = cc(R) and /A( R - (0)) = 0. Equivalently, F( /3(b) = 0 for j3 
< 0, while F( /3 16) = a positive finite constant for /3 1 0. Q.E.D. 

Once one has shown that p(R) is finite, an alternative procedure is 
possible which dispenses with the theorem of FS: essentially, it consists of 
using Lemma 2 together with the measure theoretical proposition that 

/A({O}) = li-$p([-1/2w/2~1). 

III. THE PROBABILITY DENSITY l//3 

We shall now consider whether it is possible to escape from the difficulty 
posed by the theorem of FS by assuming 

dF(Plb) = M/A /3 > 0. (3.1) 
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The density l/p is appealing, since it has certain invariance properties for a 
random variable which is known a priori (i.e., because of the background 
information b) to lie in the interval [0, co] (see [18]). If the background 
information b does not preclude negative values of j3, one may wish to 
consider an extension of Fq. (3.1): 

dF(Plb) = WIBI, B # 0. (3.1’) 

The analysis of the present section goes through in essentially the same way 
and with essentially the same conclusions whether one uses Eq. (3.1) or Eq. 
(3.1’), but the calculations are somewhat simpler in the former case, and 
therefore we shall assume Eq. (3.1). In any case, our main interest in 
studying the distribution given by Eq. (3.1) is that it is not associated with a 
u-finite measure and hence is not covered by the theorem of Section II. We 
wish to exhibit some of the difficulties which arise when one attempts to go 
beyond the confines of u-finiteness, even though we are not able to treat 
them comprehensively. 

Since the F of Eq. (3.1) is not normalizable, the nearest one can come to 
Eq. (1.10) using F is some equation of the following form: 

where the limiting procedure and the meaning of the integrals remain to be 
specified. In order to simplify the problem we shall take n = 3 and Ej = i. 
We shall examine the three quantities 

J 
81 e-@ dP 

P(h,(b) = lim 
& [ew8 + eez8 + ew3p] B 

I ‘%WB) 

= lim4uwv 

woB,,P,) ’ 
I% 

(3.3a) 

I 
PI e-2B db’ 

P(h,(b) = lim 
Bo [eeB + e-2p + e-38] B 

I 

~2u309&> 

~‘@WP) = limN(&,B,) ’ 

(3.3b) 
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P(h,lb) = lim 
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/ 

8, e-38 
dS 

p. [e-p + e-2B + e-38] P ~3(PoBo,Pd 

(?dP/P) 
0 1 

= lirn~(&&) ’ 

(3.3c) 

where we use the notation 

WOJU = /,“’ ie-p +d”+ eg]p ’ 

(3.4a) 

(3.4b) 

(3.4c) 

Three different ways of allowing & to approach 0 and 8, to approach oc 
will be considered, and it will be seen that only the first and a special case of 
the third will yield 

P(h,(b) = P(h,(b) = P(h,(b) = 4, (3.5) 

as required by the schematic Eq. (3.2). 
1. First let &, -+ 0 + , then let p, + cc. 
For fixed 8, satisfying 0 < p, < cc it is obvious that I,( &,, p,), Z2( PO, PI), 

Z3( &,,&), and N( pa,&) all diverge as &, -+ 0 + . Hence, we use I’Hbpital’s 
rule to calculate the ratios in Eqs. (3.3a), (3.3b), (3.3~). 

= lim 
BO+O+ I 

1 1 
[i +e -& + e-28o] PO 

- 
- l/p0 1 1 

=7’ 

(3.6a) 
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and similarly 

(3.6b) 

(3.6~) 

The limit of each of these expressions as p, + 00 is obviously f. Hence by 
Eqs. (3.3a), (3.3b), (3.3~) we obtain the desired Eq. (3.5). 

2. First let fl, + cc, then let &, + 0 + . 
For fixed &, satisfying 0 < & < 00 we have 

1 1 - 

= lim 
[e-281 + e-81 + l] PI 

81-m 1/p, = l, 
(3.7a) 

again using l’Hopital’s rule, while 

1 1 

= Ie- 
BI + 1 + @I] p1 

l/B, = 
0, (3.7b) 

and similarly 

(3.7c) 

Now taking limits as & + 0 + and substituting in Eqs. (3.3a), (3.3b), (3.3~) 
we have 

P(h,Jb) = 1, P(h,lb) = P(h,(b) = 0, 

in disagreement with Eq. (3.5). 
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3. The limits are taken in tandem, by defining 8, = f( &), where f has a 
continuous first derivative for 0 I Is, < 00 and limsO +a + f( &) = cc. Then 

mos,,f(Po)) 4(~oB,,f(~oB,))/dPo 
1301% NPO?f(POs,)) = P”%+ dNPO~f(rsO)/dSO 

= lim 
PO-O+ 

= lim 
B0-0 

i 
[1 +e -f(Bo) + e -2moq - 1 df/d@cl fo - [1 + eUBo + e-2flo]j- 

0 

df/dSo 1 --....- 
f@o) PO 

1 & df 
--LA 

3 f(Po) 430 
, _ PO df . 

fads, 

(3.8) 

A necessary and sufficient condition for this limit to equal f, and also for 
the corresponding limits to equal f when I, is replaced by I2 or I,, is 

(3.9) 

In other words, Eq. (3.9) is a necessary and sufficient condition that Eq. 
(3.5) be satisfied if the third limiting procedure is used. 

We shall now show that the first limiting procedure and the special case 
(3.9) of the third procedure imply effectively the existence of a probability 
measure p for p such that p ((0)) = 1, p (R - (0)) = 0. Because the 
density l//3 diverges as p + 0, we cannot initially assume that a probability 
measure is associated with /?. However, we can define functions fi,,& of 
open intervals ( A,B) by means of our first and third limiting procedures, 
and then we can extend p,, and fi3 to probability measures. If 0 < A < B, 
we define 

/ BdlW 
p,((A,B)) = lim lim $ = lim ’ 1nB - 1nA 

/ 

o 
/3,-m &-Of ‘d/V8 B,+~ hlf%+ In& - W. = ’ 

PO 

(3.10a) 

If A = 0, we define 

ji,((O,B)) = lim ’ 1nB - W. = , 
p,+m ~~~!t.?+ In& - W. * 

(3.10b) 
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Similarly, if 0 < A < B, we define 

= lim 
(ln&)-‘(1nB - ln.4) = o 

/&3--o+ PO df 1 ’ --- 
f(Po) dP0 

(3.11a) 

where we have used 

lim lnf(W) _ PO df 
po-O+ W. &l%+ fo al 

(from l’H6pital’s rule) and also Eq. (3.9). If A = 0, we define 

J Bds/P 
&((O,B)) = lim 

i%-+O’ 
$ 

1nB - lnPo 

J 

= lim 
‘4-V ~~-0’ lnf(Po) - W. 

PO 

= lim 
(ln~o)-‘lnB - 1 (In&-‘1nB - 1 

l%l-+0+ lnf( Is,) 1 = hl%+ PO df =‘- 
Tjg-- fodp,-l 

(3.llb) 

We can extend fl, and fij to a probability measure /A (the same for both), by 
defining 

for all 0 I A c B < cc and by requiring that p be a u-additive set function 
and that p(( - co, 0)) = 0. The extension is unique, and one has 

PUW = 1, CL@ - {OH = 0, (3.13) 

or equivalently, 

Ids) = 1 if 0 E S, (3.14a) 

cl(S) = 0 if0 f$ S. (3.14b) 
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We conclude that the schematic Eq. (3.2) can be satisfied only if calcula- 
tions involving the density l//3 are performed in a way that is equivalent to 
assuming a probability measure on p with total weight concentrated at 
p = 0. 

IV. RELATION OF JAYNES' METHOD TO CARNAP'S CONTINUUM 
OF INDUCTIVE METHODS 

The results of FS and of Sections II and III show that Jaynes’ program 
cannot be maintained in the full generality which he intends. The problem 
remains to determine what part of the program is defensible, in particular to 
find out under what circumstances the maximum entropy principle is 
legitimate. Our strategy will be to compare Jaynes’ method of evaluating 
probabilities with a family of methods systematically investigated by Carnap 
[3, 41 which he calls “the continuum of inductive methods” or “the X- 
continuum.” We shall set up a problem which is amenable both to Jaynes’ 
and to Camap’s treatments, and we then find that precisely one among 
Carnap’s continuum- namely, the one characterized by the value A = 00 - 
yields probability evaluations in agreement with those of Jaynes, while all 
other methods in the continuum disagree with his evaluations. This result 
suggests that the circumstances under which it is proper to adopt the 
method with X = 00 are also those under which Jaynes’ program is accepta- 
ble. 

Carnap takes the arguments of his probability functions (which he calls 
“confirmation functions,” in order to emphasize that he is dealing with the 
logical sense of probability) to be sentences in a definite language l?. A 
confirmation function c is a real-valued function of ordered pairs (4, e) of 
sentences in !Z, the second member of a pair being required to be noncon- 
tradictory. A simple language C which Carnap has studied, and which will 
be convenient for our purposes, has N individual names a,, . . . ,a,, a family 
of n predicates _P,, . . .,-n, P and the logical connectives “- ” (negation), “A” 
(conjunction), and “V” (disjunction). A sentence of the form _9iai is an 
atomic sentence of the language, and it asserts that the individual named by 
ci has the property designated by. 4,. (Note that we shall use underlined 
letters to designate linguistic entitles- names, predicates, sentences- or 
else, in the case of c, a function of sentences.) By calling {fj} a “family of 
predicates” we mean that _9iu, A &a; is logically false for any i and for 
j # k, and that _P,a, V &g, V * * . V&g, is logically true for any i. The 
function c is required to satisfy a number of fairly intuitive conditions, 
which include the standard axioms of probability theory and also certain 
symmetry conditions, e.g., 

c( h ) _e) is invariant under permutation of individual names 
(Axiom of Symmetry with respect to Individuals), 
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and 
c( h_le) is invariant under permutation of the predicates 
(Axiom of Symmetry with respect to Predicates). 

The axioms do not suffice to fix c( h_l e) for each ordered pair (h, e) of 
sentences in C, but they do imply that c is one of a family of functions {c,}, 
parametrized by a single real variable X, 0 I X I cc. The significance of X 
is exhibited by considering a sentence e which asserts only that in a sample 
of M individuals, Mj of them have the property designated by Pj. Let a, 
name an individual which is not in the sample. Then it can be shown from 
the general conditions on c-functions that 

CA(!jCilC) = 
M, + X/n 

N + h (4.la) 

for 0 I X < 00. If we take the limit of Eq. (4.la) as h + cc, we obtain 

(4.lb) 

which is the inverse of the number of predicates in the family {fj}. An 
important feature of Eq. (4.lb) is that the probability evaluation is indepen- 
dent of the content of the evidential sentence e, so long as the individual 
name gi does not occur in e. Equations (4.la), (4. lb) show that X is an index 
of the weight placed upon logical considerations (specifically, the number of 
mutually exclusive and exhaustive predicates in the family) as opposed to 
empirical ones. 

The only background information which will be assumed in this Section is 
that which is implicit in the rules of the language C, i.e., the number of 
individuals and the number of mutually exclusive and exhaustive predicates. 
We shall follow Catnap’s notation by writing prior probability statements 
(which are statements in which the only evidence is the background infor- 
mation) as c( hl_t), where r is any tautology in C, and by introducing a prior 
probability measure function m(h), which is defined as -- 

!d!d = 4hl!)* (4.2) 
We shall be primarily interested in the prior probability measure functions 
associated with those confirmation functions which belong to the X- 
continuum: 

!%(!I) = cAu?lt)* (4.2’) 

A state description I& is the conjunction of N atomic sentences, one 
concerning each of the N individuals, so that LJ,, has the form 

_4i,i!l A fj2C?2 * ’ ’ A_qi,EiV- 
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The n-tuple {N,, . . . , N,,} of a state description L& is the ordered set of n 
integers.such that Nk is the number of times the predicate& occurs in L&. 
The structure description &, corresponding to a state description L& is the 
disjunction of all state descriptions having the same n-tuple as l&. From 
combinatorial considerations, the number of state descriptions which are 
disjoined in & is 

N! 
N,!.o-N,!. 

Because of the Axiom of Symmetry with respect to Individuals, together 
with the standard probability axioms, we have 

A slight modification of an argument of Car-nap [3, p. 311 yields 

j [;(a+ 1) . . . (;+A$- l)] 

~&J = ‘=I h(X+ l)..++N- 1) ’ 
(4.4a) 

where the expression in curly brackets is taken to be 1 if Nj = 0. Equiva- 
lently, 

Iv) (4.4b) 

where r is the gamma function. 
In order to set up a situation to which both Jaynes’ and Camap’s 

methods are applicable, let us interpret the predicates _P,,_P*, . . .,_P, as 
meaning “having the value E, of some quantity E,” “having the value E, of 
some quantity E,” . . . , “having the value E,, of some quantity E.” The type 
of evidence d, for which Jaynes’s method is designed is a statement of the 
numerical value of the average of E, specifically that this average is z. Hence 
a, must be such that 

where hi is the hypothesis that a randomly chosen individual from the 
population has value Ei of the quantity E. Jaynes does not specify the 
character of the evidence d, which he would consider to be suitable for the 
applicability of his method, and it is very likely that most types of evidence 



MAXIMUM ENTROPY PRINCIPLE 191 

which he would admit are not expressible in extremely simple languages like 
Carnap’s C. Fortunately for our purpose, however, there is one candidate 
for d, which appears suitable from Jaynes’ point of view and which is also 
expressible in e: specifically, the disjunction of all state descriptions L& 
having n-tuples {N,, . . . , N,} such that 

n N.E, _ z N-C. 
i=l 

(4.6) 

For a given exact E it is sometimes possible to find more than one n-tuple 
satisfying I$ (4.6); and if the average e is only given within an interval 
(e ,,E*), it is always possible to find more than one n-tuple satisfying Eq. 
(4.6) if N is sufficiently large. In order to illustrate the first half of the 
preceding sentence, we consider n = 3, Ei = i, N an even integer, and E = 2. 
Then the following n-tuples all satisfy Eq. (4.6): 

(N,,N&) = (O,N,O) 

= {l,N - 2,l) 

= {2,N- 4,2} 

= {N/2,O,N/2}. (4.7) 

The evidence c&, which is the disjunction of all the state descriptions having 
the n-tuples listed in (4.7), clearly does not specify the frequency of 
occurrence of each _Pi in the population. We shall make use of this simple 
illustration throughout the remainder of Section IV, even though some of 
the results could be generalized. 

It is straightforward to show from the axioms of probability, which all of 
the functions c, satisfy, that 

(N,,? N”) N -h %n (&J 
-cX( h_jldc) = 

Y !!A&) 

2:’ 
N N! 
2 -!?A@,) 

(Nl,....N,) N fi N., I* 

i=l 
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2’ 2-&n 
)I (;(a+ I)... (;+$ - 1) 

(N ,I.... 4,) N ;py ‘=’ 
h(X+ l)...(X+N- 1) 

. = 

” pi;+ I)...(;+?$ -- 1) ’ 
E’ N!, 

(N,....,N,) fi Ni! ‘=’ X(A + 1)e.e (X + N - 1) 

i=l 

(44 
where Z’ designates summation over the n-tuples which satisfy Eq. (4.6). 
Actually, Eq. (4.8) concerns an idealized situation, since for arbitrary E (for 
example, any irrational number) there may be no n-tuples satisfying Eq. 
(4.6). For greater applicability, we could replace Eq. (4.8) by a similar 
equation for ch( h_jld(c,,~,J~ where d~c,,c,, is the evidence that the average E 
of E falls in the interval (E,, Q), and the summation 2’ would be over 
n-tuples which make the E of Eq. (4.6) fall in this interval. By restricting our 
attention to the case of c = 2, for which there is an abundance of n-tuples 
(actually triples) satisfying Eq. (4.6), we can use Eq. (4.8) as it stands, 
thereby simplifying the calculations somewhat. In the case of c = 2, Jaynes’ 
method yields 

e --8(W 
&td2) = ,-,9(2) + e-2fl(2) + e-3fi(2) = f ’ (4.9) 

since the value of the parameter j3 which makes E = 2 is obviously j?(2) = 0. 
We now assert the following 

THEOREM. (i) For every nonnegative real number h there exist a 6, > 0 
and an integer Nh such that Ich( hi 1 d,) - 4 I> 6, if the number of individuals 
N of the language C is greater than Nh, where j = 1,2,3. (ii) For A = 00 we 
have 

Furthermore, for all c in [ 1, 31, 

where /3 = /3(r) is the parameter which makes the expectation value of E equal 
to E in Eq. (4.5). 
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The proof of this theorem is rather lengthy, and therefore we have 
relegated it to Appendix B. Most of the remainder of the present section will 
be concerned with the significance of the theorem. 

First of all, we wish to point out that the theorem does not simply 
identify Jaynes’ method with one of Carnap’s continuum of inductive 
methods (specifically, with the one in which X = 00). One cannot reasonably 
expect a simple identification, because of the great differences between their 
approaches. Camap restricts his attention to a very simple language I?, but 
within it he admits any noncontradictory sentence as an evidential sentence. 
Jaynes does not specify the class of languages within which his evidence is 
expressed, but his method is most directly applicable to evidence which can 
be cast in the form of assigning a numerical value to the average of some 
variable quantity. Our strategy has been to investigate a case to which both 
Camap’s and Jaynes’ methods apply. It is clear that the sentences 2, 
discussed above can be expressed in Camap’s language C, and we also 
believe that d, signifies an evidential proposition which Jaynes would accept 
as grounds for assigning the value 6 to the average of E. Once 2, is accepted 
as signifying evidence that both Carnap and Jaynes can use, then we can say 
on the basis of the above theorem that Jaynes’ method disagrees with every 
one of the methods in the A-continuum with finite h, at least when E = 2. 
The discrepancy between ch( h, ] 2,) and Jaynes’ value of p2 when e = 2, 
namely 3, does not go to 0 with increasing N. On the other hand, in the 
particular problem that has been set up, the probability evaluations made 
by Jaynes’ method and those made by Camap’s cm are in closer and closer 
agreement as N increases. Clearly, then, c, comes nearest to Jaynes’ method 
among all those in Carnap’s continuum of inductive methods. 

There are, of course, other inductive methods than those of Carnap, and 
indeed we are not committed to remaining within the family of methods 
which he studied. (The formality of Carnap’s approach was criticized in 
Shimony [26] and a more informal and flexible method was recommended 
there.) Nevertheless, we feel that the exhibition of convergent agreement 
between Jaynes’ probability evaluations and those of c, is very significant. 
It is particularly illuminating concerning the anomaly exhibited in the 
theorem of FS and in the theorems of Sections II and III, to the effect that a 
necessary condition for the consistency of Jaynes’ prior and posterior 
probabilities with each other and with the general rules of probability 
theory is that there is a prior probability 1 of finding the value of the 
parameter /3 to be 0. This is precisely the probability that we find in the 
limit of N + cc if we use the confirmation function cm. We shall now give a 
proof of this claim. 

We need to evaluate c.&(~,,~~))-) t , w h ere t is a tautology, for arbitrarily 
small intervals (z, , c *) about the value E = 2. The easiest way to do this is to 
treat the value of E assigned to the i th individual in the population as a 
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random variable X’ with possible values I, 2,3, and we can suppose that the 
evaluation of X’, . . . , XN takes place sequentially. Camap shows that 

Cm(fjCil-Di-1) = Co($!ilf) =!f, (4.11) 

if Q.- t is a state description restricted to the first i - 1 individuals [3, p. 371. 
Even if _Oii-, says that all of the first i - 1 individuals have the property 
designated by _P,, c, assigns exactly the same probability 4 to the sentence 
&a, as to &a, and _P,u,. This statement will seem less surprising if one 
recalls that X is a weight placed upon logical considerations (here, the 
number of mutually exclusive and exhaustive predicates) as opposed to 
empirical considerations (the evidence about the first i - 1 individuals). 
Since A = co places all weight upon logical considerations, _Oii- 1 is irrelevant 
to the probability of sentences involving only the ith individual. If we now 
express Eq. (4.11) in terms of the random variables Xl,. . . , XN, we may say 
that these are independent random variables according to c,, each with 
mean /A = 2 and variance (I ’ = (1 - 2)2/3 + (2 - 2)2/3 + (2 - 3)2/3 = 
2/3. We are now in a position to apply the Central Limit Theorem [6] 

lim P 
N-CC 1 

IsN - Np’ < 11 
UN”2 I 

= @(?j) > (4.12) 

where 5, = X’ + . . . +XN, n is any positive real number, and 

O(q) = ‘/” 
&G-F -m 

t?-y*/2dy. 

We may rewrite Eq. (4.12) in terms of the population average 5,/N as 

(4.13) 

But P ((S, - 21 <*dwq} is just an alternative notation which we have 
introduced for c,(@~~-~~,~+J~~]~). Using the fact that E = 2 corre- 
sponds to /? = 0 and t.hat 

de 8 
dp,=,= -3’ 

(from Eq. (2.6)), we have 

N”m, r,(d(-~~,,~~,, - It) = WI)? (4.14) 

where the sentence $, ) concerns the parameter 8, as explained in Section I. 
Since 9(n) converges to 1 as n + co, we can decide antecedently how close 
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to 1 we wish c,( c&-,,~~,~~~ 1 i) to be, and then we make the 
interval about /3 = 0 as small as we wish by choosing N large enough. 
Roughly speaking, then, in the limit of N + cc, there is a prior probability 
of 1 of finding /3 to be 0, if the confirmation function c, is used. 

Some one may be tempted to present the foregoing calculation as a 
vindication of Jaynes’ program, since it shows that the assignment of prior 
probability 1 to the value /3 = 0 is not just a peculiar by-product of 
comparing prior and posterior probabilities computed on the basis of the 
maximum entropy principle, but rather the natural result of an indepen- 
dently developed inductive method. The price of this vindication, however, 
is that one accept the confirmation function c, as a reasonable function to 
employ in calculating probabilities upon which decisions and actions pre- 
sumably would be based. But we saw, in the preceding discussion, that c, 
has the idiosyncratic property of regarding all evidence concerning other 
individuals as irrelevant to a particular individual of interest, and it there- 
fore is entirely unsuitable as an intellectual instrument for obtaining reliable 
guidance from experience. Furthermore, the question of whether it is 
reasonable to accept as virtually certain that the parameter /3 is 0, given only 
the background information, can be considered in detachment from the 
properties of c,. Even if we make an effort to divest ourselves of all 
evidence not contained in this background information, such as the evidence 
that a variety of heat baths with differing temperatures and hence differing 
reservoir parameters can be found, we still regard the assignment of 
probability 1 to p = 0 and of probability 0 to the entire remaining range of 
values of /3 to be completely counterintuitive. This assignment seems like 
too much knowledge to extract out of a situation of presumed ignorance, 
and indeed it goes directly counter to Jaynes’ sensible maxim that we should 
be honest about the extent of our ignorance. 

There is one further characteristic of c, which is relevant to Jaynes’ 
method: that is, that c, assigns equal prior probability to all state descrip- 
tions: 

c,( &.\r) = (number of state descriptions)-’ = nPN. (4.15) 

A corollary is that if evidence e is considered which is consistent with a 
subclass 9 of all the state descriptions and inconsistent with all the others, 
then if EN belongs to 9, 

cW( EN 1 c) = (Number of members of q)-‘. 

Equation (4.16) is reminiscent of one of the common procedures of statis- 
tical mechanics, the use of the microcanonical ensemble, which assigns equal 
weights to all states in an energy hypersurface. It is well known that once 
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one has the microcanonical ensemble to represent an isolated system, one 
can straightforwardly derive the canonical distribution to represent a system 
in contact with a heat bath: one lets the system and the heat bath together 
constitute an isolated system, characterized by the microcanonical distri- 
butions, and then combinatorial considerations lead to the desired conclu- 
sion. In this way one comes by the standard route to the canonical 
distribution, which Jaynes derives by means of his maximum entropy 
principle. Does this consideration provide a vindication of Jaynes’ method 
-or even somewhat more than a vindication, for his method arrives at the 
conclusion more efficiently than do the usual statistical mechanical argu- 
ments? 

The answer, we believe, is negative. It is only in rather special situations 
that one can assert the equiprobability of all states of a given class in 
statistical physics, and when that can be done there is a physical reason, 
such as ergodicity or an appropriate symmetry. If one is employing the 
logical concept of probability, such a reason should be included as part of 
the evidential proposition. In the absence of such a reason, one may try to 
justify equiprobability on purely logical or epistemological grounds, perhaps 
by some version of the Principle of Indifference; but there are notorious 
ambiguities and paradoxes which plague such a program [15, 191. In any 
case, the assignment of equal prior probabilities to state descriptions, as in 
Eq. (4.15) cannot be justified on epistemological grounds, for if it could, 
then the confirmation function c, would be the appropriate one to use in 
inductive logic, and we saw above that this cannot be correct. 

We conclude that Jaynes is mistaken in his program of founding statisti- 
cal mechanics upon epistemology. His central principle, the maximum 
entropy principle, cannot be universally true. It may be true under special 
circumstances, and we have given reasons to believe that these are the 
circumstances in which it is appropriate to employ something like the 
c-function c,. The locution “something like” is needed partly because 
Carnap only defined c, for a rather special class of languages, and for the 
purpose of formulating statistical physics one would need to use a language 
richer than any of these; and partly because inductive logicians may have to 
abandon as hopelessly idealistic the program of choosing a single confirma- 
tion function to be applied to all the admissible sentences in a given 
language, and use instead confirmation functions which are relativized to 
special bodies of evidence. In a relativized application of confirmation 
function one might set aside Eq. (4.15), but still use Eq. (4.16) if the 
evidence e is suitable. What might serve as “suitable” evidence e? One 
candidate-might be a large body of data concerning a gambling hevice, 
indicating that the outcomes of individual plays can reasonably be taken to 
be independent random variables. Another candidate is a physical char- 
acterization of a many-body system which is sufficient to permit ergodicity 
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to be proved, as Sinai [28] succeeded in doing for a box of hard spheres 
governed by Newtonian dynamics. Another candidate is the mechanism of 
memory loss postulated by Tisza and Quay [30, p. 541. With such e Eq. 
(4.16) might be justified, and then one could proceed to derive the standard 
formulae of statistical mechanics along one of several well-known lines. 
And, as a bonus, one would have a justification for a relativized use of the 
maximum entropy principle, which would permit the derivation of the 
standard formulae in Jaynes’ manner. It would be wrong, however, to say 
that Jaynes’ method has greater generality or proceeds from weaker assump- 
tions than other, more overtly physical methods. 

V. REPLIES TO SOME CRITICISMS 

Jaynes [17] stated a number of criticisms of FS, which presumably he 
would apply to the present paper. 

He says first that the evidential propositions d, considered by FS are 
“ill-defined.” That is true, but it is only to achieve generality. FS let “2, be 
the evidence that the expected value of E is E,” and their reasoning goes 
through no matter what this evidence is taken to be. 

Jaynes’ central objection is the following, which will be quoted at length. 
(“PME” is an abbreviation for “Principle of Maximum Entropy.“) 

If a statement d referring to a probability distribution in space S is testable (for 
example, if it specifies a mean value (f ) for some function f(i) defined on S), 
then it can be used as a constraint in PME; but it cannot be used as a conditioning 
statement in Bayes’ theorem because it is not a statement about any event in S or 
any other space. 

Conversely, a statement D about an event in the space S” (for example, an 
observed frequency) can be used as a conditioning statement in applying Bayes’ 
theorem, whereupon it yields a posterior distribution on S” which may be con- 
tracted to a marginal distribution on S; but D cannot be used as a constraint in 
applying PME in space S, because it is not a statement about any event in S, or 
about any probability distribution over S; i.e., it is not testable information in S.” 
[17, p. 541 

This objection raises some issues about the language which is appropriate 
in probability theory. We agree with Jaynes that a probability statement 
(e.g., “The probability of hypothesis h on evidence e is a”) is not a 
statement about an event, since the concept of probability which he is using, 
and which we accept, is that of reasonable degree of belief. The evidence e, 
however, does concern an event, which can be taken to be a point in an 
evidence space. Since the d, which FS discuss is a body of evidence, it does 
concern an event. Because of the generality of the discussion of FS, they do 
not specify the evidence explicitly, but rather refer to it by the way in which 
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it will be used in the maximum entropy prescription: i.e., it is that evidence 
which will warrant taking E to be the expected value of E. The objection 
may be raised at this point that this mode of reference implicitly refers to a 
probability distribution, since the expected value of E is XE,p,; since 
probability statements are not about events, it would then follow that d, 
also is not about an event. Our answer is that the mode of reference must be 
carefully distinguished from the thing referred to. The phrases “the Evening 
Star” and “the Morning Star” refer to the same entity, but in different 
ways; in Frege’s terminology, they have the same “Bedeutung” but different 
“Sinn” [8, pp. ix, 56-78). An event can be referred to in different ways: by 
a name, by a description of its intrinsic properties, and by indirect descrip- 
tions, such as a phrase which contains a probabilistic expression like 
“expected value.” 

In Section IV of the present paper we make the general considerations of 
FS more concrete-by proposing specific candidates for the evidence d, and 
for the sentence d, which expresses that evidence. In the passage quoted 
above [17, p. 541 there seems to be a claim that one and the same sentence 
cannot be used as a constraint in PME and as a conditioning statement in 
Bayes’ theorem, because sentences performing these two functions must 
belong to different kinds of language. However, the sentence $, of Section 
IV does indeed perform both functions. Since it is a noncontradictory 
sentence in the language e, it can be used as an evidential statement in any 
of Carnap’s confirmation functions ch, all of which conform to general 
Bayesian principles. But 8, is also a testable statement which seems to 
determine the expected value of E, so that it can be used in an application 
of the maximum entropy principle; it certainly resembles closely some of the 
sentences which Jaynes himself deploys in his illustrations of the principle 
(e.g., [13, pp. 183- 1871). 

The exhibition of the sentence d, in Section IV also provides a positive 
answer to a question of Cyranski [5, p. 2981, “whether evidence is a 
proposition in the same ‘language’ as is the hypothesis, at least when 
‘evidence’ is of the form required by the MEP.” Cyranski gives a negative 
answer to this question and thus essentially offers the same objection to FS 
as does Jaynes, though in greater detail. 

Jaynes says that “informed students of statistical mechanics will be 
astonished at the suggestion that there is any inconsistency between applica- 
tion of PME in space S and of Bayes’ theorem in S”, since the former yields 
a canonical distribution, while the latter is just the Darwin-Fowler method, 
originally introduced as a rigorous way of justifying the canonical distribu- 
tion!” [17, p. 541. This is a reasonable point. But it is just because of this 
kind of consideration that we have tried in Section IV to determine precisely 
under what circumstances Jaynes’s methods are legitimate and agree with 
more conventional Bayesian methods. Our conclusion was that the requisite 
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circumstances are quite special and are physical rather than epistemological 
in nature. 

Finally, Jaynes remarks that FS wrote, between them, three critical 
articles, but never indicated what their positive preferences are. That is true, 
and we shall briefly indicate some preferences here. In foundations of 
statistical mechanics we are impressed by the success of Tisza and Quay [30] 
in deriving statistical thermodynamics from a very moderate phenomeno- 
logical assumption of memory loss and by the related method of Mandelbrot 
[21]. In foundations of inductive logic one of us has developed an informal 
Bayesian theory [26], but modifications of it are envisaged. 

APPENDIX A: PROOF OF FS THEOREM 

Let 

dp, 64.1) 

j=l 

Then 

& 
J 

03 
dE= 

-j3emBE dl” 

--m i e-BE, 
64.2) 

j=l 

is a monotonically increasing function of E unless p is concentrated entirely 
at 0, because the integrand 

;y:” I 

is monotonically increasing for j3 # 0. But a function on R which every- 
where has a monotonically increasing derivative cannot be equal to a given 
number for more than two distinct values of its argument. Hence, if there 
are three or more distinct values among E,, . . . , E,, then 

1 O” 
/ 

e--BE, 
-= 
n 

-M pI emBE/ 
dcIv i = l,...,n (A-3) 

(which is equivalent to Eq. (l.lO), implies 

P(w = 19 p(R - {O})=O. Q.E.D. (A.4) 
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Taking the limit h 
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B: PROOF OF THE THEOREM OF SECTION IV 

+ cc in Eq. (4.9) yields 

'a( hjld2) = 

" N N,!N,!N,! 

2, N! ’ 
N,!N,!N,! 

(B.1) 

where the sums are over the triples of (4.7). Eq. (B.l) can also be obtained 
from Eq. (4.16). The evaluation of the rhs of Eq. (B. 1) is a standard problem 
in statistical mechanics, which can be solved, for example, by the method of 
Darwin and Fowler (see, for example, [23]). The result is 

_c,( hj&) a d- 

iz$’ 
(B.2) 

i=l 

where za = e -8. Since c = 2 implies that /I = 0, we find 

(B-3) 

in good agreement with Jaynes’s result in Eq. (4.9). (Throughout Appendix 
B we shall use expressions of the form “F * G” to mean that there is a 
function w(N) which converges to 0 as N goes to 00, and 
F=G(I +w(N)).Similarly“F~G”willmean”F>G(1 +w(N))“.)It 
is clear that we can also obtain a generalization of Eq. (B.2), 

(B.2’) 

i=l 

for any number n of hypotheses h,, . . . ,h, and any values of the E,, . . . ,E,, 
provided that the summations occurring in the rhs of Eq. (B.l) are replaced 
by sums over n-tuples which yield averages of E in the interval (E - 
o(l,‘N),c + 41/N)). 

We shall not present of derivation of Eq. (B.2), since the Darwin-Fowler 
method is both standard and lengthy, and since the result Eq. (B.3) is also 
the immediate result of Eq. (B.32), which will be derived below. 

We are not able to treat all the finite values of X by a uniform method, 
and therefore we consider the following subcases: X = 0,O < X < +,A = $, $ 
<X<3,h=3,3<X< 00. 
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For X = 0 we have 

co@,I!) = ;~orA@Nlf) = ffo 

j,(;(;+ I)... (i+ly - 1) 

X(X + 1). (A + N - 1) 

where p is the number of predicates Ej which characterize at least one 
individual in f&. Clearly, 

CrJ@NI!) = 0 ifp # 1, 

CO@Nl!) = l/n ifp = 1. 

When c = 2, the only L& with p = 1 is the one in which N, = N, N, = N3 
= 0. Hence Eq. (4.8) implies 

CO(hll&) = CO(h3ldJ = 0% (B.4a) 

co(h,ld*) = 1. (B.4b) 

In the case of A = 3 we have 

j,(f(++l)...(;+N,-l)=j,4!. 
Hence Eq. (4.8) yields 

N/2 
x N,/N 

I 
- ’ &p*) = N1=;,2 

f.+(N/Z + 1) 
= N/34-1 

2 1 

. = $. (BSa) 

“‘” ’ * 
N, =O 

Likewise 

c33(!!21!?2) =f- (BSb) 

Some preliminary remarks and calculations will be useful for the remain- 
ing cases, which are more difficult. 

(i) The conditions N, + N2 + N3 = N and E = 2 imply 

N, = N3 = (N - N,)/2. 03.6) 
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Hence, the summation 2’ over triples in Eq. (4.8) becomes a 
over N2 from 0 to N in steps of 2, and Eq. (4.8) becomes (for 
j=2)’ 

Cx(h2Id*) = 

summation 
the case of 

I ;(;+ l)++N, - 1 J 

N 
N2 ! ‘I 

if +(N,) 
= N2=‘3 
- 

N 9 (B.7) 

N,=O 

where the notation s2( N2) is defined by its context. To simplify the notation 
in the following calculations we assume that N is even, and the summation 
Z’ is only over even values of N2. 

(ii) One would like to use Stirling’s formula in evaluating the rhs of Eq. 
(B.7), but there is a difficulty in the fact that values of N2 close to 0 and 
close to N might contribute strongly to the sums, and for these values the 
error due to using Stirling’s formula for N,! and (N - N,)! can be large. 
Hence, we use the strategy of dividing the integers between 0 and N into 
three classes: 

(a)OIN,IM,sothat(N-M)/2I(N-N2)/25N/2, 
(b) A4 I N2 I N - 2M, so that M I (N - N2)/2 5 (N - M)/2, 
(c) N - 2M 5 N2 I N, so that 0 5 (N - N2)/2 I M, 

where we take 

M = N(l-a) , O-cat 1. (B-8) 
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Our strategy will be to choose a close enough to 1 and yet N large enough 
that Stirling’s formula will give an excellent approximation to N2! and 
(N - N2)! for all N2 in class (b), and yet classes (a) and (c) have many fewer 
members than class (b). We shall then be able to show that if 3 < h < cc 
the overwhelming contribution to the rhs of Eq. (B.7) comes from class (b); 
for 0 < h < $ the overwhelming contribution comes from class (c); and for 
A = $ the overwhelming contribution comes from the union of (b) and (c), 
and the relative contributions from these two classes need not be de- 
termined. 

(iii) Stirling’s formula asserts that 

If N >> a then another useful approximation is 

N+1/2 
a 

ae, (B.lO) 

and therefore for Ni >> l,Nj Z% X we have 

A - . . . 
3 

Hence the function Q( N2) introduced in Eq. (B.7) satisfies 

fJ(N,) -[ r( s)1-‘N;,=l( t!$!i)uA’3-‘)e (B.12) 

We shall freely use this expression whenever N, is in class (b), i.e., M I N2 
I N - 2 M. For large N we can replace the summation over terms of class 
(b) by an integral: 

N-21%4 

2 Q(N2) +---2MQ(N2)dN2, (B.13) 
N2=M 

N-2M N 

,z, +(N,) = ;jMN-2M$Q(N,)dnr,, (B.14) 
2 
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where the factor f is due to the fact that the summations proceed in steps of 
2. If we introduce the notation 

then 

and 

N-2M 

z Q(4) - +D, 
N,=M 

N;M N’Q(N,) M $d2. 
N2=M N 

(B.15) 

(BS~) 

(B.17) 

(B.18) 

(B.19) 

Observing that 

D _ I2 = j’-2Nmav~/3-‘(1 _ Y)2(A/3-‘)+‘dy 
N-’ 

and integrating by parts, we obtain 

I2 m 
x 

3(A - 1) 
D - & [( 1 - 2N -a)‘i3(2N -‘-)2A13-’ 

_ (N -a)A/3( 1 _ N -y/3-‘]. (B.20) 

In order to handle the values of N, in classes (a) and (c) we use the 
following 

LEMMA. If h > 3, then Q( N,) is monotonical& increasing in 0 I N2 I M 
and monotonically decreasing in N - 2M I N, I N, for proper choices of a 
and sufficiently large N. If X < 3, Q( N,) is a monotonically decreasing 
function for 0 I N2 5 M and monotonically increasing for N - 2M I N2 I 
N, for proper choices of a and sufficiently large N. 
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Proof. 

w2) 
Q( N2 + 2) = 

([ $ + ;(N - N2) - I]/f(N - N2))2 

(h/3 + N&!/3 + N2 + 1) ’ (B’21) 

(N2 + I)(& + 4 

Choose N and cr large enough that 0 < M < (N - 4)/3, which ensures 
f(N-M)>M+2 and M < N - 2M + 1. Then, for X > 3 and 0 5 N2 
IM 

A/3+:(-N,)-I=, I 

f(N - N,) 

h/3-1 <,+“/3-1 

i@” - 4) N2 + 2 

(B.22) 

Forh>3andN-2MSN2 IM, 

X/3 + :( N - N,) - 1 = , I > 1 I A/3 - 1 X/3 - 1 

+(N - 4) f(N - 4) N2 + 1 

> 1 + tf+ = “‘3N+ 22+ ’ . (B.23) 
2 2 

For A < 3 and 0 I N2 d M, 

A/3+f(N-N,)-I=, 1-A/3 >, ]-h/3 

t(N - N2) w - N,) N2 + 2 

= A/3 + N2 + 1 > , A/3 + N2 1 - h/3 
N2 + 2 N2 + 1 = N,+l * 

(B.24) 

ForX<3andN-2MIN2 IN, 

h/3+$(N-N,)- 1 

= +(N-N,) I-p&=1-!&$ 2 2 

= X/3 + N2 + 1 <. 1 _ m= X/3 + N2 f 1 
N2 + 1 N2 + 2 N2t2 ’ 

(B.25) 
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Inserting Ineqs. (B22), (B.23), (B.24), and (B.25) into Eq. (B.21) irn- 
mediately yields all cases of the lemma. Q.E.D. 

From the lemma we shall now obtain the valuable Ineqs. (B.26)-(B.30) 
regarding summations over the values of N2 in classes (a) and (c), if N and (Y 
are chosen as required in the lemma. For A > 3 

4r(h/3)]-'hj"/3-' 1 [2(N-M)]xA’3-“($t4+ 1) 

= +( 1 - M/N)21”‘3-‘)( 1 + 2/M)( N -a)X’3 

M cpo( N -‘i3), 

where Eqs. (B.12) and (B.17) have been used. Also for X > 3, 

(~.26) 

A 
$ P(N,) I ” 

N2=N-2M 

N,=N-2M 

-3(N - 2M)‘i3-’ ~2w3-O(M + 1) 

= q,(] - 2M/N)“/3-‘(1 + ,-1)(,-u)2h/3-- 

w g,,[N--a(2A/W]. (B.27) 
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For 0 < X < 3 we have (using the remark about T = 0 after Eq. (4.4a)), 

-2@~-‘)““-“/“( + + 1) 
1 + 2M-')N-b-('-"/3,1 

Also for 0 < h < 3, 

(B.28) 

x 
( x+N-l 

if Q(N,)s ““” ;, 
N,=N-2M N,=N-2M 

=[r(h/3)]-'(N-')'-h'3(M + 1) 

= ~#p2~"/~-'[r(+)]~(l + M-')N-"+2(+-h/3) 

a +o(N-“+2(‘--h/3))a (B.29) 

Finally, for 0 < h < 3, it is convenient to have the following inequality, 
which asserts a lower bound rather than an upper bound as in the foregoing 
inequalities: 

if Q(N,) > O(N) +(X/3)]-1NA~3-’ 
N,=N-2M 

= ,@W-I[ r( X/3)]2Nl-W3. (B.30) 

Ineq. (B.30) will be of interest only when X < 4, since only in this subcase 
does o( N1-“13) go to co. 

After all these preparations, we can now prove the theorem of Section IV 
for the remaining cases. 

For X > 3 we take a > 0 and use Eq. (B.20) to write 

(B.31) 

and it is easily checked that 0 < D < cc. Then from Eqs. (B.7), (B.8), 
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(B.l9), and (B.31), and Ineqs. (B.26) and (B.27) we find 

(B.32) 

For $ < X c 3, we use Eq. (B.20) to write 

jy(2A/3-1)[22"/3-'(1 _ 2j,-a)"/3 

_ N-a(~-h/3)(l _ N-ayv3--ll 

= f -&.---[I - o(N-“(2v3-Ij)], 

so that (Y > 0 implies 

(B.33) 

It is easily checked that D > 0, and one finds that D < cc as follows: 

D=(D-I,)+I, < ‘-2Nm” dy I 
J 

l-*N-” 
N-” Y J l-h/3 N-~ 

2[(* - 2py3 - (py37 

1 
+2X/3 - 1 

[(, _ N-a)(2v3-11) -(2N-a)l-2h/3] 

Then from Eqs. (B.7), (B.13). (B.18) (B.l9), and (B.33), and Ineqs. (B.28) 
and (B.29) we have 

Cd!!2ld2) - 
I2 + $8.0 + c#r0 
+D++O+ +O (B.341, 

provided that in Ineqs. (B.28) and (B.29) we choose (Y > 2( 1 - h/3) > (1 - 
X/3). But the bounds $ < X < 3 in the case under consideration guarantee 
that an QI in (0,l) can be chosen to satisfy this condition. 

For the case of 0 c X < 5 we write 

D - I2 < 
/ 

3 1-2N-‘& = - 
N-a Y 

x [(1 - 2N-“)“‘3 - (iv-“)““] 

(B.35) 
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For y in the range of integration, (1 - y)2(1-x/3) < 1 - y and y”13 > y, 
and therefore 

12 ’ / 

1-2N-” y 

N-” 
I_ydy =[-ln(1 -y) -Y]‘-~~-~ 

= 1nN” + ln{j(l - N-“) - 1 + 3Npa, (~.36) 

which diverges as N + 00. Therefore, by Ineq. (B.35) D also diverges, so 
that 

D = I,. (B.37) 

Furthermore, 

*2 < J 
l-2N-’ 4 

N-* t1 _ y)WV3) 

1 N‘X(l-2h/3) 

= 1 -2X/3 21-2X/3 
- (1 - 2~-a)W-* . (B.38) 

Then 

5 fw2) < $ fi(N,) + N<"Q(N2) + t#~o[N-~+(~-~/~)] 
N2=0 N,=N-2M N,=M 

N 

= x' s2(N2)++D+cp.0 
N,=N-2M 

= ,=$2~‘(~~‘(’ + N2i;Q(N2)) 
5 $ a('-2A/3)/[( 1 - 2!,/3)21-2v3] 

N?=N-2M ~22~/3-l[r(~/2)]~~1-2A/3 

(B.39) 

where we have used Ineq. (B.30) and have assumed that cx > 1 - X/3. Also 

> (1 - 2M/N) $ Q2(N,) 
N,=N-2M 

= (1 - 2/N2) x’ Q( N,). (B.40) 
N,=N-2M 
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Inequalities (B.39) and (B.40) imply 

provided that (Y < 1. But since probability theory places an upper bound of 
1 on cx( h2 1 d), we have 

dh2ldJ = 1. (B.42) 

For A = $ we use the fact that cA( h2 ( d2) is continuous in h by Eq. (4.15), 
so that from Eqs. (B.34) and (B.42) we have 

C3,2(!!214) = &E(h*Id*) = 13 (B4.43a) 

C3,2@!2ld2) = ,+y*+CdhZld*) y+$+ f& = 1. 

(B4.43b) 

It is also possible to show that ~~,~(h, )d2) = 1 by analyzing summations in 
the manner of the other cases. 

We note that Eq. (B.4b), for the case of X = 0, agrees with the limit of Eq. 
(B.42) as h + 0; and that Eq. (B.5b), for the case of A = 3, agrees with the 
limits of Eqs. (B.32) and (B.34). Finally, the case of X = 00, which we said 
could be treated by the Darwin-Fowler method, also can be handled by 
using Eq. (B.32): 

Thus, the theorem stated in Section IV has been proved in all cases. 
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