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ABSTRACT 

Belief networks are tried as a method for propagation of singleton interval probabili- 
ties. A convex polytope representation of  the interval probabilities" is shown to make the 
problem intractable even for small parameters. A solution to this is to use the interval 
bounds directly in computations of  the propagation algorithm. The algorithm presented 
leads to approximative results but has the advantage of  being polynomial in time. It is 
shown that the method gives fairly good results. 
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1. INTRODUCTION 

The most common method for representation of uncertainty in knowl- 
edge-based systems has been the use of probabilities. On arrival of new 
information, these probabilities are updated by the use of Bayesian statis- 
tics. 

Kyburg [1] discusses the idea of  interval probabilities and represents 
uncertainty by a convex set of probability distributions. He claims that the 
requirement that degrees of uncertainty be given as points is too strong, 
and proposes interval probabilities as an alternative. We shall use this idea 
of Kyburg and try to combine it with the ideas of Judea Pearl [2]. 

Pearl shows how one can construct networks that represent the depen- 
dency relationships between variables. To reflect knowledge in the net- 
works, one assigns probabilities distributions to some of the variables and 
conditional probability distributions between variables that directly influ- 
ence each other. This structure gives us a very efficient procedure for 
propagation of new knowledge. It is interesting to see how Kyburg's 
interval probabilities can be incorporated into Pearl's belief networks and 
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what computational consequences this leads to. Similar problems are 
addressed by Fertig and Breese [3]. 

In the next two sections we shall present the concept of interval 
probabilities and discuss some of  their features, look at Pearl's work, and 
give a summary of  the equations he has developed. In Section 4 we try to 
use the ideas of convex sets of probability distributions in belief networks. 
This first try, however, is shown to be computationally inefficient, so we 
introduce an approximation algorithm in Section 5. In Section 6 we discuss 
errors resulting from the approximation. 

2. INTERVAL PROBABILITIES 

The use of intervals as a means of representing uncertainty has some 
history. Both possibility theory as given by Dubois and Prade in [4] with its 
necessity-possibility pairs and the theory of evidence (belief functions, 
Sharer [5]) with belief-plausibility pairs can be interpreted as interval 
representations of uncertainty. Driankov [6, 7] more explicitly uses inter- 
vals as a way of representing belief and plausibility of sentences. In [8] a 
kind of interval valued .truth over an infinite-valued logic is investigated by 
Tessem. In [9] Eick discusses several inference schemas using interval 
representation. 

However, most of the work with ideas of this type has been within 
probability theory. The best-known advocate of interval probabilities in 
recent years has been Kyburg [1, 10, 11]. He argues that the single-value 
probability approach used by standard Bayesians has a severe drawback: It 
cannot represent ignorance with respect to probabilities of events. As an 
alternative, Kyburg proposes the use of a convex set of probability distribu- 
tions constrained by intervals, either obtained from subjective opinions or, 
preferably, extracted from statistical knowledge. The intervals would be 
confidence intervals as we know them from classical statistics. Other  works 
on interval probabilities include those of Neapolitan and Kenevan [12], 
Snow [13], and White [14]. 

In general, interval probabilities are assigned to every subset of a set of 
possible outcomes. However, the number of constraints then becomes 
exponential in the size of the outcome set for a variable. We shall here, for 
the sake of efficiency, assume that the probabilities for any subset that is 
not a singleton are given implicitly by the constraints for the singletons. 
Thus, the constraints we shall consider are a subset of the full set of 
possible constraints. A more formal description of interval probabilities as 
we shall use them follows. 

I_~t X be a variable with discrete values, the possible outcomes of X 
being the finite set 19, where the members of 19 are x 1, x 2 , . . . ,  x n. For 
every event X = x i, i = 1 . . . . .  n, we have upper and lower bounds on the 
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probabili ty P(x  i) of this event. Let P , ( x  i) and P*(x i) denote the lower 
and upper bounds, respectively, for P(xi). 

We can give a geometric interpretation of these probabilities and their 
bounds. The Cartesian product of the intervals [P.(xi) ,  P*(xi)], i =  
1 . . . . .  n, gives us a hyper-rectangle in the n-dimensional space R n. The ith 
dimension of this space represents the value of P(xi). Within this box only 
points where coordinates add up to 1 are probability distributions. Thus we 
have a convex set of probability distributions in R n restricted by inequali- 
ties 

P , ( x i )  <_ P(x i )  <_ P*(x i )  , i =  1 . . . . .  n (1) 

and 
? l  

~_~ P(x i )  = 1 (2) 
i=1 

Not all numbers in the interval [P,(xi) ,  P*(xi)] need to be possible 
probabilities. Suppose n = 2, and P(x  1) ~ [0.0, 1.0] and P (x  2) ~ [0.9, 1.0] 
the given constraints. Then values of P(x  1) larger than 0.1 are impossible 
because of (2) and the restriction that P(x  2) be at least 0.9. We see that an 
effect of (2) is that the interval constraints impose bounds on each other. 
To handle this problem we introduce a concept of consistency for singleton 
interval probabilities. 

DEFINITION 2.1 A set of  interval constraints P , ( x  i) <_ P(x  i) <_ P*(x~), 
i = 1 . . . . .  n, for a probability distribution P is consistent if  for all i, 
i =  1 . . . . .  n, for every Yi ~ [P*(xi), P*(xi)] there exists a yj 
[P,(xj) ,P*(xj)] ,  for al l j  ~ 1 . . . . .  n; j 4= i, such that ~ - l Y j  = 1. 

It is easy to see that we have consistency if and only if the following 
equations are satisfied: 

P*(xi )  + ~ P , ( x j )  _< 1 for all i (3) 
j=l 
j4~i 

P , ( x i )  + ~ P*(x j )  > 1 for all i (4) 
j=l 

The first equation asserts that the upper bound is in fact a possible 
probability for X = x i because it shows that the lower bounds of the other 
probabilities need not be violated if we want to set P(x  i) equal to P*(xi). 
The second equation represents a corresponding argument concerning the 
lower bounds. Since we are in a convex set, all the values between the 
bounds must also be possible probabilities. Consistency follows. 

There  exists a simple procedure for finding consistent interval probabili- 
ties, given inconsistent probabilities. For  all i, decrease all P*(x i) such 
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that (3) is satisfied; and for all i, increase all P,(x i )  such that (4) is 
satisfied. Of  course, the initial intervals must be such that the box they 
produce has a nonempty intersection with the hyperplane given by (2), 
which is true when ~,~= ~ P*tx, i~ ~ >- 1 and ~,= ~ P , ( x  i) _< 1. A proof for the 
procedure is given by Tessem [15]. From now on we shall assume that 
interval probabilities are consistent. 

The problem of updating is central in any uncertainty model. What do 
we do when new evidence arrives? Bayesians often use Jeffrey's rule [16]. 
Suppose we have a variable y with m different outcomes Y l, Y2, . . . ,  Ym" If 
Y depends on another  variable X, whose probability distributions vary, the 
probability P ( Y  = yj) should be 

e ( r = y j ) =  ~ P ( Y = y j f X = x i ) P ( X = x , )  (5) 
i=1 

The conditional probabilities P ( Y  = y / ] X  = x i) remain unchanged. Jef- 
frey's rule has been disputed, but we shall use it adjusted to the idea of 
interval probabilities. 

Jeffrey's rule applied to interval probabilities makes it impossible to 
represent the set of consistent probability distributions for Y with interval 
constraints like (1). This is because the resulting set is not convex. Now, 
nonconvex sets are very inconvenient to represent and use; therefore, good 
candidates for further use are the convex hulls of the resulting sets. These 
are convex polytopes, but they cannot be represented by singleton interval 
probabilities. This calls for an alternative representation of our  convex 
sets. Observe that our convex sets are, like the sets resulting from condi- 
tioning, convex polytopes. A common choice is to represent polytopes by 
their vertices, and we shall use this representation in parts of this paper. 
The procedure for finding the vertices of the polytope given by (1) and (2) 
is simple to describe and is given below. 

For every i = 1 . . . . .  n, assign all 2 n- 1 possible combinations of either 
upper or lower bounds to P(x/), j ~ i. For each such combination com- 
pute y = l - Zj , iP (x j ) .  If y is in the interval [P.(xi) ,  P*(xi)], then we 
have a vertex in the polytope given by setting the j th  coordinate to the 
value (either upper or lower bound) used in the combination, j v~ i. The 
ith coordinate is set to the computed y. 

This algorithm tries a total of 2 n in candidates, whereas the real 
maximum number u(n) of vertices is given by (not proven) 

( n + l  ), odd 

u(n)  = 

n / 2  , n even 
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Observe that u(n)  for odd numbers are half of the u(n)  for the succeeding 
even number. When n_a_pproaches infinity, u(n)  for even numbers grows 
asymptotically as (1/v'21r)2nV~ -, so our algorithm of eq(2"n) is of higher 
complexity than the number of vertices. 

We shall leave interval probabilities at this point, turn our attention to 
belief networks, and give a review of Pearl's work. 

3. BELIEF NETWORKS 

In [2] Pearl describes how, in some special cases, one can efficiently 
propagate single-valued probabilities in a graphlike structure. We shall 
here give a review of Pearl 's ideas. 

The first we need to describe is the concept of a belief network. This is a 
directed acyclic graph where nodes stand for random variables and edges 
represent direct influence from one node to another. The idea is basically 
that values of variables that are not connected remain conditionally 
independent given the values of the variables between them. The only case 
in which they may not be independent is when the two nodes are the 
parents of a common node. In this case they are considered marginally 
independent; that is, they may become dependent  given the value of their 
common child or one of this child's descendants. In [2], Pearl mainly 
discusses trees and singly connected graphs. There  are efficiency problems 
when we cope with loops in the graphs, so we shall assume that the graphs 
we have are singly connected. 

For every node X we have a value BEL(xi).  This value is the probability 
of the variable being x i given the evidence in the belief network called D. 

BEL(x , )  = P(  X = x~ l J )  (6) 

Since X makes its descendants and ancestors conditionally independent, 
(6) can be written as 

BEL(x i )  = a P ( D  I X = x i ) P ( X = x i l D  +) = Oll~,(Xi)'IT(Xi) (7) 

where D + is evidence from above in the graph and D is evidence from 
below, a is a normalizing constant to make the sum of the values of BEL 
sum up to 1. 

For every node there is stored a conditional probability tensor that 
represents the conditional probabilities for the values of the node given 
the values of its parents. If we assume that X has two parents Y and Z, 
the entries of this tensor are 

P ( X  = x, I Y = yj, Z = z , )  = M ( X I Y ,  Z)j ,~ (8) 



100 Bjglrnar Tessem 

From this we compute 

"l'g( Xi) = P( X = xi l D +) 

= E M ( X I Y ,  Z ) j k i P ( Y = y j l D Y + ) P ( Z = z k I D  z+ ) (9) 
j,k 

D Y+ is the evidence stored in the graph beyond Y seen from X. We 
denote P ( Y  = yj I D r+ ) by rrx(Yj). 

For evidence from below, we have (assuming two children A and B) 

a (x i )  = P(  D -  I X  = xi) 

= P ( D  A- I X  = x i ) P ( D ' -  I X  =x i )  = XA(Xi)}tB(Xi). (10) 

What we now have left to define are the parameters a x ( y  ~) given to a 
node Y from its child X and ~r4(x i) given to a node A from its parent X. 
The latter becomes 

~rA(xi) = e (  x = xi I D x+ ) 

= a P ( X = x i l D + ) P ( D  B - I X = x i )  = arr(xi)AB(xi)  (11) 

,Xx(y j) has the equation 

Ax(Yj) = ~k [TrX(Zk)~i A(xi)M(X,Y,Z)jki  ] (12, 

In the equations above, we have assumed two children and two parents. 
This is, however, not a problematic restriction, as the equations are easily 
generalized to any number of children or parents. 

There are several types of nodes in a network of this type: 

R o o t - - A  node that has no parents. The values rr(x i) of these nodes are 
a priori probabilities of the node. 

Anticipatory--A node without children. The values A(xi) of these nodes 
are all set to 1. 

Ordinary--A node with both parent and child nodes. 

D a t a - - A  node that is instantiated. That is, we know the value of the 
variable the node represents. In this c a s e ,  A ( x i )  = rr(x i) = 1 if the 
node is instantiated to xz; for all other  j ~= i, A(xj) = rr(xj) = 0. 

D u m m y - - A  virtual node, a node C that represents a part of the 
complete belief network for the problem in mind that is impossible to 
represent in an ordinary way. It has a parent of one of the other types 
in the network and sends Ac(X i) to its parent X. 
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Every node in the graph stores the parameters M(X I Y, Z), AA(xi), 
AB(xi), 7rx(Yj), and 7rx(zk). When one of these is changed for some 
reason, the node computes and sends a message to its neighbor nodes 
(except the one that triggered the computation) so they can update their 
parameters. Neighbors then proceed in the same way. The way the 
equations function ensures that evidence sent from a node is not sent 
back to that node. Before any data are put into the system, the a priori 
evidence in the root nodes is propagated through the system. After that, 
propagation starts when a node becomes a data node or when a dummy 
node is instantiated. For a more detailed description of the ideas we 
refer to Pearl [2] or to Pearl's book [17]. 

4. INTERVAL PROBABILITIES IN BELIEF NETWORKS 

We are now ready to mix interval probabilities and betief networks. We 
shall use interval probability distributions instead of the standard single- 
valued probabilities in the a priori probabilities and the conditional proba- 
bility tensors of belief networks. We have, however, observed earlier that 
resulting BEL, A, and 7r distributions may not be representable as interval 
probabilities, and that they will be represented by the vertices of a convex 
polytope in multidimensional space. We shall discuss the computational 
consequences of this more complex representation. 

Pearl shows how one can build standard belief networks on the basis of 
joint distributions on a set of variables. However, in many cases one would 
get multiply connected networks from this starting point, so Pearl proposes 
that the qualitative relations between variables may be based on subjective 
opinions. In the case of interval probabilities it is even worse to base the 
construction of the graph on joint distributions. If we got a joint distribu- 
tion with real interval probabilities it would be impossible to get a network 
of the type we would like to have. The reason for this is that, when there 
are (even very small) changes in the joint probability distribution, the 
dependencies among the variables change. This again leads to completely 
different dependency graphs. So the main strategy for building the net- 
works should be to depend on subjective judgments for the qualitative 
relations and on statistical data a n d / o r  subjective estimates for specifying 
conditional dependency tensors and a priori probabilities. 

We shall illustrate the ideas of propagation with an example similar to 
one presented by Pearl [2]. Suppose there is a murder  and there are three 
possible candidates for murderer.  One and only one of them has commit- 
ted the crime. We can assign probabilities to each candidate to represent 
our a priori belief that this particular person is the murderer.  Let X 
represent the murderer  variable, and let ®x = {xl, x2, x3} be the set of 
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possible outcomes. Suppose our a priori knowledge tells us that x~ is more 
likely to be the murderer  than the two others, else there is no knowledge 
as to what these probabilities might be. 
a priori interval probabilities for X: 

P ( X  = xl) 

P( X =  x2) E 

P ( X  = x3) E 

We can then choose the following 

[0.7,0.9] 
[0.0,0.3] 
[0.0,0.31 

Observe that the probabilities are consistent with respect to Definition 2.1. 
The interpretation of these intervals is that any probability distribution 
over X that satisfies these constraints may be the one and only correct 
distribution for X. We will not commit ourselves to any particular one of 
these, as our knowledge is not specific enough. 

We can also specify the convex set of distributions in another way. In 
our example the set comprises the points of a polygon (two-dimensional) in 
R 3. A polygon can be represented by its vertices, and in our example there 
are four vertices, (0.7, 0.0, 0.3), (0.7, 0.3, 0.0), (0.9, 0.1, 0.0), and (0.9, 0.0, 0.1). 
In the general case the convex set given by interval probabilities for an 
n-valued variable consists of the points inside an ( n -  1)-dimensional 
polytope in R n. The number of vertices needed to represent this polytope 
is G(2nv%-), so for large n the computation of the vertices becomes 
impractical. 

Let X be the root in a dependency graph, and let Y be the only child of 
X. Let  Y represent the last person of the three to hold the pistol with 
which the murder  was committed. Then we need a matrix M ( Y I X )  to 
represent the conditional probabilities for Y given X. This introduces the 
problem of representing interval conditional probabilities. 

First, we give a general discussion on the use of interval probabilities in 
the conditional probability tensors. What will happen when a convex set of 
probabilities is multiplied by a convex set of tensors? Will the resulting set 
be convex or not? In fact, it will not. 

Suppose we have a convex set of vectors ~ and a convex set of matrices 
~K. Now we want to describe the set of vectors 7 i resulting from 
multiplying matrices from ~" and vectors from 7 .  Let q, r ~ 7/  and 
C, B ~ ' .  Then clearly Bq, C r E 3 .  Now, consider an arbitrary point 
rtBq + (l - 7t)Cr, 0 < 7 /<  1. If ~ ]  is to be convex, this point must be in 
7 i and must be the result of 

[ /xB + (1 - / x ) C ] [ A q  + (1 - A)r], 0 _< /z; A < 1 

But in general there exist no values for A and /x that satisfy these 
constraints for an arbitrary ~7. This because the points Bq, Br,  Cq, C r  are 
not necessarily linear dependent.  However, a weaker result says that the 
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convex hull of 7/1 is a polytope and that the extreme points of this 
polytope are the extreme points of WI. 

The argument generalizes to tensors of any rank with the operations we 
use. As an approximation to the result set, we shall use the convex hull of 
the set. So the set of points we are going to proceed with is the set of 
points of an n-dimensional convex polytope in R n. It is interesting that if 
we choose to use only single-valued probability tensors the convexity is 
maintained. We shall, however, proceed with interval probability tensors, 
as this is the most general case. 

The convex set of matrices can also be represented by the vertices of its 
convex polytope. They can be found by finding the vertices for the interval 
probability distributions P ( X  I Y = y j ,  Z = z k )  and then combining them 
with each other in every possible way, picking one vertex from each 
distribution P ( X  [ Y -= yj, Z = zk). We get from our restrictions an nxrn- 
dimensional convex polytope, where m = nyn  z and n x is the size of the 
outcome set of X. 

The number of vertices for these polytopes grows very fast as the 
number of parameters increases. The number of possible value combina- 
tions for variables conditioned on is m, as above, and the number of 
vertices for each combination is of order  2%~-. This gives us a maximum 
of e¢((2"~-)  " )  vertices for the polytope, so it soon becomes impossible to 
compute the vertices. However, for small n and one parent, as in our 
example, we can determine this polytope. 

The method for finding the vertices of the convex hull of ~r i is to 
combine all vertices of the polytopes of , g  and ~ to get a candidate set 
for new vertices. In our problem we use the vertices of the conditional 
probability tensor polytopes and the vertices in the A- or rr-polytopes to 
compute the convex sets resulting from (7), (9), (10), (11), and (12). When 
we have computed the set of candidate vertices by combining all vertices 
from one polytope with the vertices from the other, we can use a convex 
hull algorithm (Edelsbrunner [18]) to find the real vertices of the polytope. 

It is now time to return to our example. The convex set of matrices 
M ( Y I  X )  can be represented by the interval matrix 

[0.8, 1.0] [0.0, 0.2] [0.0, 0.2] / 

M ( Y I X )  = [0.0,0.2] [0.8,1.0] [0.0,0.2] 

[0.0, 0.2] [0.0, 0.21 [0.8, 1.0] 

What are the possible ~--vectors sent from X to Y? There are 27 
vertices in the polytope that represents the set of matrices. And when the 
number of vertices in the polygon representing the ~rr(X)-vector  is four, 
we get a total of 108 candidate vertices. After we have used the convex hull 
algorithm, the number of resulting vertices in our example is reduced to 
four--(0.56,  0.00, 0.44), (0.56, 0.44, 0.00), (0.92, 0.00, 0.08), and (0.92, 0.08, 
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0.00). In this example the interval restriction structure is also kept because 
the conditioning matrix has a nice symmetric structure. 

When programming A's it is possible to reduce the number of vertices 
one has to combine with. In this case it is fully possible to normalize every 
vertex in the polytope representing the ,Vs to get a polytope in the plane 
EiA(xi) = 1. This is so because it is only the ratios between the A(xi)'s that 
are interesting, as we will always normalize when we compute beliefs. To 
see that convexity is maintained under normalization, observe that the 
normalizing process is like projecting the convex polytope onto the plane 
~A(x i )  = 1 with the origin as the center of projection. It is as if we were 
standing at the origin looking toward a convex polytope. What we see is 
the projection onto a plane normal to the direction of view. Clearly the 
polytope we see is convex when the object observed is a convex polytope. 
Also when we compute BEL and z r r (X)  vectors the same argument is 
valid, so the computational effort lies in computing vertices of convex 
polytopes from singleton intervals, multiplying them to get the candidate 
vertices for the resulting convex hull, and then using convex hull algo- 
rithms to find the real vertices. 

Now, let us introduce dummy nodes into our network. Suppose the pistol 
is sent to some specialists on fingerprints. Their knowledge is modeled by a 
dummy node. This dummy node sends information to its parent node 
giving ratios for P ( C  J Y = xi) ,  i = 1, 2, 3. C is here the evidence given by 
the fingerprints. We also denote these ratios by )tc(Y). There is very little 
left of the fingerprints on the gun, so the specialists are very uncertain 
about whose they are. However, they come up with a set of interval 
probabilities, 

[0.3, 0.81 ) 
A c ( r )  = [0.5,0.6] 

[0.5,0.9] 

These probabilities do not need to sum up to 1, so the convex set of h's is 
represented by the prism given by the upper and lower limits. If we 
normalize, we get a convex hexagon represented by the following vertices: 

( 4  5 5 )  (4  5 5 )  ( 8  6 5 )  ( 3  3 5 )  

11 '  22 '  22 ' 9 '  18 '  18 ' 19 '  19 '  19 ' 14 '  7 '  14 ' 

' 3 '  2 ' 1 7 '  1 7 '  17 

As this is the only child of Y in the network, this hexagon also represents 
~(Y). To find the BEL(Y), we combine all vertices of 2t(Y) with all vertices 
of 7r(Y) and normalize, to get a total number of candidate vertices of 24. 
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The resulting polygon is a quadrangle with vertices 

(1~7 33) (92 5 ) ( 9 2  5 ) ( 7  11 ) 
,0 ,  , ~ - , 0 , ~ - ~  , 97' 97 '0 , 18 '  1 8 ' 0  

So Bel(Y) is one of the points in this polygon. The polygon is shown in 
baricentric coordinates in Figure 1. The corner marked with (1,0,0) 
represents BeI(Y) = (1, 0, 0), and correspondingly for the other corners. 

We can go on and propagate the information from the fingerprints up to 
the murder variable X by multiplying the set of )t's by the set of 
M(YLX)'s. From this we get a set of 162 possible candidates for the 
vertices for the polygon of A(X). The convex polytope is given by 10 
vertices: 

( 41 25 1 5 ) ( 4 1  25 41 ) (4 5 5 } (40 32 25) 

111' 111' 37 ' 107' 107' 107 ' 9 '  18' 18 ' ' 97' 97 ' 111 ) 
71' 71' 71 ' ' 34' 68 ' 29' 29' 29 ' ' 31' 31 ' 

(15 23 4 5 ) ( 2 1  23 45) 

' 83 '  83 ' 89 '  8 9 '  89 

Combining this with ~-(X), which is the set of a priori probabilities of X, 
we get a quadrange that contains all possible probability distributions for 
X, given all the evidence. The quadrangle is given by the four vertices 

(77 5 ) ( 3 6 9  25 ) (3~8 33 ) (-~6 ~6) 
, 0 , -~  , 394' 394'0 , ' 68'0 , ,0, 

Figure 2 shows the convex set in baricentric coordinates. 
The combinatorial explosion in the number of vertices in the tensor 

polytope severely restricts the maximal number of parents in a dependency 

~l,o,o) 

(0,0,1) 

\ 
\ 

\,\ 
\ 

\\\\ 
\\ 
\ 

~ (0,1,0) 

Figure I. 
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(0,03) 

(],0,0) 

Figure 2. 
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graph and also the number of possible values for a variable. In Table 1 we 
show the maximal number of vertices for the tensor polytope when 
variables have at most n possible values and at most k parents. We see 
that the number can be accepted for n = 2 and k < 3, and, depending on 
the computer, we can let k = 1 and n be up to 3. Any other parameters 
seem impractical if we want a fast response. 

5. AN APPROXIMATIVE METHOD 

As we have seen, the number of vertices in our polytopes grows very fast 
as the number of critical parameters increases. Hence, it is neither 
tempting nor practical to use the algorithm of the previous section to do 
propagation. There seems to be a need for an approximation algorithm. 

The idea we present here is to maintain the singleton interval represen- 
tation of the convex set of distributions. We find the minimum and 
maximum bounds for all singleton probabilities and use these as resulting 
intervals. Together with the plane EiP(X = %) = 1, these intervals give us 
a representation compatible with the one we started with. 

Table 1 

k 

n 1 2 3 4 5 

2 4 16 256 65536 4.29 x 10 9 

3 216 1.01 × 10 7 1.02 × 1021 
4 20736 1.85 × 1017 
5 2.43 X 10 7 
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Let us start with the two-valued case. Suppose X is a root variable that 
takes one of the values x G and x~. Then the set represented by the interval 
restrictions is a straight line between two points in two-dimensional space. 
In particular, this is also true for ~-(X), and also for A(X) after normaliza- 
tion. If we suppose that X has a two-valued child Y, Y's only parent being 
X, then the transformation done by (9) of a normalized 7rx(Y) is the same 
as rotating and stretching the line given by the interval restrictions on 
~x(Y). This new set of possible 7r(Y)'s is represented by a line, and 
interval restrictions can trivially be found from the bounding points. 

The formulation of the problems can be done in a linear programming 
manner. For  example, find the minimum ~r,(y 0) of 

~(Yo) = 1ry(xo)P(Yo Ix0) + 7ry(xl)P(Yo [x l )  

given the inequalities 

~-y,(x0) -- ~y(x0)  -< ~y*(x,,) 

P*(yo[Xo) < P(Yo[Xo) <- P*(Y0 Ix0) 

P,(yo]x l )  <P(YolXL) <-P*(yo[xl) 

and the equality 

~ y ( x 0 )  + "rry(X~) = 1 

The solution in this case is found when 

P(Yol 

P(Yol 

/ ~ry,(x0) 

xo) = P , ( y , ,  I x~) 

xl) = P,(Yo[Xl) 

i f P , ( y 0 ] x 0 )  > P,(yo]x l )  

else 

To see why, observe that what we do in this case is multiply the largest 
P(Y0 I xi) by the smallest factor to minimize its influence in the sum. It is a 
kind of annihilation of the probabilities, and we shall use this name for the 
idea later. 

The principle is that we find the interval bounds by distributing the 
probability masses within the conditioning matrix and rrx(Y) such that we 
get the minimum or maximum of the entries in 7r(Y). By a probability 
mass we mean a part of the total probability. The total probability mass 
sums up to I and is distributed to singleton sets during the approximation 
algorithm. 

From now on we assume that the possible 7r-vectors are normalized and 
consistent according to Definition 2.1. We proceed with the computation 



108 BjNnar Tessem 

of At(X). To find Ar,(x 0) we have the following problem. Find the 
minimum of 

Ar(xo) = P(Yo I xo)A(Y0) + P(Yl I x0)A(Yz) 

given the constraints 

A,(yo) ~ A(y0) _<A*(y 0) 

A,(y t)_< a(y 1) _<A*(y t) 

P*(Yo t xo) <-P(Yo t Xo) <-P*(Yo ]Xo) 

and 

P(Yo Ixo) + P(yJlXo) = 1 

The solution is given by 

a,(yo)tz + A,(y~)(1 - ~)  

where 

BEL( x 0) = 

under the constraints 

'P,(Yo f x0) if h,(y0) > h,(y~) 
/ z=  

P*(Yo I Xo) else 

Equivalent ideas can be used to find all lower and upper bounds for 
both ~-'s and A's. When we want to find upper bounds, we do the opposite 
of annihilation. The components with the largest upper bounds are multi- 
plied by numbers as large as possible. In the following we call this process 
reinforcement. When we have the bounds it is time to combine zr and h to 
get the intervals for the probability distributions of our variable or, 
equivalently, find the lower and upper bounds for BEL(X). Suppose now 
we have an interval representation of both ~r(X) and A(X). Then 
BEL,(x 0) can be found by solving the following problem. Find the mini- 
mum of 

~(x0)~(x0) 

~(x0)~(x0) + a(x~)~(xl) 

~.(x0) _< A(xo) _< ;~*(xo) 

A,(xl) _< ;~(xl) - ;~*(Xl) 

~r.(x0) _ ~(x0) -- ~*(x0) 

~r,(x]) _ ~(x])  _< ~*(x~) 
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and 

The solution is 

B E L , ( x 0 )  = 

7r(xo) + ~(x~)  = 1 

~ . ( x o ) a . ( X o )  

~' . (x0)a . (x0)  + ~ * ( x , ) a * ( x , )  

We also use the annihi la t ion/reinforcement  strategy to find the solution. 
To find upper bounds we have to make the denominator of the fraction as 
small as possible, so we use annihilation on the denominator.  For lower 
bounds we use reinforcement. This way, we find all the bounds of BEE. 

Throughout  these computations we have assumed that we know the 
bounds on both Try(X) and A(X). To compute them is as simple as what 
we did above. The intervals for A(X) we get from simple interval multipli- 
cation (Moore [19]) of the intervals from the different Ay(X)'s. The 
resulting interval for A(x 0) is [l-l/k: i Av#(x0), 1-1~ i Ar*(x0)]. To get the 
Try(X) we first do an interval multiplication of the Ay(X) intervals from 
the children Y~ of X not equal to Y. We denote this product by A v(X).  A 
normalized ~ry,(x 0) is then 

A y . ( x 0 ) ~ . ( x 0 )  
~y . (x0)  = 

A_y . (x0)~ . (x0)  + ,~_y*(xl)~*(x,)  

The other bounds are found similarly. 
In the case where a node Y has more than one parent, we need more 

general algorithms for computing ~-(Y) and hv(X) .  The annihi la t ion/re-  
inforcement idea is central here also. 

The idea is to compute a joint distribution P ; ( D ~ ,  . . . .  D;k) over the 
Xi's that are parents of Y. We get this from the different ~rx(Y)s. Since 
they are marginally independent,  this distribution is given by multiplying 
the 7rx(Y)'s together, which is simply done by interval multiplication. 

The problem of finding 7r,(y 0) can be described as follows. Find the 
minimum of ~'(Y0) given the constraints given by the intervals and the fact 
that the ~-v(X~)'s have to be normal. The method to use is to first compute 
the joint distribution from all parents of Y. Then sort in increasing order 
the entries M ( Y  IX 1, X 2 . . . .  , X k  ) i , , i  2 . . . . .  ik ,o , where the indices vary over 0 
and 1. Then distribute the probability mass to the joint distribution such 
that the probability of the event that has the smallest M(Y  I X~, X 2 . . . . .  
Xk)~,,i2 ..... i~,0 gets as much mass as possible. A more precise algorithm is 
given in Figure 3. (In the computation of upper bounds, the sorting in the 
algorithm should be in decreasing order  on the upper bounds of the 
conditional probabilities. And in the last step one should use the upper 
rather than lower bounds for the conditional probabilities in the equation.) 
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The algorithm for computing Ay,(xl, 0) is somewhat more complicated 
and uses methods similar to those mentioned above. An algorithm is given 
in Figure 4. 

It should now be straightforward to extend the method to the case 
where there are more than two possible values for a variable. Every time 
there is a need to distribute probability masses to a distribution to obtain 
bounds, we use the above method of sorting the indices according to upper 
or lower bounds of the other  vector of the computation. We shall exem- 
plify this by using the ideas on our murder  case. 

Suppose we are given the bounds as in the previous section: 

7 r (X)  = ([0.7,0.9],  [0.0,0.3], [0.0,0.3]) 

and 

( [O.S, 1.0] [0.0, 0.2] [0.0, 0.2] / 

M(Y[X)=[[O.O,O.2]  [0.8,1.0] [0.0,0.2] J [0.0, 0.2] [0.0, 02] [0.8, a.0] 

Then to find the lower bound ~r,(y 1) we do the following. First we assign 
as much probability mass as possible to the Zrv(x i) for which M,(Y  [ X)i. L 
is minimal. We continue with this distribution until all the mass is 
distributed. This is in principle the same thing we do when we work with 
several parents in the two-valued case. After having done this we are ready 
to compute 

3 

1r , (y l )  = ~ z ry (x , )M, (Y lX) , , l  
i = 1  

= 0 . 7  × 0.8 + 0 x 0 + 0  x 0.3 = 0 . 5 6  

The upper bound is found by assigning as much mass as possible to the 
7ry(X i) for which M*(YI X)i, 1 is largest. This is done repeatedly until all 
the mass is distributed. The result is 

3 

zr*(yl )  = ~ z r y ( x i ) M * ( Y I X ) , , ,  
i = l  

= 0 . 9  × 1 + 0.1 × 0.2 + 0 × 0 . 2 = 0 . 9 2  

The resulting interval zr(Y)-vector is 

rr (Y)  = ([0.56, 0.92], [0.00, 0.44], [0.00, 0.44]) 

One can see that the new intervals are consistent in the sense of Definition 
2.1 by observing that any new bound is the result of combining consistent 
values for the parameters.  We also observe that the convex set obtained 
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with these particular interval restrictions is the same set we get when we 
use the method of the previous section on the same example. 

Now from our fingerprint experts we have the A(Y)-distribution given by 

([o.3,o.8] ] 
A(Y) = [[0.5,0.6]  . 

[ [0.6,0.9] 

We do not normalize this vector to get some kind of normal interval 
distribution for the h's. This is so because then we would have to add the 
constraint that the A's sum up to 1 to our problem, which in fact leaves the 
problem unnecessarily more difficult. When we were normalizing h's in 
the method of the previous section, the normalizing process had no 
impeding effect because it only created a new set of  ratios with the same 
results, but with normality implicit. 

Let us now combine ~-(Y) and A(Y). Then the lower bound Be l , (y  l) is 
found by reinforcement.  Assign as little mass to zr(y~) as possible, that, is 
~-,(y~). We also have to assign h,(y~) to Z(y~). Then to ensure that the 
normalizing factor becomes as small as possible, we must assign the upper  
bounds to the other elements in the A-vector and distribute the rest of the 
probability mass to elements zr(y i) with the largest A*(yi). The result in 
our case is 

B E L , ( y l )  = ]E? 
, =  1 

0.56 x 0.3 14 

0.56 × 0.3 + 0 x 0.6 + 0.44 x 0.9 47 

To find the upper  bound of BEL(y l )  we use annihilation. Assign as much 
as possible to zr(y 1) and A(yl). To maximize the normalizing factor, the 
other A's become equal to their lower ~ounds and the rest of the mass for 
the ~--vector is distributed so that the ~-(y) ' s  with the smallest correspond- 
ing A,(yi)'s are as large as possible. The result is 

0.92 x 0.8 92 

BEL*(y~)  = 0.92 x 0.8 + 0.08 x 0.5 + 0 x 0.5 = 9"-~ 

The complete BEL vector is 

14 33 

The convex set given by these interval restrictions is somewhat larger than 
the set given by the convex set method,  and the polygon contains an extra 



Interval Probability Propagation 115 

vertex, namely (14/47,  11/18,  77/846).  The extra area introduced in the 
baricentric triangle in Figure 5 represents the extra probability distribu- 
tions introduced by our algorithm. 

We shall now compute  Av(X),  the information sent to X from Y. We 
use the same type of generalization as when we computed 7r(Y). To get 
the lower bound of Ay(x 1) we first assign values as small as possible to the 
A(yi)'s. Afterwards we distribute the probability mass so that the 
M(YI X)3, j's with the smallest corresponding A(y) 's  get as much mass as 
possible. The result is 

Av , (x l )  = 0.3 x 1.0 + 0.5 x 0 + 0.5 x 0 = 0.3. 

The complete Av(X)  vector is 

A v ( X )  = ([0.30, 0.82], [0.46, 0.66], [0.46, 0.90]). 

Combining this vector with the a priori probabilities of X gives us 369][ [ 9]) 
B E E ( X )  = 1 6 ' 3 9 2  ' 0, , 0, . 

The polygon resulting from these limits is given in Figure 6. The area 
shaded with a grid shows the error  introduced. 

The method sketched for computing upper  and lower bounds of BEE is 
sufficiently general to work for all numbers  of  possible values for a 
variable. The idea is to sort on the lower or upper  bounds of the A-vector, 
not including the element  that corresponds to the one we are computing a 
bound of. We use the order to distribute the rest of the mass to minimize 
or maximize the denominator  in the equation for B E E  A minimal denomi- 
nator gives us the upper  b3und, and a maximal denominator  gives us the 
lower bound. If  a many-valued variable has more than one parent,  the 
methods to use to compute the messages 7r(Y) and Ay(X) from and to 
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Figure 6. 

the parents are generalizations of the algorithms given in Figures 3 and 4. 
This approximation method works in polynomial time and is thus an 
interesting alternative to the intractable method presented in the previous 
section. 

In his book [17], Pearl discusses multiply connected networks and how 
one can propagate constraints in them. This subject has not been discussed 
in this paper. However, the methods of clustering and conditioning pre- 
sented there should be easy to generalize for use with the methods given 
here. This would be a topic for further research. 

6. ERROR ANALYSIS 

As we have seen from the example, the annihi lat ion/reinforcement  
( A / R )  algorithm introduces an error in the intervals after propagation. No 
extra error  is introduced into intervals if we use convex hulls to represent 
the nonconvex sets of distributions. This is so because the vertices of the 
convex hull of the nonconvex set will also be extremes of the correct set. 
Any point in the interior of the convex hull will not be able to become an 
extreme point during further propagation because the exact propagation 
uses linear transformations. When transforming a convex polytope P, a 
linear transformation creates a new polytope P '  whose vertices are trans- 
formations of vertices of P, and thus only extreme points of the original 
nonconvex set will become possible extreme points of new nonconvex sets. 

As a result of this, an interesting way of looking at the errors may be to 
look at the overestimation of the intervals given by the A / R  algorithm. 
We shall first look at how the total and relative errors in intervals change 
through propagation of initial data in a tree-structured belief network. 
Afterwards we shall see what happens when we introduce dummy nodes 
into the same type of network. 
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The first experiments are done in belief networks where variables can 
take three values. Any higher number  of values leads to so many possible 
vertices in the polytopes we must compute  that experiments are difficult to 
perform. 

The first experiments per formed were designed to discover how the 
error  f rom one source of data in singleton intervals changes through 
propagation.  We tested 101 random belief networks (chains) with interval 
probabilities in all initial data. The idea was to watch the error caused by 
the initial a priori probability. Each network consisted of 20 nodes in a 
chain (no node had more  than one child), and each node could take only 
three values. 

When the errors at each node were compared  with the errors at all 
other  nodes, the analysis showed that both total and relative errors have a 
clear tendency to grow the first few four or five steps of  propagation,  but 
after this there seems to be no significant (0.05-level) change in the error 
size. After  the tenth step, however, there is a significant reduction in both 
total and relative errors. This last observation is to be expected, as interval 
probabilities after a long chain of propagat ion will converge to the interval 
[0, 11. 

The next experiments did the same type of analysis of the error using 
variables that could take five values and use p o i n t  matrices. The data we 
propagated were the interval a priori probabilities in the root node. The 
results showed that the relative error in this case seems to grow large, 
whereas the total error seems to go toward zero. 

Furthermore,  the correct probability distribution seemed to converge to 
point distributions as we want away from the root. This can be explained 
by the use of single-valued matrices and a result f rom the theory of 
nonstationary Markov processes (Isaacson and Madsen [7, Ch. 5]) The 
relation to our problem is that a belief network that is a chain can be seen 
as a nonstationary Markov process where the conditional probability 
matrices correspond to the transition matrices, and the nodes correspond 
to the variables we observe at a certain time. If  you multiply a set of m 
transition matrices of a Markov processes, I t ,  t = 1 . . . .  , m ,  to get the 
matrix P("),  then the number  t~(P (m)) = 1 - m i n i ,  kE~= lmin(pij ,  Pkj) con- 
verges to 0 when m ---) w. The constraints on the matrices Pt are not very 
restrictive and include most of the random matrices we have used in our 
experiments. (If  a matrix that is excluded by the constraints is used, the 
convergence is postponed only one time step.) The convergence result says 
that the maximal distance between elements in columns becomes zero 
after infinite time. So what we would get in our case is that the maximum 
distance between elements in columns of the matrix product of the 
conditional probability matrices converges to zero as we get far down in a 
chain. In a way, we can say that we forget the a priori probability of the 
root node as we move away from it. 
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The property that the A / R  algorithm also seems to converge is also 
explainable. If we let w i = ~ * ( x  i )  - 7 r , ( x i )  , then the sum En,= l w i  will 
decrease as we move X away from the root node. To suggest why it is so, 
let us first use the standard interval approach and multiply the intervals of 
the 7r-vectors by the point conditional probability matrices. Then the sum 
of the widths of intervals, E~,= ~w i, will be constant, as we multiply every 
interval by a total of 1. When the A / R  algorithm is used to compute lower 
and upper bounds, however, some of the singleton probabilities will take 
lower bounds and others upper bounds as values at the same time. This 
will almost always reduce the number each interval is multiplied by to 
lower than (and never larger than) 1 and thus reduce the total width. 
There are special cases where this does not work. But, at least in the case 
where matrices contain only elements smaller than 1 and there are at least 
n -  1 nonzero elements larger than a constant e in each row, this 
algorithm will also be less affected by the root node value the farther away 
we move. 

The experiments showed that the relative error grows and the total error 
decreases as we move away from the root node. This, together with the 
theoretical results mentioned, implies that both methods converge to the 
same point but that the correct method converges faster. This again 
suggests that when interval matrices are used, the relative and total errors 
will be acceptable. Use of interval matrices can be seen as the use of all 
combinations of  point matrices from the convex sets. All of these combina- 
tions will converge to give single-valued results from the interval starting 
point, both in the correct case and in the A / R  algorithm case. When we 
look at nodes far away from sources of data, the difference set between the 
polytope given by the A / R  algorithm and the correct set can thus be said 
to be a thin layer of incorrect probability distribution. The largest errors 
will be found when one is relatively close to the sources of data. Whether  
these are acceptable or not depends on the problem. 

In the last experiments we introduced dummy nodes into the networks. 
In this case only trivalued variables were used, and a maximum of five 
random dummy nodes were generated and connected to the network at 
random points. The random trees contained 10 standard-type nodes, and 
every node had a maximum of four children. 

In these experiments both relative and total errors grew when the 
dummy nodes were added. Some of the experiments also gave as a result 
that the errors became smaller when the number of dummy nodes ap- 
proached 5. This last effect is presumably caused by the fact that intervals 
tend to grow toward [0, 1]. But the errors always had acceptably small 
values. The mean size of the A / R  intervals taken over the whole graph 
after propagation of new data was at the most 1.4 times larger than the 
correct size, and the variance of this number was no larger than 0.1. 
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All the experiments mentioned here were performed with initial inter- 
vals of mean width 0.2. It would be natural to assume that the relative 
error  would grow larger when intervals were narrower and also that this 
relative error would start to diminish (because of the effect that intervals 
tend to grow to [0, 1]) at nodes farther away from the source of data. 

The conclusion of the error analysis must be that the errors introduced 
do not seem to be of a dimension that makes the A / R  algorithm useless. 
The relative errors did not exceed an unacceptable limit during the 
experiments, even after several dummy nodes were added to the data. 

7. CONCLUSION 

It has been shown that when we accept the limitation that x~e are 
allowed to specify only upper and lower probabilities for singleton sets, it is 
in fact possible to propagate these constraints efficiently in a singly 
connected belief network. This is under the assumption that we accept 
some errors in the interval beliefs. 

The error analysis shows that the annihi la t ion/reinforcement  algorithm 
presented here should be of interest to anyone considering the use of 
interval probabilities. Of course, there are cases where too much informa- 
tion is lost, but by and large the errors introduced by the algorithm seem 
acceptable. 

The limitation that we should only consider singleton interval probabili- 
ties, however, may be an important restriction in many applications. It 
should be of interest to try to use general interval constraints. In [21] 
Tessem attempts to use linear programming techniques. 
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