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SUMMARY

Ubiquitin E3 ligases serve for ubiquitination of
specific substrates, and its ligase efficacy is regu-
lated by interacting proteins or substrate modifica-
tions. Whether and how the ligases themselves are
modified by cellular signaling is unclear. Here we
report that protein kinase A (PKA)-dependent phos-
phorylation of Smad Ubiquitin Regulatory Factor 1
(Smurf1) can switch its substrate preference
between two proteins of opposing actions on axon
development. Extracellular factors that promote
axon formation elevated Smurf1 phosphorylation at
a PKA site Thr306, and preventing this phosphoryla-
tion reduced axon formation in cultured hippocampal
neurons and impaired polarization of cortical
neurons in vivo. Thr306-phosphorylation changed
the relative affinities of Smurf1 for its substrates,
leading to reduced degradation of polarity protein
Par6 and increased degradation of growth-inhibiting
RhoA. Thus, PKA-dependent phosphorylation of the
E3 ligase could switch its substrate preference,
contributing to selective protein degradation
required for localized cellular function.

INTRODUCTION

A critical step in neuronal differentiation is the establishment of

axon/dendrite polarity. An undifferentiated neurite may acquire

the axon identity through either intrinsic or extrinsic factors.

Postmitotic asymmetry in the distribution of cytoplasmic compo-

nents (e.g., the centrosome; de Anda et al., 2005), could specify

the location of axon initiation. Gradients of extracellular polar-

izing factors may also induce asymmetric localization or stabili-

zation of cytoplasmic axon determinants, e.g., PI3 kinase

(Menager et al., 2004; Shi et al., 2003), Akt (Yoshimura et al.,

2006b), plasma membrane ganglioside sialidase (Da Silva

et al., 2005), Shootin 1 (Toriyama et al., 2006), and LKB1/STRAD

complex (Barnes et al., 2007; Shelly et al., 2007), which in turn

initiate the program of axon differentiation, including the acceler-

ation of neurite growth. However, spontaneous polarization of
cultured hippocampal neurons occurs on apparently uniform

substrate in the absence of extracellular polarizing signals (Dotti

and Banker, 1987). In this case, a single axon emerges from

a group of similar neurites, presumably as a result of intrinsic

cytoplasmic polarity or stochastic accumulation of axon

determinants, followed by a local positive feedback mechanism

that stabilizes their accumulation (Blumer and Cooper, 2003;

Shelly et al., 2007). One of the mechanisms for stable accumula-

tion of a protein is to reduce its degradation by lowering local

activity of ubiquitin-proteasome system (UPS). Enhanced degra-

dation of axon-promoting protein Rap1B-GTPase by overex-

pressing its specific E3 ligase Smurf2 prevented axon formation

(Schwamborn et al., 2007b). However, whether regulation of

endogenous E3 ligase activity contributes to axon formation

remains unclear.

The mammalian Par (partitioning-defective) proteins are key

cytoplasmic components for axon formation. The accumulation

of Par3 and Par6 at the tip of developing axon is essential for

axon differentiation in hippocampal neurons (Shi et al., 2003).

The Par3/Par6/atypical protein kinase C (aPKC) complex was

originally shown to be required for the anterior/posterior polarity

of the Caenorhabditis elegans embryo and for the polarization of

Drosophila neuroblasts and epithelial cells (Nelson and Grind-

staff, 1997; Rolls et al., 2003). The Par6 and aPKCmay also regu-

late dendritic spine morphogenesis by inactivating growth-

disrupting RhoA (Sordella and Van Aelst, 2008; Zhang and

Macara, 2008). In epithelial cells, Par6 recruits an E3 ubiquitin

ligase Smurf1 (Smad ubiquitination regulatory factor1) that

targets RhoA for localized ubiquitin-mediated degradation, facil-

itating disruption of tight junctions and polarized cell migration

(Ozdamar et al., 2005; Sahai et al., 2007; Wang et al., 2003).

Mice with either Smurf1 or Smurf2 gene deletion did not show

overt embryo phenotype, but those with deletion of both genes

display planar cell polarity defects in the cochlea and failure in

neural tube closure, and die around E10.5, suggesting functional

redundancy between Smurf1 and Smurf2 (Narimatsu et al.,

2009). The mechanism that causes localized accumulation of

Par6-associated complexes and the relationship between extra-

cellular polarizing factors and Smurf1-mediated protein degra-

dation in developing neurons are unknown.

In the present study, we obtained direct evidence that regula-

tion of UPS-dependent degradation of selective proteins occurs

during axon initiation induced by cyclic AMP (cAMP) and brain-

derived neurotrophic factor (BDNF), a neurotrophin known to
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promote axon formation (Arimura and Kaibuchi, 2007; Shelly

et al., 2007). We found that the axon initiation effect of cAMP/

BDNF depended in part on PKA-dependent phosphorylation of

the E3 ligase Smurf1, a process that resulted in enhanced Par6

stabilization and RhoA degradation. Biochemical assays

showed that PKA-dependent Smurf1 phosphorylation at Thr306

increased the affinity of Smurf1 for RhoA relative to Par6.

Furthermore, Smurf1 phosphorylation at Thr306 contributes

significantly to axon formation in vitro and neuronal polarization

in vivo. Together, these findings demonstrate a regulatory mech-

anism of UPS-dependent protein degradation through phos-

phorylation of the E3 ligase. Localized cAMP elevation caused

by extracellular polarizing factor may trigger PKA-dependent

phosphorylation of Smurf1 in an undifferentiated neurite, leading

to differential stability of proteins that promote axon

development.

RESULTS

BDNF/db-cAMP Increases Par6/LKB1 Stabilization
and RhoA Degradation
Selective accumulation of key protein determinants in an imma-

ture neurite is responsible for axon initiation triggered by either

intrinsic cytoplasmic activity or extracellular polarizing factors.

Such accumulation could result from localized inhibition of pro-

teasome-dependent degradation (UPS) of selective proteins.

Previous studies on cultured hippocampal neurons have shown

that localized exposure of an undifferentiated neurite to BDNF or

a cAMP analog promotes its differentiation into axon (Shelly

et al., 2007). In this study, we first showed that axon initiation

could be preferentially induced on substrate stripes coated

with BDNF or a cAMP analog (see Experimental Procedures;

see Figures S1A1�S1A6 available online), and that global inhibi-

tion of UPS by MG132 promoted the formation of multiple axons

in these neurons (Figure S1B), consistent with previous reports

(Schwamborn et al., 2007b; Yan et al., 2006). In addition, we

found that preferential axon initiation induced by the BDNF/

cAMP-coated substrate stripes was prevented by bath applica-

tion of the UPS inhibitor MG132 (1 mM) and mimicked by using

stripes coated with either MG132 or another UPS inhibitor lacta-

cystin (Figure S1A7). Thus, a nonspecific manipulation of UPS-

dependent protein degradation could markedly influence both

spontaneous and polarizing factor-induced axon formation. As

described below, more specific manipulation of UPS via

changes in the E3 ligase activity provides more specific dissec-

tion of the proteins involved in axon formation.

We then examined the effects of BDNF or dibutyryl(db)-cAMP,

a membrane permeant analog of cAMP, on the UPS-dependent

degradation of five proteins that are known to be involved in axon

differentiation and growth: partitioning-defective 6 (Par6), atyp-

ical protein kinase C (aPKC), Akt/PKB, liver kinase B1 (LKB1),

and small GTPase RhoA (Arimura and Kaibuchi, 2007; Barnes

and Polleux, 2009; Shelly et al., 2007; Yuan et al., 2003). We

found that 10 hr incubation of hippocampal neurons with

BDNF (50 ng/ml) or db-cAMP (20 mM) selectively increased the

level of Par6 and LKB1 as well as decreased the level of RhoA,

without affecting that of aPKC and Akt (Figure 1A). On the other

hand, general inhibition of UPS with MG132 (1 mM for 10 hr)
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markedly increased the level of all five proteins (Figure 1A). These

changes induced by db-cAMP/BDNF were due to modulation of

protein degradation rather than synthesis, because they were

not affected by the presence of the protein synthesis inhibitor

cycloheximide (10 mg/ml, data not shown). The protein stabiliza-

tion effects of BDNF were also prevented by the specific PKA

inhibitor KT5720 (200 nM) (Figure 1A), consistent with the

involvement of PKA in BDNF-induced growth cone guidance

(Gallo et al., 2002; Yuan et al., 2003) and axon initiation (Mai

et al., 2009; Shelly et al., 2007). Furthermore, we performed ubiq-

uitination assay on Par6, LKB1, Akt, and RhoA, by transfecting

myc-tagged ubiquitin in cultured Neuro2a cells, which exhibited

the high transfection efficiency required for this assay. We found

that 10 hr treatment of these Neuro2a cells with db-cAMP

(20 mM) in the presence of MG132 (1 mM, to block ongoing

UPS activity) led to a reduced ubiquitination of Par6 and LKB1

but enhanced RhoA ubiquitination, without affecting Akt ubiqui-

tination (Figure 1B). Pretreatment of KT-5720 also diminished the

changes of endogenous Par6 and RhoA protein level induced by

BDNF or db-cAMP (see Figure S1C), Together, these findings

show that BDNF and db-cAMP could induce a PKA-dependent

selective stabilization and degradation of proteins relevant to

axon formation, through its effects on the UPS activity.

Smurf1 Ligase Activity Regulates Par6 Degradation
During axon/dendrite differentiation in cultured hippocampal

neurons, Par6 accumulates at the axon tip and forms a complex

with Par3 and aPKC (Shi et al., 2003) that participates in axon

differentiation by interacting with Cdc42 and GSK3b (Garvalov

et al., 2007; Joberty et al., 2000; Shi et al., 2004; Yoshimura

et al., 2006a). To determine how BDNF modulates UPS-depen-

dent Par6 degradation, we screened E3 ligases that are respon-

sible for Par6 ubiquitination by cotransfecting Neuro2a cells with

Par6 and various E3 ligases. The Par6 was overexpressed to

avoid the possibility that the low endogenous level of Par6

becomes limiting in ubiquitination assays. We found that coex-

pression with the wild-type Smurf1 (Smurf1WT, Ozdamar et al.,

2005) significantly enhanced Par6 ubiquitination, whereas

coexpression with the ligase-deficient form of Smurf1

(Smurf1C699A, with the catalytic site Cys699 mutated to alanine;

Zhu et al., 1999) suppressed Par6 ubiquitination (Figure 2A). In

contrast, coexpression with Nedd4-1, Mdm2, Smurf2, or the

ligase-deficient mutant of each of these ligases (see Supple-

mental Experimental Procedures) all had no effect on Par6 ubiq-

uitination (Figure 2A). Furthermore, bath application of db-cAMP

(for 6 hr) in hippocampal cultures markedly increased the Par6

level in control untransfected or Smurf1WT-transfected cultures,

but not in cultures transfectedwith Smurf1C699A (see Figure S2A).

Thus, the ligase activity of Smurf1 is critical for its regulation of

the Par6 level.

Whether Smurf1 directly ubiquitinates Par6 was examined by

using a cell-free in vitro ubiquitination assay. We found that the

bacterial-purified Par6 was ubiquitinated only when all neces-

sary components were present together with Smurf1WT but not

with the ligase-deficient Smurf1C699A (Figure 2B). Consistent

with the notion that Par6 and RhoA are specific substrates of

Smurf1, downregulating Smurf1 expression with shRNA in Neu-

ro2a cells (see Figure S3A) led to an increased level of Par6 and



Figure 1. BDNF and db-cAMP Regulate UPS-Dependent Degradation of Par6, LKB1, and RhoA

(A) Western blot showing that bath application of BDNF (50 ng/ml) and db-cAMP (20 mM) for 10 hr increased the endogenous protein level of Par6 and LKB1, but

decreased that of RhoA in cultured hippocampus neurons. ‘‘KT’’ is a specific PKA inhibitor KT5720 (200 nM; applied 30min prior to BDNF). Histograms of protein

levels: average ± standard error of the mean (SEM) (n = 3; *p < 0.1; **p < 0.01; yp = 0.08; zp = 0.13, relative to control; t test).

(B) Ubiquitination assay for Neuro2a cells transfected with myc-tagged ubiquitin, using antibodies targeted to the myc-epitope, Par6, LKB1, Akt, or RhoA protein.

The cells were treated with or without db-cAMP (cA; 20 mM) for 10 hr, and the cell lysate immunoprecipitated by Par6, LKB1, Akt, or RhoA-specific antibody were

blotted with antibody against myc-epitope as indicated. ‘‘Con’’ denotes untreated control cultures. ‘‘IB’’ denotes immunoblotted with indicated antibody.

Summary graph on the right showing results from quantitative measurements of db-cAMP-induced changes in the level of ubiquitinated proteins (>MW of

53 kDa), normalized to the band intensity measured from the corresponding immunoprecipitated protein (±SEM, n = 3; **p < 0.01, compared to control, t test).
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RhoA, but not of LKB1 (Figure S3A). Furthermore, the effect of

BDNF/db-cAMP on Par6 ubiquitination and protein level was

also diminished when Neuro2a cells were cotransfected with

Smurf1C699A (Figure 2C; see also Figure S2A), similar to that

found for RhoA (see Figure S2B). This further suggests the

important role of Smurf1 in the BDNF/db-cAMP-induced Par6

stabilization. Similarly, coexpression of the Smurf1-resistant

form of RhoA (RhoAK7,6R; see also Figure S2C; Ozdamar et al.,

2005) prevented the enhanced ubiquitination effect of BDNF/

db-cAMP (Figure 2D). Therefore, Par6 is not only an adaptor

for Smurf1, as found in epithelial cells (Ozdamar et al., 2005;

Wang et al., 2003), but also is a specific substrate of Smurf1 in

neurons, similar to RhoA. Notably, BDNF and db-cAMP modu-

late Smurf1-mediated ubiquitination of these two proteins in an

opposite manner—increasing ubiquitination of RhoA but

decreasing that of Par6.

Smurf1Phosphorylation Switches Substrate Preference
for RhoA and Par6
To understand the mechanism underlying the opposite regula-

tion of Par6 and RhoA by BDNF/cAMP, we examined whether

Smurf1 and/or its substrates are phosphorylated in response

to BDNF or db-cAMP in Neuro2a cells. Western blotting
showed that BDNF or db-cAMP treatment (for 30 s) did not

change the level of the phosphorylated form of either Par6 or

RhoA (data not shown), but markedly increased the level of

phosphorylated Smurf1, an effect prevented by the presence

of KT5720 (Figure 3A). Furthermore, coexpression of Par6

together with a mutated Smurf1 that had a serine/threonine to

alanine mutation at one of the five potential PKA sites (see

Supplemental Experimental Procedures) showed that only

Smurf1T306A-expressing cells failed to exhibit prominent

cAMP-induced Smurf1 phosphorylation and BDNF-induced

reduction of Par6 ubiquitination (Figure 3B; see also Figure S4A).

Thus, Smurf1 phosphorylation at Thr306 is critical for its ligase

activity on Par6. In contrast to the role of Smurf1 in Par6 stabi-

lization, we found that LKB1 stabilization induced by db-cAMP/

BDNF could be attributed to PKA-dependent LKB1 phosphory-

lation at Ser431, a process that reduced LKB1 ubiquitination

(Figure S4B).

How does Smurf1 phosphorylation at Thr306 lead to

the opposite regulation of Par6 and RhoA degradation?

Further studies of Par6 and RhoA ubiquitination in Neuro2a

cells (in the absence of MG132) showed that Par6 ubiquitina-

tion was markedly higher in cells expressing phosphorylation-

resistant Smurf1T306A, but lower in cells expressing
Neuron 69, 231–243, January 27, 2011 ª2011 Elsevier Inc. 233



Figure 2. Smurf1 Ligase Activity Is Required for Par6 Ubiquitination

(A) Activity of Smurf1 was required for the increased Par6 ubiquitination in Neuro2a cells. Similar to that shown in Figure 1B, except that cells were cotransfected

with Par6 together with various wild-type (‘‘WT’’) and ligase-deficient mutated form of E3 ligases (‘‘MT’’; ±SEM, n = 3; *p < 0.1; **p < 0.01, compared to controls,

Tukey test).

(B) Cell-free in vitro ubiquitination reaction showing ubiquitination of purified Par6 by Smurf1. Left panel: Coomassie Blue staining of Par6. Lane 1: bacterial-

purified GST-Par6. Lane 2: Par6 staining after proteolytic cleavage with Factor Xa. Lane 3: Par6 staining after removal of Factor Xa. Right panel: In vitro cell-

free ubiquitination reaction in the presence and absence of E1, E2, GST-Smurf1WT (‘‘WT’’), and GST-Smurf1C699A (‘‘C699A’’).

(C) Ubiquitination assay showing that coexpression of Par6 with the ligase-deficient mutant Smurf1C699A prevented the reduction of Par6 ubiquitination induced

by BDNF or db-cAMP in Neuro2a cells.

(D) BDNF or db-cAMP increased ubiquitination of wild-type RhoA but not Smurf1-resistent RhoA (‘‘RhoAK6,7R’’) in transfected Neuro2a cells.
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phosphorylation-mimicking Smurf1T306D, in comparison with

that in Smurf1WT-expressing cells (Figure 3C). Interestingly,

RhoA ubiquitination exhibited the opposite pattern in these

cells (Figure 3C). Moreover, treatment with db-cAMP or

BDNF resulted in opposite changes in the level of Par6 and

RhoA that are consistent with those found by expressing

Smurf1T306D or Smurf1T306A (Figure 3D). Together, these results

showed that Smurf1 phosphorylation at Thr306 alters its

substrate preference from Par6 to RhoA without compromising

its E3 ligase function, leading to elevated ratio of Par6 to RhoA

(Figure 3D). This switch of substrate preference was due to

changes in the relative affinities of Thr306-phosphorylated

Smurf1 (p-Smurf1T306) for these two proteins. Western blotting

of immunoprecipitated Smurf1 from Neuro2a cells expressing

Smurf1WT showed that elevated Smurf1 phosphorylation

induced by BDNF or db-cAMP was accompanied by an

increased level of Smurf1-bound RhoA and a reduced level of

Smurf1-bound Par6 (Figure 3E). Consistently, Smurf1T306D ex-

hibited higher RhoA binding but lower Par6 binding than either

Smurf1WT or Smurf1T306A (Figure 3E). Thus, Smurf1 phosphor-

ylation at Thr306 resulted in a switch of the substrate preference

from Par6 to RhoA, leading to opposite changes of ubiquitina-

tion and degradation of these two proteins.
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Subcellular Distribution of p-Smurf1T306, Par6,
and RhoA
The subcellular distribution of p-Smurf1T306 was further investi-

gated by using a phospho-specific antibody (see Supplemental

Experimental Procedures) that recognizes phosphorylated

Thr306 of Smurf1, and antibody specificity was confirmed by

the reduction of staining intensity in the presence of a phos-

pho-peptide that contains phospho-Thr306 (Figure S5A).

Western blotting of immunoprecipitated endogenous Smurf1

from hippocampal neurons using this antibody showed an eleva-

tion of p-Smurf1T306 induced by bath application of BDNF, db-

cAMP, or forskolin (Figure 4A). Immunostaining of hippocampal

neurons in 16 hr culture prior to axon differentiation showed

that p-Smurf1T306 often accumulated unequally in undifferenti-

ated neurites (54 of 75), in contrast to a more uniform distribution

of Smurf1 (Figure 4B). When p-Smurf1T306 immunostaining was

normalized by that for Smurf1 for the first four longest neurites,

we observed up to �3-fold difference in p-Smurf1T306 accumu-

lation among neurites of similar length (Figure 4B). Localized

contact of the neurite with BDNF, which was coated on either

the culture substrate in stripes by adsorption or the surface latex

bead via covalent bonding, induced localized accumulation of

p-Smurf1T306 in neurites at the contact sites (Figures 4C and



Figure 3. Smurf1 Phosphorylation at Thr306

Switches Its Preference between Par6 and

RhoA

(A) Endogenous Smurf1 was phosphorylated in

Neuro2a cells after bath application of BNDF or

db-cAMP (30 s). Phosphorylated Smurf1

(‘‘p-Smurf1’’) was detected by immunoprecipita-

tion with anti-Smurf1 antibody, followed by immu-

noblotting with specific anti-phospho-(Ser/Thr)-

PKA substrate antibody (top panel) or anti-Smurf1

antibody (bottom panel).

(B) Western blots similar to that in (A), showing

time-dependent phosphorylation of Smurf1 at its

PKA site in response to elevation of cAMP by for-

skolin (20 mM) and 3-isobutyl-1-methylxanthine

(IBMX, 50 mM) in Neuro2A cells transfected with

various forms of Smurf1 in which amino acids at

the putative PKA sites were individually mutated.

Note that cAMP-induced phosphorylation was

largely absent for cells transfected with Smurf1

that has T306A mutation. Histogram: average

phospho-Smurf1 level ± SEM (n = 3) normalized

by total immunoprecipitated Smurf1.

(C) Ubiquitination assay of exogenous Par6 and

endogenous RhoA in Neuro2a cells cotransfected

with Par6 alone (control ‘‘con’’) or together with

wild-type Smurf1 (‘‘WT’’), phosphorylation-

mimicking Smurf1T306D (‘‘T306D’’) or phosphoryla-

tion-deficient Smurf1T306A (‘‘T306A’’) as indicated.

Histogram: average ± SEM (n = 3. normalized to

total immunoprecipitated protein as indicated;

**p < 0.01, Tukey test).

(D) Western blot showing that Smurf1 phosphory-

lation altered the relative levels of exogenous Par6

and endogenous RhoA in Neuo2a cells, as quanti-

fied by the Par6/RhoA ratio shown below (±SEM,

n = 3; normalized by b-actin then compared to

control; *p < 0.1; **p < 0.01, Tukey test). Neuro2a

cells cotransfected with Par6 and the indicated

forms of Smurf1 were treated with or without db-

cAMP (20 mM) or BDNF (50 ng/ml) for 10 hr, and

cell lysate was blotted with antibodies targeted

to RhoA, Par6, or Smurf1 as indicated.

(E) Western blots showing that Smurf1 phosphor-

ylation at Thr306 increased Smurf1 binding with

endogenous RhoA but decreased that with exog-

enous Par6 in Neuro2A cells. Neuro2a cells were

cotransfected with Par6 and the indicated forms

of Smurf1. After 16–24 hr transfection, cells were bath-applied with or without db-cAMP (20 mM) or BDNF (50 ng/ml) for 1 hr, and cell lysate immunoprecipitated

by Smurf1-specific antibody was blotted with antibodies targeted to RhoA, Par6, or Smurf1 as indicated. Histogram: summary results from immunoblotting

experiments similar to that shown above. The average Smurf1-bound RhoA or Par6 level (n = 3, ±SEM) was normalized to that of untreatedWT-transfected cells.
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4D). Furthermore, for neurons in 1-DIV cultures that are under-

going axon/dendrite differentiation, more prominent p-

Smurf1T306 accumulation was observed (Figure S5B). We

measured the immunostaining of endogenous Par6, RhoA, and

p-Smurf1T306 in neurons that had the longest neurite, >2-fold

longer than the rest (most likely to become the axon), and found

that the cytoplasmic distribution of p-Smurf1T306 correlated well

with that of Par6, especially near the growth cone region, where

RhoA exhibited a conspicuous reduction (Figure S5C). In

contrast, no apparent accumulation of either p-Smurf1T306 or

Par6 was found along the shortest neurite of the same group

of neurons (Figure S5C). These measurements revealed a signif-

icantly higher ratio of PAR6/RhoA level at the growth cone of the
neurite that is most likely to become the axon (Figure S5D).

Finally, for 3-DIV neurons that had completed axon/dendrite

differentiation, we found clear accumulation of p-Smurf1T306

staining in the axon, together with Par6 (Figure 4E). These find-

ings support the notion that Smurf1 phosphorylation at Thr306

reduces Par6 degradation and increases RhoA degradation

locally at the growth cone of the neurite at the time of its axon

differentiation, and that p-Smurf1T306 accumulation persists in

newly polarized axons that are undergoing rapid axonal growth.

RhoA Downregulation Contributes to Axon Initiation
We further examined whether RhoA regulation is indeed impor-

tant for spontaneous and BDNF-induced axon differentiation in
Neuron 69, 231–243, January 27, 2011 ª2011 Elsevier Inc. 235



Figure 4. Subcellular Distribution of

p-Smurf1T306, Par6, and RhoA

(A) Western blot showing phosphorylation of

endogenous Smurf1 in cultured hippocampal

neurons exposed to BDNF, db-cAMP, or forskolin

for 30 s. Smurf1 in cultured hippocampal neurons

was immunoprecipitated with a general Smurf1

antibody and then immunoblotted with antibody

specific to p-Smurf1T306 (‘‘p-Smurf1’’; top panel)

or to all Smurf1 (bottom panel).

(B) Subcellular distribution of endogenous Smurf1

and p-Smurf1T306 (‘‘p-Smurf1’’) in cultured hippo-

campal neurons prior to axon/dendrite differentia-

tion. Arrowheads, accumulation of p-Smurf1T306.

Bar, 25 mm. Histograms at bottom left: Immunos-

taining intensities of p-Smurf1T306 relative to that

of total Smurf1 at the last 10 mm of the neurite are

expressed as the p-Smurf1 to Smurf1 ratio. Histo-

gramsatbottom left depict theaverage ratio ranked

from 1 to 4 for the first four neurites of the highest

p-Smurf1T306 intensities in each cell (n = 75;

*p<0.1; **p <0.01, Tukey test). Theaverage lengths

of the neurites corresponding to those ranked by

the fluorescence ratio are shown on the left.

(C) Image of a neuron with its neurites grown on or

off the stripe coated with BDNF, immunostained

on 1 DIV with antibody specific for phsophorylated

Smurf1Thr306 (‘‘p-Smurf1’’). Summary graph

showing the mean p-Smurf1 intensity (±SEM;

n = 20; *p < 0.01, compared to controls, t test) of

neurites grown on and off the BDNF stripes. Only

neurons with the soma located at the stripe

boundary were counted. Stripe width, 50 mm.

(D) Image showing a local increase of p-Smurf1

staining after the contact of a single BDNF-coated

bead with the neurite tip for 1 min. Graph depicts

intensities of p-Smurf1 in the most distal 8 mm

region (near the site of bead-neurite contact) of

neurons in 1-DIV cultures. Arrowhead marks the

site of bead-neurite contact.

(E) Accumulation of p-Smurf1T306 and Par6 in the

axon of 3-DIV neuron (arrowheads). Tuj-1, neuron-

specific marker. Scale bar, 25 mm. Histograms:

Average lengthof theaxonand5 longestminorneu-

rites ranked by length for each cell (normalized by

the length of the shortest minor neurite), and the

corresponding average immunostaining intensity

of p-Smurf1 and Par6 (n = 15; normalized as for

length; **p < 0.01, Tukey test).
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cultured hippocampal neurons. We found that inhibition of Rho

kinase (ROCK) activity with bath application of the specific inhib-

itor Y-27632 marked increased the percentage of neurons with

multiple axons (MA) and the average length of neurites in these

hippocampal neurons (Figures 5A1�5A4), consistent with

a previous report (Da Silva et al., 2003). In contrast, expression

of a constitutively active form of RhoA (Rho-CA; Renshaw

et al., 1996) completely abolished neurite formation in these

neurons (Figures 5A2 and 5A4). Furthermore, expression of the

Smurf1-resistant RhoAK6,7R, which resists UPS-dependent

degradation, increased the percentage of cells with no axon

(NA), reduced that with MA, and shortened the average axon

length in cells with a single axon (SA) (Figures 5A3 and 5A4).

Thus, RhoA activity inhibits axon formation.
236 Neuron 69, 231–243, January 27, 2011 ª2011 Elsevier Inc.
The ROCK effect was also reflected by hippocampal neurons

cultured on the substrate stripe-coated with Y-27632. For

neurons with their somata located at the stripe boundary, neu-

rites initiated on the stripe had a higher probability of axon differ-

entiation than those off the stripe (Figures 5B1 and 5B3), indi-

cating that local growth promotion by reduced ROCK activity

in a neurite is sufficient to trigger its differentiation into an

axon. In other experiments, neurons were transfected with

Smurf1-resistant RhoAK6,7R, which cannot be degraded by

Smurf1 (Ozdamar et al., 2005) and unresponsive to BDNF-

induced RhoA degradation (Figure 2D), after cell plating on

substrates stripe-coated with BDNF. We found that BDNF-

induced enhancement of axon initiation on the stripe was largely

prevented (Figures 5B2 and 5B3), supporting the notion that



Figure 5. RhoA Degradation Is Required for Spontaneous and BDNF-Induced Axon Initiation

(A) RhoA inhibition promoted spontaneous axon formation.

(A1) Immunostaining with axon-specific Tau-1 and dendrite-specific MAP-2 showed a 5-DIV cultured hippocampal neuron that was exposed to the ROCK inhib-

itor Y-27632 (5 mM) since 4 hr after cell plating.

(A2 and A3) Similar to that in (A1), except that the neuron was transfected with a constitutively active RhoA-CA (A2) or Smurf1-resistant RhoAk6,7R (A3), showing no

axon formation or a short axon (marked by asterisk). Bar, 25 mm.

(A4) Summary graph showing polarization phenotypes as in A1–A3. Data represent mean ± SEM (n = 3, 100 cell each; *p < 0.1; **p < 0.01, Tukey test).

(B) RhoA inhibition is sufficient to initiate axon formation, and its stabilization prevented BDNF-induced axon initiation.

(B1 and B2) Images of hippocampal neurons with the axon initiated on the stripe coated with Y-27632 (B1), and off the BDNF-coated stripe for neurons expressing

RhoAk6,7R (B2), immunostained on 3 DIV for axon identification. Stripe width, 50 mm.

(B3) Summary graphs showing the percentage of axons that were initiated on or off the strips coated with Y-27632 or BDNF. Only neurons with the soma located

at the stripe boundary were counted. Data represent as mean ± SEM (n = 3, 90 cells each; **p < 0.01, Tukey test).
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localized degradation of RhoA is critical for BDNF-induced axon

differentiation. However, in the absence of localized BDNF-

induced degradation of RhoAK6,7R, suppression of ROCK activity

by Y-27632 in the stripe is sufficient to induce axon formation

(Figure S6D). Thus, the effect of RhoA downregulation on axon

initiation is due to reduced ROCK activity.

Smurf1 Thr306 Phosphorylation Affects Neuronal
Polarity In Vivo and In Vitro
To further determine the functional relevance of Thr306 phos-

phorylation of Smurf1 on neuronal development in vivo, we

used in utero electroporation (Saito and Nakatsuji, 2001) to

express construct encoding Smurf1T306D, Smurf1T306A, or

shRNA against Smurf1 (shRNA-Smurf1) (see Figure S3A) in

a subpopulation of neural progenitor cells. For better observation

of polarity phenotype, brain sliceswere obtained from rat pups at

P4whenmost cells had arrived at cortical plate. Cortical neurons

were visualized by coexpressing the fluorescent marker protein

EGFP or tdTomato. Control neurons (expressing marker protein

alone) were mostly (93%) located in the cortical plate (CP) and

exhibited polarized morphology (Figures 6A and 6B; see also

Figures S3B–S3D and S7A), with dendritic arbors oriented

toward the pial surface and the axon oriented radially in CP
and horizontally near the intermediate zone (IZ) and subventric-

ular zone (SVZ). Compared to control neurons expressing the

EGFP construct, cortical neurons expressing phosphorylation-

mimicking Smurf1T306D arrived at CP without obvious migration

defect, with a high percentage of cells exhibiting complex

morphology with multiple highly branched long processes

(termed ‘‘multipolar’’), and reduced percentage of cells exhibit-

ing polarized morphology (unipolar or bipolar) (Figures 6A and

6B; see also Figure S7A). We were unable to identify by immu-

nostaining whether these multipolar long processes were axons,

because of high background of immunostaining from untrans-

fected neurons. Cortical neurons expressing phosphorylation-

deficient Smurf1T306A that have arrived at CP showed reduced

percentages of polarized and multipolar cells (Figures 6A and

6B; also see Figure S7A). This deficient polarization was partially

prevented when Par6 was overexpressed together with

Smurf1T306A in these developing neurons (Figures 6A and 6B;

also see Figure S7A), suggesting the involvements of Par6 in

neuronal polarization regulated by Smurf1 phosphorylation. An

apparent migration defect in Smurf1T306A-expressing neurons

may be a consequence of defective polarization of these

neurons. Finally, neurons expressing shRNA-Smurf1 showed

severe defects in polarization and radial migration, with most
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Figure 6. Thr306-Phosphorylation of Smurf1

Regulates Neuronal Polarization In Vivo and

In Vitro

(A) Fluorescence images of P4 rat cortices in utero

transfected at E18with plasmid constructs encod-

ing following: EGFP (or tdTomato) only (‘‘Con’’),

EGFP (or tdTomato) together with IRES-driven

Smurf1T306D (‘‘T306D’’) or Smurf1T306A (‘‘T306A’’).

Higher magnification images (of boxed regions)

below showing transfected neurons that have

arrived at the top of CP. Arrowheads, neurons

with abnormal polarity. Bar, 100 mm.

(B) Quantitative measurements of the polarity of

transfected cortical neurons, in CP and IZ regions.

Histograms show the average percentage (±SEM,

n = 100 cells, 3 cortices each) of neurons exhibit-

ing unipolar/bipolar processes, multipolar

processes, or no process (‘‘none’’) in each region.

Note that neurons expressing Smurf1T306D

showed much higher frequency of cells with multi-

polar morphology than control neurons in both

regions. Data sets (connected by dashed lines)

showing significant difference are marked (**p <

0.01, Tukey test).

(C andD) Images of cultured hippocampal neurons

expressing various forms of Smurf1, immuno-

stained on 5 DIV for neuron-specific Tuj-1 and

axon-specific Tau-1. Arrowheads, transfected

neurons. Arrows, axons. Bar, 25 mm. Bar graph in

(D) summarizes results from all experiments,

showing the percentage of neurons (n = 90 cells,

3 cultures each) exhibiting three different polariza-

tion phenotypes: single axon (‘‘SA’’), no axon

(‘‘NA’’), or multiple axons (‘‘MA’’). Data sets (con-

nected by dashed lines) showing significant differ-

ence are marked (*p < 0.1; **p < 0.01, Tukey test).

(E) Summary of the average neurite length (±SEM)

for the cultures described in (E) (n = 120 cells,

3 cultures each. **p < 0.01, Tukey test).
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cells accumulating in IZ/SVZ and exhibiting only short processes

(Figure S3). Thus, normal PKA-dependent Smurf1 phosphoryla-

tion at Thr306 is required for proper polarity formation and radial

migration of newly generated cortical neurons, two tightly linked

events during neuronal development in vivo.

The effects of Smurf1 phosphorylation on axon/dendrite differ-

entiation were also examined in cultured hippocampal neurons,

which were transfected 4 hr after plating with Smurf1WT,

Smurf1C699A, Smurf1T306A, or Smurf1T306D and examined at

5 DIV for their polarization phenotypes. We found that the

percentage of single axon (SA) cells among Smurf1WT-express-

ing neurons was comparable to that found in nontransfected

(control) neurons (Figures 6C and 6D). However, expression of

either Smurf1T306A or Smurf1T306D significantly reduced the SA

population, similar to that found for the ligase-deficient

Smurf1C699A (Figures 6C and 6D). Notably, for the remaining

populations, Smurf1T306A expression greatly increased the
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no-axon (NA) population and shortened

the neurite length, while the Smurf1T306D

expression increased the multiple-axon

(MA) population and neurite length (Fig-
ure 6C�6E). We also noted that neurons expressing shRNA-

Smurf1 exerted similar growth and polarity defects as that of

Smurf1C699A and Smurf1T306A (Figure S7B), and this phenotype

was reduced by overexpression of Par6 (Figure S7B), suggesting

that the increased Par6/RhoA ratio could partially prevent the

polarization and growth defects due to downregulation of

Smurf1 or its activity. These in vitro results again support the

idea that Smurf1 Thr306 phosphorylation contributes to neuronal

polarization by promoting axon formation.

BDNF-Induced Axon Initiation Requires Smurf1 Thr306

The above results showed that BDNF/db-cAMP induced Smurf1

phosphorylation at Thr306 (Figure 3) and this phosphorylation is

sufficient for Smurf1’s action in promoting axon formation (Fig-

ure 6). We further inquired whether Thr306 phosphorylation of

Smurf1 is required for BDNF-induced axon initiation on striped

substrates by transfecting hippocampal neurons with Smurf1WT



Figure 7. Smurf1 Thr306 Phosphorylation Is Required for BDNF-Induced Axon Formation

(A) Images of hippocampal neurons expressing ligase-deficient Smurf1C699A (‘‘C699A’’), phosphorylation-mimicking Smurf1T306D (‘‘T306D’’), or phosphorylation-

deficient Smurf1T306A (‘‘T306A’’) grown on stripe coated with BDNF.

(B and C) Summary graphs from experiments similar to that in (A), showing polarization phenotypes of neurons expressing Smurf1C699A, Smurf1T306D, or

Smurf1T306A (B), and their preference to initiate axons on or off the substrate strip-coated with BDNF (C). Only neurons with the soma located at the stripe

boundary were counted for neuronal polarization and every Tau-1-positive processes initiated from soma was counted for axon (n = 50; 3 cultures each). Arrow-

heads, transfected neurons. Arrows, axons. Histograms: average ± SEM (n = 3; **p < 0.01, relative to the control; t test).
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or one of its mutated forms 4 hr after plating. We analyzed the

percentage of SA, MA, and NA cells and the distribution of the

axon initiation site on the soma for all transfected neurons with

their somata located at the stripe boundary on 3 DIV (Figure 7).

We found that neurons expressing various mutated forms of

Smurf1 showed altered polarization phenotypes (Figures 7A

and 7B) similar to those found for spontaneous polarization

described above (Figures 6C and 6D). Furthermore, both control

and Smurf1WT-expressing neurons showed higher probability of

axon differentiation for neurites initiated on the stripe than off the

stripe, and the axon initiation effect of BDNF stripes was greatly

diminished or absent in neurons expressing Smurf1C699A,

Smurf1T306A, and Smurf1T306D (Figure 7C). Thus, Smurf1 ligase

activity and Thr306 phosphorylation are essential for both sponta-

neous and BDNF-induced axon formation in these hippocampal

neurons.
DISCUSSION

Ubiquitin E3 ligases consist of diverse families of proteins, each

triggering ubiquitination of specific substrates. The E3 ligase

activity can be regulated by interacting proteins, e.g., ARF

(Honda and Yasuda, 1999) and F-box proteins (Kato et al.,

2010), and by phosphorylation of its substrates (Ossipova

et al., 2009). That E3 ligases themselves may also be regulated

is shown by the phosphorylation of Itch, which resulted in the

activation of the ligase activity (Gallagher et al., 2006; Gao

et al., 2004), and by the phosphorylation of NEDD4-2 that led

to ligase inhibition via binding with an inhibitory factor (Debonne-

ville et al., 2001). Here we demonstrated a form of phosphoryla-

tion-induced E3 ligase regulation—the modulation of its

substrate preference that leads to changes in the degradation

of selective proteins. Such substrate preference switch of E3
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ligases via phosphorylation is a useful mechanism for establish-

ing specific spatiotemporal patterns of cytoplasmic proteins that

are required for localized cellular functions (e.g., selective differ-

entiation of a neurite into an axon).

A previous study has suggested that localized cellular

signaling may exert local changes in protein stability by modu-

lating E3 ligase activity. At C. elegans neuromuscular junctions,

instructive signal for synapse stabilization acts by preventing

the assembly of an E3 ligase-containing Skp1–cullin–F-box

complex through a synaptic adhesion molecule SYG-1 (Ding

et al., 2007). Here we demonstrated that the activity of a specific

E3 ligase Smurf1 can transduce the extracellular BDNF signal

into enhanced Par6 stability and RhoA degradation. We also

showed that these opposite effects reflect changes in the relative

affinity of the phosphorylated Smurf1 for these two proteins.

Smurf1 phosphorylation at Thr306, which resides in the RhoA-

interacting domain (Wang et al., 2003, 2006), may increase

Smurf1’s affinity for RhoA and/or reduced that for Par6, thus

increasing the ratio of ubiquitinated RhoA versus Par6.

For the present study of cellular mechanisms underlying axon

development, we have used BDNF as an example of extracel-

lular factors that could initiate axon formation in cultured hippo-

campal neurons (Shelly et al., 2007). Whether BDNF acts in vivo,

either alone or in concert with other polarizing factors, remains to

be examined. Since defect in axon formation has not been re-

ported in mutant mice with TrkB gene deletion, other factors

are likely to be involved in neuronal polarization in vivo. For

example, a recent study suggested that TGF-b signaling, trans-

duced through its type II TGF-b receptor, exerted an axon-

promoting effect in developing cortical neurons, probably via

the phosphorylation of Par6 (Yi et al., 2010). As a common trans-

duction pathway for many extracellular factors, cAMP/PKA

signaling and its downstream effectors (e.g., E3 ligase and

LKB1) are likely to be involved in neuronal polarization.

In addition to Smurf1 phosphorylation, PKA actions on other

downstream effectors are also important for axon formation.

For example, exposure to BDNF is known to increase the level

of axon-promoting protein LKB1 (Shelly et al., 2007). We found

here that BDNF/db-cAMP reduced the ubiquitination level of

both Par6 and LKB1, suggesting that the increased LKB1 level

could also result from the reduced UPS-dependent degradation

of LKB1, although the E3 ligase specific for LKB1 remains to be

identified. There are also alternative possibilities: The increased

LKB1 level could be caused by BDNF-induced PKA-dependent

phosphorylation of LKB1 or by LKB1-STARD interaction (Shelly

et al., 2007) that reduces the susceptibility of LKB1 to degrada-

tion (Figure S4B). Furthermore, although BDNF did not modulate

Akt degradation, it may activate Akt, leading to GSK-3b inactiva-

tion that is also required for axon development (Yoshimura et al.,

2006b).

Previous studies have shown the importance of PKA-depen-

dent LKB1 phosphorylation in the BDNF-induced axon initiation

in these cultured hippocampal neurons (Shelly et al., 2007). In

this study, we discovered an additional BDNF-dependent

process that facilitates axon growth—the opposite regulation of

protein degradation that elevates the Par6/RhoA ratio. This

process yields the following consequences: First, increased

Par6 level may promote the formation of Par3/Par6/aPKC
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complex and increased recruitment by the active form of

Cdc42 (Atwood et al., 2007; Joberty et al., 2000; Suzuki and

Ohno, 2006), which regulates F-actin reorganization underlying

axon formation and interactswith effectors thatmay further stabi-

lize the Par3/Par6/aPKC complex (Henrique and Schweisguth,

2003). Second, decreased RhoA level may also stabilize Par3/

Par6/aPKC complexes by reducing the disruptive RhoA/ROCK

signaling, and the stabilized complex in turn inactivates RhoA

through a negative regulator p190A RhoGAP, further reducing

local RhoA/ROCK activity (Nakayama et al., 2008; Zhang and

Macara, 2008). Thus, elevating the Par6/RhoA ratio could trigger

two separate positive feedback mechanisms, via Cdc42 and

RhoA, in favor of local stabilization of the Par3/Par6/aPKC

complex. Finally, the reduction of RhoA activity relieves neurite

growth inhibition by reducing the inhibitory effect of ROCK

activity on F-actin depolymerization and by reducing the activa-

tion of PTEN, which counteracts the growth-promoting effect of

PI3K (Maehama and Dixon, 1998; Stambolic et al., 1998). The

enhanced RhoA degradation may thus directly contributes to

the accelerated neurite growth associated with axon formation.

The absence of overt developmental defect in Smurf1

knockout mice suggests compensation by other molecules or

pathways (Yamashita et al., 2005). Smurf2 represents one of

the candidates that might be able to take the place of Smurf1

to regulate degradation of RhoA, when Smurf2 is relieved from

the auto-inhibitory C2-HECT interaction (Wiesner et al., 2007).

Unlike that found in Smurf1 or Smurf2 knockoutmice, the Smurf1

and Smurf2 double-knockout mice displayed planar cell polarity

defects and severe abnormality of neural development, including

the failure of neural tube closure (Narimatsu et al., 2009). Since

these two ligases are not likely to share all of their targets, Smurf2

may act on another polarity-related protein that compensates

Smurf1 deficiency, resulting in functional overlap in neuronal

polarization between these two closely related Smurf proteins.

Although early neural development defects prevented the func-

tional study of Smurfs in double-knockout mice, recent studies

of cultured hippocampal neurons suggests the involvement of

Smurf2 in neuronal polarization through its interaction with

polarity modulator Par3 and Rap1B (Schwamborn et al.,

2007a, 2007b). It remains unclear whether Smurf2 activity itself

is regulated by polarizing factors during axon initiation and

how Smurf1 and Smurf2 work in concert to properly regulate

the degradation of their respective substrates. The severe cell

migration defect caused by Smurf1-shRNA alone (Figure S3B)

is probably due to incomplete activation of compensatory mech-

anisms in transfected neurons and thus is unable to overcome

the growth-inhibition effect of reduced Smurf1 expression.

Importantly, we showed that Smurf1 regulation by BDNF and

db-cAMP results in dual effects—it not only stabilizes

a polarity-promoting protein Par6, but also selectively enhances

the degradation of growth-inhibiting RhoA. Thus, in addition to

the enhanced stability of axon determinants, enhanced degrada-

tion of negative regulator(s) may also be important during axon

formation. Furthermore, other substrates of Smurf1, such as talin

head domain and hPEM-2 (a GEF for cdc42) and those involving

in dynamic of focal adhesion (Huang et al., 2009; Yamaguchi

et al., 2008), could also contribute to axon formation regulated

by Smurf1.
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Finally, we note that selective local protein degradation can

also be achieved by modulating UPS components other than

E3 ligase or by asymmetric distribution of proteasomes that

are structurally and functionally heterogeneous, as shown in

the liver cell (Palmer et al., 1996). Localized accumulation of

axon determinants could also be achieved by asymmetricmodu-

lation of protein synthesis rather than protein degradation. Local

protein synthesis is required for the chemotropic turning of the

growth cone in response to axon guidance cues (Lin and Holt,

2008). Selective protein translation induced by local extracellular

polarizing factors may create an asymmetric distribution for

axon-promoting proteins, in a manner analogous to that

described here for selective protein degradation.
EXPERIMENTAL PROCEDURES

Cell Culture Preparations, Ubiquitination Assay,

and Immunostaining

Hippocampal neurons were prepared from rat embryos on E18 as previously

described (Dotti et al., 1988) and were cultured in neurobasal medium supple-

mented with B-27 (Invitrogen, Carlsbad, CA). A similar procedure was applied

to the preparation for cortical neuronal cultures. Neuro2a cells were cultured in

Dulbecco’s Modification of Eagle’s Medium supplemented with 5% fetal

bovine serum (Sigma). Transfection of these cultures was performed using

1 mg of plasmid with Lipofectamine� 2000 (Invitrogen, Carlsbad, CA), accord-

ing to the manufacturer’s instructions. Unless otherwise stated, hippocampal

neurons were used as a standard model for in vitro immunocytochemistry to

analyze axon/dendrite differentiation. Cortical neuronal cultures were used

for obtaining enough cells for biochemical assays that do not need transfection

of exogenous proteins. Neuro2a cells were used for biochemical assays

because the high transfection efficiency in these cells required for ubiquitina-

tion assay.

For ubiquitination assay, Neuro2a cells were transfected with myc-tagged

ubiquitin-expressing plasmid and, in some cases, together with a plasmid ex-

pressing different E3 ligases. At 16 hr after transfection, cells were lysed 10 hr

later in RIPA buffer (25mMTris-HCl, 150mMNaCl, 1%NP-40, 1% sodium de-

oxycholate, 0.1% SDS, and 13 EDTA-free complete protease inhibitor cock-

tail [pH 7.6]; Roche, Indianapolis, IN). The lysate was subjected to immunopre-

cipitation with appropriate antibodies conjugated to Protein G-sepharose

beads (Amersham, Piscataway, NJ) at 4�C for 4 hr. The precipitates were im-

munoblotted for the ubiquitination level with anti-ubiquitin (P4D1) or anti-myc

antibodies (both fromCell Signaling, Danvers, MA). Cell-free in vitro ubiquitina-

tion assaywas carried out in reaction buffer containing 1mMMg-ATP, 100mM

NaCl, 2 mM CaCl2, and 20 mM Tris-HCl (pH 8.0). The reaction was initiated by

adding rabbit E1 (ubiquitin activating enzyme; 250 nM), Ubiquitin (600 mM), E2

(UbcH5c; 250 nM), E3 (GST-Smurf1WT or GST-Smurf1C699A), and bacterial

purified Par6. The reaction mixture is incubated at 37�C for 1 hr. After incuba-

tion, the ubiquitinated Par6 was immunoprecipitated using anti-Par6 antibody

and was detected by immunoblotting with anti-ubiquitin antibody. All the

enzymes used for ubiquitination assay were from Boston Biochem (Cam-

bridge, MA). For quantitative measurement of ubiquitination, similar high-

MW smear bands (>53 kDa) that represent polyubiquitinated proteins were

selected from all samples of the same experiment, and the values measured

were further normalized to those of total immunoprecipitated proteins.

For the Smurf1 phosphorylation assay, lysates of Neuro2a cells transfected

with the plasmid expressing Smurf1 or one of its mutated forms were prepared

with RIPA buffer containing a phosphatase inhibitor (PhosSTOP; Roche, Indi-

anapolis, IN). The lysates were immunoprecipitated with Smurf1-specific anti-

bodies and immunoblotted for the phosphorylation level with anti-phosphor-

(Ser/Thr) PKA substrate antibodies (Cell Signaling, Danvers, MA).

For immunostaining, cultured hippocampal neurons were fixed with 4%

paraformaldehyde for 12 min and then permeabilized in 0.3% Triton X-100

for 20 min and blocked with 1% BSA for 1hr. The fixed cells were processed

further for immunostaining according to standard procedure and imaged
with a confocal microscope (Leica DM IRBE) equipped with a 403 oil-immer-

sion objective (NA1.0). Images were analyzed and processed for presentation

in the figures, using brightness and contrast adjustments with NIH ImageJ

software and following the guideline of Rossner and Yamada (2004).

Microfabrication and Substrate Patterning

Microfabrication and substrate coating methods followed those previously

described (Hsu et al., 2005). Briefly, the poly(dimethylsiloxane) (PDMS)

cuboids that were used to generate microchannels were prepared from

Sylgard 184 base and curing agent (Dow Corning, Midland, MI). It was poly-

merized on a silicon wafer that is etched for patterns of parallel stripes

(50 mmwidth each) spaced with 50 mmgaps. Solution containing the substrate

factors was filled into the microchannels formed by placing the PDMS cuboids

over the poly-L-lysine-coated glass coverslip and overnight incubation

allowed the substrate factor to be coated onto the coverslip. The substrate

solutions were prepared with the following concentrations of the factors: fluo-

rescently conjugated cAMP analog (Alexa Fluor 647 8-(6-aminohexyl) amino-

adenosine 300,500-cyclicmonophosphate, tetra [triethylammonium] salt;

F-cAMP), 20 mM; and BDNF, 0.5 ng/ml. In all coating solutions, 5 mg/ml of

fluorescently-conjugated BSA was added as the marker for the stripes.

In Utero Electroporation

The method of in utero electroporation follows previously described proce-

dures (Saito and Nakatsuji, 2001), with minor modifications. Timed-pregnant

Sprague-Dawley rats were anesthetized at E18 with isoflurane, and the uterine

horns were exposed by way of a laparotomy. Saline solution containing the

expression plasmid of interest (2 mg/ml) together with the dye Fast Green

(0.3 mg/ml; Sigma) was injected (1–2 ml) through the uterine wall into one of

the lateral ventricles of the embryos, and the embryo’s head was electropo-

rated by tweezer-type circular electrodes across the uterus wall, and five elec-

trical pulses (50 V, 50-ms duration at 100-ms intervals) were delivered with

a square-wave electroporation generator (model ECM 830, BTX, Inc.). The

uterine horns were then returned into the abdominal cavity, the wall and skin

were sutured, and the embryos continued their normal development. Control

embryos were electroporated with the tdTomato construct together with the

GFP construct (1:2 ratio), and experimental embryos were electroporated

with shRNA-Smurf1 (both sequence #1 and #2) (see also Supplemental Exper-

imental Procedures), control scramble-shRNA, shRNA-RSmurf1, Smurf1T306A

or Smurf1T306D (in pCAG-IRES-EGFP), each together with tdTomato

construct. Control and experimental pups were obtained from the same litter

and the injections were always made on the left and right ventricles, respec-

tively, for later identification. Animal protocols were approved by the Animal

Care and Use Committee of UC Berkeley.

Statistical Analyses

To decide the statistical test for the comparison between two data sets, we

first examined whether the data in each set are normally distributed, using Jar-

que-Bera test. For data sets with normal distribution, t test was used. For

comparison involving multiple data sets, one-way ANOVA test was used fol-

lowed by post-hoc Tukey test.
SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-
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