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Abstract

We study finitely generated expanding semigroups of rational maps with overlaps on the Riemann
sphere. We show that if a d-parameter family of such semigroups satisfies the transversality condition,
then for almost every parameter value the Hausdorff dimension of the Julia set is the minimum of 2 and
the zero of the pressure function. Moreover, the Hausdorff dimension of the exceptional set of parameters
is estimated. We also show that if the zero of the pressure function is greater than 2, then typically the
2-dimensional Lebesgue measure of the Julia set is positive. Some sufficient conditions for a family to
satisfy the transversality conditions are given. We give non-trivial examples of families of semigroups of
non-linear polynomials with the transversality condition for which the Hausdorff dimension of the Julia
set is typically equal to the zero of the pressure function and is less than 2. We also show that a family
of small perturbations of the Sierpinski gasket system satisfies that for a typical parameter value, the
Hausdorff dimension of the Julia set (limit set) is equal to the zero of the pressure function, which is equal
to the similarity dimension. Combining the arguments on the transversality condition, thermodynamical
formalisms and potential theory, we show that for each a ∈ C with |a| ≠ 0, 1, the family of small
perturbations of the semigroup generated by {z2, az2

} satisfies that for a typical parameter value, the
2-dimensional Lebesgue measure of the Julia set is positive.
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0001-8708/$ - see front matter c⃝ 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2012.10.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82621816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/aim
http://dx.doi.org/10.1016/j.aim.2012.10.020
http://www.elsevier.com/locate/aim
mailto:sumi@math.sci.osaka-u.ac.jp
mailto:urbanski@unt.edu
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.sci.osaka-u.ac.jp/~sumi/
http://www.math.unt.edu/~urbanski/
http://www.math.unt.edu/~urbanski/
http://www.math.unt.edu/~urbanski/
http://www.math.unt.edu/~urbanski/
http://www.math.unt.edu/~urbanski/
http://www.math.unt.edu/~urbanski/
http://dx.doi.org/10.1016/j.aim.2012.10.020
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1. Introduction

A rational semigroup is a semigroup generated by a family of non-constant rational maps
g : Ĉ → Ĉ, where Ĉ denotes the Riemann sphere, with the semigroup operation being functional
composition. A polynomial semigroup is a semigroup generated by a family of non-constant
polynomial maps on Ĉ. The work on the dynamics of rational semigroups was initiated by
A. Hinkkanen and G. J. Martin [8], who were interested in the role of the dynamics of polynomial
semigroups while studying various one-complex-dimensional moduli spaces for discrete groups
of Möbius transformations, and by F. Ren’s group [44], who studied such semigroups from the
perspective of random dynamical systems.

The theory of the dynamics of rational semigroups on Ĉ has developed in many directions
since the 1990s [8,44,22,24–30,39,31,32,23,33–37]. We recommend [22] as an introductory
article. For a rational semigroup G, we denote by F(G) the maximal open subset of Ĉ where
G is normal. The set F(G) is called the Fatou set of G. The complement J (G) := Ĉ \ F(G)
is called the Julia set of G. Since the Julia set J (G) of a rational semigroup G = ⟨ f1, . . . , fm⟩

generated by finitely many elements f1, . . . , fm has backward self-similarity i.e.

J (G) = f −1
1 (J (G)) ∪ · · · ∪ f −1

m (J (G)), (1.1)

(see [24,26]), rational semigroups can be viewed as a significant generalization and extension of
both the theory of iteration of rational maps (see [14,2]) and conformal iterated function systems
(see [11]). Indeed, because of (1.1), the analysis of the Julia sets of rational semigroups somewhat
resembles “backward iterated functions systems”, however since each map f j is not in general
injective (critical points), some qualitatively different extra effort in the case of semigroups is
needed. The theory of the dynamics of rational semigroups borrows and develops tools from
both of these theories. It has also developed its own unique methods, notably the skew product
approach (see [26–29,31,38,32,34–37,40,39,41]).

The theory of the dynamics of rational semigroups is intimately related to that of the
random dynamics of rational maps. The first study of random complex dynamics was given
in [6]. In [3,7], random dynamics of quadratic polynomials were investigated. The paper [12]
develops the thermodynamic formalism of random distance expanding maps and, in particular,
applies it to random polynomials. The deep relation between these fields (rational semigroups,
random complex dynamics, and (backward) IFS) is explained in detail in the subsequent papers
[30,31,38,32–37] of the first author. For a random dynamical system generated by a family of
polynomial maps on Ĉ, let T∞ : Ĉ → [0, 1] be the function of probability of tending to ∞ ∈ Ĉ.
In [34,36,37] it was shown that under certain conditions, T∞ is continuous on Ĉ and varies only
on the Julia set of the associated rational semigroup (further results were announced in [35]). For
example, for a random dynamical system in Remark 1.5, T∞ is continuous on Ĉ and the set of
varying points of T∞ is equal to the Julia set of Fig. 1, which is a thin fractal set with Hausdorff
dimension strictly less than 2. From this point of view also, it is very interesting and important
to investigate the figure and the dimension of the Julia sets of rational semigroups.

In this paper, for an expanding finitely generated rational semigroup ⟨ f1, . . . , fm⟩, we deal
at length with the relation between the Bowen parameter δ( f ) (the unique zero of the pressure
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Fig. 1. The Julia set of the 2-generator polynomial semigroup Gλ0 with (d1, d2) = (3, 2), b = 0.1, in Theorem 1.4.
Gλ0 satisfies the open set condition, J (Gλ0 ) is connected and HD(J (Gλ0 )) = s(λ0) < 2.

function, see Definition 2.13) of the multimap f = ( f1, . . . , fm) and the Hausdorff dimension
of the Julia set of ⟨ f1, . . . , fm⟩. In the usual iteration of a single expanding rational map, it is
well known that the Hausdorff dimension of the Julia set is equal to the Bowen parameter and
they are strictly less than two. For a general expanding finitely generated rational semigroup
⟨ f1, . . . , fm⟩, it was shown that the Bowen parameter is larger than or equal to the Hausdorff
dimension of the Julia set [25,28]. If we assume further that the semigroup satisfies the “open set
condition” (see Definition 3.1), then it was shown that they are equal [28]. However, if we do not
assume the open set condition, then there are a lot of examples for which the Bowen parameter
is strictly larger than the Hausdorff dimension of the Julia set. In fact, the Bowen parameter can
be strictly larger than two [28,41]. Thus, it is very natural to ask when we have this situation
and what happens if we have such a case. Let Rat be the set of non-constant rational maps on Ĉ
endowed with distance d defined by d(h1, h2) := supz∈Ĉ ρ̂(h1(z), h2(z)), where ρ̂ denotes the

spherical distance on Ĉ. For each m ∈ N, we set

Exp(m) := {(g1, . . . , gm) ∈ (Rat)m : ⟨g1, . . . , gm⟩ is expanding}.

Note that Exp(m) is an open subset of (Rat)m (see Lemma 2.9). Let U be a non-empty bounded
open subset of Rd . For each λ ∈ U , let fλ = ( fλ,1, . . . , fλ,m) be an element in Exp(m). We set

Gλ := ⟨ fλ,1, . . . , fλ,m⟩.

We assume that the map λ → fλ, j ∈ Rat, λ ∈ U, is continuous for each j = 1, . . . ,m. For
every λ ∈ U , let s(λ) be the zero of the pressure function for the system generated by fλ. Note
that the function λ → s(λ), λ ∈ U , is continuous (see Theorem 2.16). For a family { fλ}λ∈U in
Exp(m), we define the transversality condition (see Definition 3.7). The transversality condition
was introduced and investigated for a family of contracting IFSs in [16] (one of first studies of
transversality type conditions and applications to Bernoulli convolutions), [17] (case of IFSs in
R), [19] (case of finite IFSs of similitudes in general Euclidean spaces Rd , d ≥ 1), [20] (case of
infinite hyperbolic or parabolic IFSs in R), [21] (case of finite parabolic IFSs in R), and [13] (case
of skew products and application to Bowen formulas, examples, partial derivative conditions,



700 H. Sumi, M. Urbański / Advances in Mathematics 234 (2013) 697–734

etc.). Among these papers there are several types of definitions of the transversality condition.
Our definition of the transversality condition is similar to that given in [20], though in the present
paper we work on a family of semigroups of rational maps which are not contracting and are
not injective. Note that there are many works of contracting IFSs with overlaps. See the above
papers and [15,4], etc. Some results of this paper are applicable to the study of contracting IFSs
with overlaps and infinitely many new examples of contracting families of IFSs that satisfy the
transversality condition are found (see Theorem 1.7, Examples 1.8 and 4.13–4.15, Remarks 4.9
and 4.16).

For any p ∈ N, we denote by Lebp the p-dimensional Lebesgue measure on a p-dimensional
manifold. In this paper, we prove the following.

Theorem 1.1 (Theorem 3.12). Let { fλ}λ∈U be a family in Exp(m) as above. Suppose that
{ fλ}λ∈U satisfies the transversality condition. Then we have all of the following.

(1) HD(J (Gλ)) = min{s(λ), 2} for Lebd -a.e. λ ∈ U, where HD denotes the Hausdorff
dimension.

(2) For Lebd -a.e. λ ∈ {λ ∈ U : s(λ) > 2} we have that Leb2(J (Gλ)) > 0.

It is very interesting to investigate the Hausdorff dimension of the exceptional set of
parameters in the above theorem. In order to do that, we define the strong transversality condition
(see Definition 3.15), and we prove the following.

Theorem 1.2 (Theorem 3.19). Let { fλ}λ∈U be a family in Exp(m) as above. Suppose that
{ fλ}λ∈U satisfies the strong transversality condition. Let G be a subset of U. Let ξ ≥ 0. Suppose
min{ξ, supλ∈G s(λ)} + d − 2 ≥ 0. Then we have

HD({λ ∈ G : HD(J (Gλ)) < min{ξ, s(λ)}}) ≤ min{ξ, sup
λ∈G

s(λ)} + d − 2.

Since HD(J (Gλ)) ≤ s(λ) for each λ ∈ U , if we further assume supλ∈U s(λ) < 2 in the above
theorem, then

HD({λ ∈ U : HD(J (Gλ)) ≠ s(λ)}) < HD(U ) = d.

It is very important to study sufficient conditions for a family of expanding semigroups to satisfy
the strong transversality condition. Let U be a bounded open subset of Cd . We say that a family
{ fλ}λ∈U in Exp(m) as above is a holomorphic family in Exp(m) if (z, λ) → fλ, j (z) ∈ Ĉ, (z, λ) ∈

Ĉ × U, is holomorphic for each j. For a holomorphic family in Exp(m), we define the analytic
transversality condition (see Definition 3.21). We prove the following.

Proposition 1.3 (Proposition 3.22). Let { fλ}λ∈U be a holomorphic family in Exp(m). Suppose
that { fλ}λ∈U satisfies the analytic transversality condition. Then for each non-empty, relatively
compact, open subset U ′ of U, the family { fλ}λ∈U ′ satisfies the strong transversality condition
and, hence, the transversality condition.

By using Proposition 1.3, some calculations involving partial derivatives of conjugacy maps
with respect to the parameters (Lemma 3.24–Corollary 3.27), and some observation about
the combinatorics of the Julia set (Lemma 3.28), we can produce an abundance of examples
of holomorphic families satisfying the analytic transversality condition, and hence the strong
transversality condition and ultimately the transversality condition. Combining the above and
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some further observations, we prove Theorem 1.4 which is formulated below. We consider the
space

P := {g : g is a polynomial, deg(g) ≥ 2}

endowed with the relative topology from Rat. We are interested in families of small perturbations
of elements in the boundary of the parameter space A in Exp(m), where

A := {(g1, . . . , gm) ∈ Exp(m) : g−1
i (J (⟨g1, . . . , gm⟩)) ∩ g−1

j (J (⟨g1, . . . , gm⟩)) = ∅

if i ≠ j}.

Theorem 1.4 (Theorem 4.1). Let (d1, d2) ∈ N2 be such that d1, d2 ≥ 2 and (d1, d2) ≠ (2, 2).
Let b = ueiθ

∈ {0 < |z| < 1}, where 0 < u < 1 and θ ∈ [0, 2π). Let α ∈ [0, 2π) be a number
such that there exists a number n ∈ Z with d2(π + θ) + α = θ + 2nπ. Let β1(z) = zd1 . For
each t > 0, let gt (z) = teiα(z − b)d2 + b. Then there exists a point t1 ∈ (0,∞) and an open
neighborhood U of 0 in C such that the family { fλ = (β1, gt1 + λg′

t1)}λ∈U with λ0 = 0 satisfies
all of the following conditions (i)–(iv).

(i) { fλ}λ∈U is a holomorphic family in Exp(2) satisfying the analytic transversality condition,
the strong transversality condition and the transversality condition.

(ii) For each λ ∈ U, s(λ) < 2.
(iii) There exists a subset Ω of U with HD(U \ Ω) < HD(U ) = 2 such that for each λ ∈ Ω ,

1 <
log(d1 + d2)

2
j=1

di
d1+d2

log(di )

< HD(J (Gλ)) = s(λ) < 2.

(iv) J (Gλ0) is connected and HD(J (Gλ0)) = s(λ0) < 2. Moreover, Gλ0 satisfies the open
set condition. Furthermore, for each t ∈ (0, t1), the semigroup ⟨β1, gt ⟩ satisfies the
open set condition, β−1

1 (J (⟨β1, gt ⟩)) ∩ g−1
t (J (⟨β1, gt ⟩)) = ∅, the Julia set J (⟨β1, gt ⟩) is

disconnected, and

1 <
log(d1 + d2)

2
j=1

di
d1+d2

log(di )

< HD(J (⟨β1, gt ⟩)) = δ(β1, gt ) < 2,

where δ(β1, gt ) denotes the Bowen parameter of (β1, gt ).

Moreover, there exists an open neighborhood Y of (β1, gt1) in P 2 such that the family {γ =

(γ1, γ2)}γ∈Y satisfies all of the following conditions (v)–(viii).
(v) {γ = (γ1, γ2)}γ∈Y is a holomorphic family in Exp(2) satisfying the analytic transversality

condition, the strong transversality condition and the transversality condition.
(vi) For each γ ∈ Y , δ(γ ) < 2, where δ(γ ) is the Bowen parameter of γ = (γ1, γ2).

(vii) There exists a subset Γ of Y with HD(Y \ Γ ) < HD(Y ) = 2(d1 + d2 + 2) such that for
each λ ∈ Γ ,

1 <
log(d1 + d2)

2
j=1

di
d1+d2

log(di )

< HD(J (⟨γ1, γ2⟩)) = δ(γ ) < 2.

(viii) For each neighborhood V of (β1, gt1) in Y there exists a non-empty open set W in V such
that for each γ = (γ1, γ2) ∈ W , we have that γ−1

1 (J (⟨γ1, γ2⟩)) ∩ γ−1
2 (J (⟨γ1, γ2⟩)) ≠ ∅

and that J (⟨γ1, γ2⟩) is connected.
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Remark 1.5. For each γ = (γ1, γ2) ∈ P 2 and p = (p1, p2) ∈ (0, 1)2 with p1 + p2 = 1, we
consider the random dynamical system such that for each step, we choose γi with probability
pi . For each z ∈ Ĉ, let T∞,γ,p(z) be the probability of tending to ∞ starting with the initial
value z. Then the function T∞,γ,p : Ĉ → [0, 1] is locally constant on F(⟨γ1, γ2⟩). Moreover,
this function provides a lot of information about the random dynamics generated by (γ, p).
(See [34,37].) Let { fλ}λ∈U be as in Theorem 1.4. Let ζ = (ζ1, ζ2) = ( fλ0,1, fλ0,2). Let
p = (1/2, 1/2). Then we can show that T∞,ζ,p is continuous on Ĉ and the set of varying points
of T∞,ζ,p is equal to J (Gλ0) = J (⟨ζ1, ζ2⟩). (For the figure of J (Gλ0), see Fig. 1.) Moreover,
there exists a neighborhood H of (ζ1, ζ2) in P 2 such that for each γ = (γ1, γ2) ∈ H , T∞,γ,p

is continuous on Ĉ and locally constant on F(⟨γ1, γ2⟩). It is a complex analogue of the devil’s
staircase and is called a “devil’s coliseum”. (These results are announced in the first author’s
papers [35,34].) From this point of view also, it is very natural and important to investigate the
Hausdorff dimension of the Julia set of a rational semigroup.

In Theorem 1.4 we deal with 2-generator polynomial semigroups ⟨γ1, γ2⟩ with deg(γ1),
deg(γ2) ≥ 2, (deg(γ1), deg(γ2)) ≠ (2, 2) for which the planar postcritical set is bounded. In
fact, it is very important to investigate the dynamics of polynomial semigroups with bounded
planar postcritical set (see [31,38,32,23]). There appear many new phenomena (for example,
the Julia sets of such semigroups can be disconnected) in the dynamics of such semigroups
which cannot hold in the usual iteration dynamics of a single polynomial. In the proof of
Theorem 1.4, we use some idea from the study of dynamics of such semigroups. In the family
of Theorem 1.4, for a typical parameter value the Hausdorff dimension of the Julia set is
strictly less than 2 and is equal to the Bowen parameter. Thus it is very natural to ask what
happens for polynomial semigroups ⟨γ1, γ2⟩ with deg(γ1) = deg(γ2) = 2 for which the planar
postcritical set is bounded. In this case, by Sumi [31, Theorem 2.15], J (⟨γ1, γ2⟩) is connected and
γ−1

1 (J (⟨γ1, γ2⟩)) ∩ γ−1
2 (J (⟨γ1, γ2⟩)) ≠ ∅. Combining Proposition 1.3 and the lower estimate

of the Bowen parameter from [41], which was obtained by using thermodynamic formalisms,
potential theory, and some results from [43], we prove the following.

Theorem 1.6 (Corollary 4.5). For each a ∈ C with |a| ≠ 0, 1, there exists an open neighborhood
Ya of (az2, z2) in P 2 such that {g = (g1, g2)}g∈Ya is a holomorphic family in Exp(2) satisfying
the analytic transversality condition, the strong transversality condition and the transversality
condition, and for a.e. g = (g1, g2) ∈ Ya with respect to the Lebesgue measure on P 2, we have
that Leb2(J (⟨g1, g2⟩)) > 0.

Note that in the usual iteration dynamics of a single expanding rational map g, the Hausdorff
dimension of the Julia set is strictly less than two. In particular, Leb2(J (g)) = 0.

For any a ∈ C with |a| ≠ 0, 1, J (⟨az2, z2
⟩) is equal to the closed annulus between

{w ∈ C : |w| = 1} and {w ∈ C : |w| = |a|
−1

}, thus int(J (⟨az2, z2
⟩)) ≠ ∅. However, regarding

Theorem 1.6, it is an open problem to determine, for any other parameter value (g1, g2) ∈ Ya
with Leb2(J (⟨g1, g2⟩)) > 0, whether int(J (⟨g1, g2⟩)) = ∅ or not. We have some partial answers
though. At least we can show that for each a ∈ C with |a| ≠ 0, 1 and for each neighborhood W of
(az2, z2) in Ya there exists a non-empty open subset W̃ of W such that for each (γ1, γ2) ∈ W̃ , the
Fatou set F(⟨γ1, γ2⟩) has at least three connected components, and thus the Julia set J (⟨γ1, γ2⟩)

is not a closed annulus. If a ∈ R with a > 0, a ≠ 1, then we can show that for each neighborhood
W of (az2, z2) in Ya and for each n ∈ N with n ≥ 3, there exists a non-empty open subset Wn
of W such that for each (γ1, γ2) ∈ Wn , F(⟨γ1, γ2⟩) has at least n connected components and
J (⟨γ1, γ2⟩) is not a closed annulus (see Remark 4.6).
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We now consider the expanding semigroups generated by affine maps. Let m ≥ 2. For each
j = 1, . . . ,m, let g j (z) = a j z + b j , where a j , b j ∈ C, |a j | > 1. Let G = ⟨g1, . . . , gm⟩.

Since |a j | > 1, ∞ ∈ F(G). Hence, by (1.1), J (G) is a compact subset of C which satisfies
J (G) =

m
j=1 g−1

j (J (G)). Since g−1
j is a contracting similitude on C, it follows that J (G) is

equal to the self-similar set constructed by the family {g−1
1 , . . . , g−1

m } of contracting similitudes.
For the definition of self-similar sets, see [4,5,9]. Note that the Bowen parameter δ(g1, . . . , gm)

of (g1, . . . , gm) is equal to the unique solution of the equation
m

i=1 |ai |
−t

= 1, t ≥ 0. Thus
δ(g1, . . . , gm) is the similarity dimension of {g−1

1 , . . . , g−1
m }. Conversely, any self-similar set

constructed by a finite family {h1, . . . , hm} of contracting similitudes on C is equal to the Julia
set of the rational semigroup ⟨h−1

1 , . . . , h−1
m ⟩. By using Proposition 1.3 and some calculations

of the partial derivatives of the conjugacy maps with respect to the parameters, we prove the
following.

Theorem 1.7 (Theorem 4.8). Let m ∈ N with m ≥ 2. For each i = 1, . . . ,m,, let gi (z) =

ai z +bi , where ai ∈ C, |ai | > 1, bi ∈ C. Let G := ⟨g1, . . . , gm⟩.We suppose all of the following
conditions hold.

(i) For each (i, j) with i ≠ j and g−1
i (J (G)) ∩ g−1

j (J (G)) ≠ ∅, there exists a number

αi j ∈ {1, . . . ,m} such that gi (g
−1
i (J (G)) ∩ g−1

j (J (G))) ⊂ {
−bαi j

aαi j −1 }.

(ii) If i, j, k are mutually distinct elements in {1, . . . ,m}, then

gk(g
−1
i (J (G)) ∩ g−1

j (J (G))) ⊂ F(G).

(iii) For each ( j, k) with j ≠ k, we have gk(
−b j

a j −1 ) ∈ F(G).

Then, there exists an open neighborhood U of (g1, . . . , gm) ∈ (Aut(C))m , where Aut(C) :=

{az + b : a ∈ C \ {0}, b ∈ C}, such that {γ = (γ1, . . . , γm)}γ∈U is a holomorphic family in
Exp(m) satisfying the analytic transversality condition, the strong transversality condition and
the transversality condition.

Note that in the above theorem, for each j = 1, . . . ,m, J (g j ) = {
−b j

a j −1 }.

Note also that even if we replace “Aut(C)” by Aut(Ĉ) := {
az+b
cz+d : a, b, c, d,∈ C, ad − bc ≠

0}, similar results hold (see Remark 4.9).
By using Theorem 1.7, we can obtain many examples of families of systems of affine maps

satisfying the analytic transversality condition. In fact, we have the following.

Example 1.8 (Example 4.11). Let p1, p2, p3 ∈ C be such that p1 p2 p3 makes an equilateral
triangle. For each i = 1, 2, 3, let gi (z) = 2(z − pi ) + pi . Let G = ⟨g1, g2, g3⟩. Then J (G)
is equal to the Sierpinski gasket. It is easy to see that (g1, g2, g3) satisfies the assumptions
of Theorem 1.7. Moreover, δ(g1, g2, g3) = HD(J (G)) =

log 3
log 2 < 2. By Theorems 1.2,

1.7 and 2.15, there exists an open neighborhood U of (g1, g2, g3) in (Aut(C))3 and a Borel
subset A of U with HD(U \ A) < HD(U ) = 12 such that (1) {γ = (γ1, γ2, γ3)}γ∈U
is a holomorphic family in Exp(3) satisfying the analytic transversality condition, the strong
transversality condition and the transversality condition, and (2) for each γ = (γ1, γ2, γ3) ∈ A,
HD(J (⟨γ1, γ2, γ3⟩)) = δ(γ1, γ2, γ3) < 2.

For some other examples including the families related to the Snowflake, Pentakun, Hexakun,
Heptakun, Octakun and so on, see Examples 4.10 and 4.13–4.15 and Remark 4.16. (For the
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definition of Snowflake, Pentakun, etc., see [9].) We remark that, up to our best knowledge, these
examples (Example 1.8, etc.) have not been explicitly dealt with in any literature of contracting
IFSs with overlaps.

In Section 2, we introduce and collect some fundamental concepts, notation, and definitions.
In Section 3, we prove the main results of this paper. In Section 4, we describe some applications
and examples. In Section 5, we make a remark on similar results for families of conformal
contracting iterated function systems in arbitrary dimensions.

2. Preliminaries

In this section we introduce notation and basic definitions. Throughout the paper, we
frequently follow the notation from [26,28].

Definition 2.1 ([8,44]). A “rational semigroup” G is a semigroup generated by a family of
non-constant rational maps g : Ĉ → Ĉ, where Ĉ denotes the Riemann sphere, with the
semigroup operation being functional composition. A “polynomial semigroup” is a semigroup
generated by a family of non-constant polynomial maps of Ĉ. For a rational semigroup G, we
set

F(G) := {z ∈ Ĉ : G is normal in some neighborhood of z}

and we call F(G) the Fatou set of G. Its complement,

J (G) := Ĉ \ F(G)

is called the Julia set of G. If G is generated by a family { fi }i (i.e., G = { fi1 ◦ · · · ◦ fin : n ∈

N,∀ fi j ∈ { fi }}), then we write G = ⟨ f1, f2, . . .⟩. For each g ∈ Rat, we set F(g) := F(⟨g⟩) and
J (g) := J (⟨g⟩).

Note that for each h ∈ G, h(F(G)) ⊂ F(G), h−1(J (G)) ⊂ J (G). For the fundamental
properties of F(G) and J (G), see [8,22,26]. For the papers dealing with dynamics of rational
semigroups, see for example [8,44,22,24–30,40,39,41,31,38,32,23,33–37], etc.

We denote by Rat the set of all non-constant rational maps on Ĉ endowed with distance
d defined by d(h1, h2) := supz∈Ĉ ρ̂(h1(z), h2(z)), where ρ̂ denotes the spherical distance on

Ĉ. For each d ∈ N, we set Ratd := {g ∈ Rat : deg(g) = d}. Note that each Ratd is a
connected component of Rat. Hence Rat has countably many connected components. In addition,
each connected component Ratd of Rat is an open subset of Rat and Ratd has a structure of a
finite dimensional complex manifold. Similarly, we denote by P the set of all polynomial maps
g : Ĉ → Ĉ with deg(g) ≥ 2 endowed with the relative topology inherited from Rat. We set
Aut(C) := {az + b : a, b ∈ C, a ≠ 0} endowed with the relative topology inherited from Rat.
For each d ∈ N with d ≥ 2, we set Pd := {g ∈ P : deg(g) = d}. Note that each Pd is a
connected component of P . Hence P has countably many connected components. In addition,
each connected component Pd of P is an open subset of P and Pd has a structure of a finite
dimensional complex manifold. Moreover, Aut(C) is a connected, complex-two-dimensional
complex manifold. We remark that gn → g as n → ∞ in P ∪ Aut(C) if and only if there
exists a number N ∈ N such that

(i) deg(gn) = deg(g) for each n ≥ N , and
(ii) the coefficients of gn(n ≥ N ) converge to the coefficients of g appropriately as n → ∞.
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Thus

Pd ∼= (C \ {0})× Cd and Aut(C) ∼= (C \ {0})× C.

For more information on the topology and complex structure of Rat and P ∪ Aut(C), the reader
may consult [2].

For each z ∈ Ĉ, we denote by T Ĉz the complex tangent space of Ĉ at z. Let ϕ : V → Ĉ be
a holomorphic map defined on an open set V of Ĉ and let z ∈ V . We denote by Dϕz : T Ĉz →

T Ĉϕ(z) the derivative of ϕ at z. Moreover, we denote by ∥ϕ′(z)∥ the norm of the derivative Dϕz

at z with respect to the spherical metric on Ĉ.

Definition 2.2. For each m ∈ N, let Σm := {1, . . . ,m}
N be the space of one-sided sequences

of m-symbols endowed with the product topology. This is a compact metrizable space. For each
f = ( f1, . . . , fm) ∈ (Rat)m , we define a map

f̃ : Σm × Ĉ → Σm × Ĉ

by the formula

f̃ (ω, z) = (σ (ω), fω1(z)),

where (ω, z) ∈ Σm × Ĉ, ω = (ω1, ω2, . . .), and σ : Σm → Σm denotes the shift map. The
transformation f̃ : Σm × Ĉ → Σm × Ĉ is called the skew product map associated with the
multimap f = ( f1, . . . , fm) ∈ (Rat)m . We denote by π1 : Σm × Ĉ → Σm the projection onto
Σm and by π2 : Σm × Ĉ → Ĉ the projection onto Ĉ. That is, π1(ω, z) = ω and π2(ω, z) = z.
For each n ∈ N and (ω, z) ∈ Σm × Ĉ, we put

∥( f̃ n)′(ω, z)∥ := ∥( fωn ◦ · · · ◦ fω1)
′(z)∥.

We define

Jω( f̃ ) := {z ∈ Ĉ : { fωn ◦ · · · ◦ fω1}n∈N is not normal in any neighborhood of z}

for each ω ∈ Σm and we set

J ( f̃ ) := ∪w∈Σm {ω} × Jω( f̃ ),

where the closure is taken with respect to the product topology on the space Σm × Ĉ. J ( f̃ ) is
called the Julia set of the skew product map f̃ . In addition, we set F( f̃ ) := (Σm × Ĉ) \ J ( f̃ )
and deg( f̃ ) :=

m
j=1 deg( f j ). We also set Σ ∗

m := ∪
∞

j=1{1, . . . ,m}
j (disjoint union). For each

ω ∈ Σm ∪ Σ ∗
m let |ω| be the length of ω. For each ω ∈ Σm ∪ Σ ∗

m we write ω = (ω1, ω2, . . .). For
each f = ( f1, . . . , fm) ∈ (Rat)m and each ω = (ω1, . . . , ωn) ∈ Σ ∗

m , we put

fω := fωn ◦ · · · ◦ fω1 .

For every n ≤ |ω| let ω|n = (ω1, ω2, . . . , ωn). If ω ∈ Σ ∗
m , we put

[ω] = {τ ∈ Σm : τ ||ω| = ω}.

If ω, τ ∈ Σm ∪ Σ ∗
m , ω ∧ τ is the longest initial subword common for both ω and τ . Let α be

a fixed number with 0 < α < 1/2. We endow the shift space Σm with the distance ρα defined
as ρα(ω, τ) = α|ω∧τ | with the standard convention that α∞

= 0. The distance ρα induces the
product topology on Σm . Denote the spherical distance on Ĉ by ρ̂ and equip the product space
Σm × Ĉ with the distance ρ defined as follows.

ρ((ω, x), (τ, y)) = max{ρα(ω, τ), ρ̂(x, y)}.
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Of course ρ induces the product topology on Σm × Ĉ. If ω = (ω1, ω2, . . . , ωn) ∈ Σ ∗
m and

τ = (τ1, τ2, . . .) ∈ Σ ∗
m ∪ Σm , we set ωτ := (ω1, ω2, . . . , ωn, τ1, τ2, . . .) ∈ Σ ∗

m ∪ Σm . For a
j ∈ {1, . . . ,m}, we set j∞ := ( j, j, j, . . .) ∈ Σm .

Remark 2.3. By definition, the set J ( f̃ ) is compact. Furthermore, if we set G = ⟨ f1, . . . , fm⟩,
then, by Sumi [26, Proposition 3.2], the following hold:

(1) J ( f̃ ) is completely invariant under f̃ ;
(2) f̃ is an open map on J ( f̃ );
(3) if ♯J (G) ≥ 3 and E(G) := {z ∈ Ĉ : ♯∪g∈G g−1({z}) < ∞} is contained in F(G), then the

dynamical system ( f̃ , J ( f̃ )) is topologically exact;
(4) J ( f̃ ) is equal to the closure of the set of repelling periodic points of f̃ if ♯J (G) ≥ 3, where

we say that a periodic point (ω, z) of f̃ with period n is repelling if ∥( f̃ n)′(ω, z)∥ > 1.
(5) π2(J ( f̃ )) = J (G).

Definition 2.4 ([28]). A finitely generated rational semigroup G = ⟨ f1, . . . , fm⟩ is said to be
expanding provided that J (G) ≠ ∅ and the skew product map f̃ : Σm ×Ĉ → Σm ×Ĉ associated
with f = ( f1, . . . , fm) is expanding along fibers of the Julia set J ( f̃ ), meaning that there exist
η > 1 and C ∈ (0, 1] such that for all n ≥ 1,

inf{∥( f̃ n)′(z)∥ : z ∈ J ( f̃ )} ≥ Cηn . (2.1)

Definition 2.5. Let G be a rational semigroup. We put

P(G) := ∪g∈G{all critical values of g : Ĉ → Ĉ} (⊂ Ĉ)

and we call P(G) the postcritical set of G. A rational semigroup G is said to be hyperbolic if
P(G) ⊂ F(G).

We remark that if Γ ⊂ Rat and G is generated by Γ , then

P(G) =


g∈G∪{I d}

g


h∈Γ

{all critical values of h : Ĉ → Ĉ}


. (2.2)

Therefore for each g ∈ G, g(P(G)) ⊂ P(G).

Definition 2.6. Let G be a polynomial semigroup. We set P∗(G) := P(G) \ {∞}. This set
is called the planar postcritical set of G. We say that G is postcritically bounded if P∗(G) is
bounded in C.

Remark 2.7. Let G = ⟨ f1, . . . , fm⟩ be a rational semigroup such that there exists an element
g ∈ G with deg(g) ≥ 2 and such that each Möbius transformation in G is loxodromic. Then, it
was proved in [25] that G is expanding if and only if G is hyperbolic.

Definition 2.8. For each m ∈ N, we define

Exp(m) := {( f1, . . . , fm) ∈ (Rat)m : ⟨ f1, . . . , fm⟩ is expanding}.

Then we have the following.

Lemma 2.9 ([24,40]). Exp(m) is an open subset of (Rat)m .
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Lemma 2.10 (Theorem 2.14 in [27]). For each f = ( f1, . . . , fm) ∈ Exp(m), J ( f̃ ) =
ω∈Σm

({ω} × Jω( f̃ )) and J (⟨ f1, . . . , fm⟩) =

ω∈Σm

Jω( f̃ ).

Definition 2.11. We set

Epb(m) := { f = ( f1, . . . , fm) ∈ Exp(m) ∩ P m
: ⟨ f1, . . . , fm⟩

is postcritically bounded}.

Lemma 2.12 ([32,34]). Epb(m) is open in P m .

Definition 2.13. Let f = ( f1, . . . , fm) ∈ Exp(m) and let f̃ : Σm × Ĉ → Σm × Ĉ be the skew
product map associated with f = ( f1, . . . , fm). For each t ∈ R, let P(t, f ) be the topological
pressure of the potential ϕ(z) := −t log ∥ f̃ ′(z)∥ with respect to the map f̃ : J ( f̃ ) → J ( f̃ ).
(For the definition of the topological pressure, see [18].) We denote by δ( f ) the unique zero of
the function R ∋ t → P(t, f ) ∈ R. Note that the existence and uniqueness of the zero of the
function P(t, f ) was shown in [28]. The number δ( f ) is called the Bowen parameter of the
multimap f = ( f1, . . . , fm) ∈ Exp(m).

Let u ≥ 0. A Borel probability measure µ on J ( f̃ ) is said to be u-conformal for f̃ if the
following holds. For any Borel subset A of J ( f̃ ) such that f̃ |A : A → J ( f̃ ) is injective, we have
that

µ( f̃ (A)) =


A

∥ f̃ ′(z)∥udµ(z).

We remark that with the notation of Definition 2.13, there exists a unique δ( f )-conformal
measure for f̃ (see [28]).

Definition 2.14. For a subset A of Ĉ, we denote by HD(A) the Hausdorff dimension of A with
respect to the spherical distance. For each d ∈ N, if B is a subset of Rd , we denote by HD(B) the
Hausdorff dimension of B with respect to the Euclidean distance on Rd . For a Riemann surface
S, we denote by Aut(S) the set of all holomorphic isomorphisms of S. For a compact metric
space X , we denote by C(X) the Banach space of all continuous complex-valued functions on
X , endowed with the supremum norm.

A fundamental fact about the Bowen parameter is the following.

Theorem 2.15 ([28,25]). For each f = ( f1, . . . , fm) ∈ Exp(m), HD(J (⟨ f1, . . . , fm⟩)) ≤ δ( f ).

Another crucial property of the Bowen parameter is the following fact proved as one of the
main results of [40].

Theorem 2.16 ([40]). The function Exp(m) ∋ f → δ( f ) ∈ R is real-analytic and
plurisubharmonic.

Remark 2.17 ([28,41]). Let f = ( f1, . . . , fm) ∈ Exp(m). Then there exists a unique
equilibrium state ν f with respect to f̃ : J ( f̃ ) → J ( f̃ ) for the potential function
−δ( f ) log ∥ f̃ ′(z)∥. The f̃ -invariant probability measure ν f is equivalent to the δ( f )-conformal

measure for f̃ . We have that δ( f ) =
hν f ( f̃ )

log ∥ f̃ ′∥dν f
, where hν f ( f̃ ) denotes the metric entropy of

( f̃ , ν f ). Moreover, δ( f ) is equal to the “critical exponent of the Poincaré series” of the multimap
f . For the details, see [28,41].
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3. Proofs and results

In this section we state and prove the main results of our paper.

Definition 3.1. Let f = ( f1, . . . , fm) ∈ (Rat)m and let G = ⟨ f1, . . . , fm⟩. Let also U be a
non-empty open set in Ĉ. We say that f (or G) satisfies the open set condition (with U ) if

∪
m
j=1 f −1

j (U ) ⊂ U and f −1
i (U ) ∩ f −1

j (U ) = ∅

for each (i, j) with i ≠ j. There is also a stronger condition. Namely, we say that f (or G)
satisfies the separating open set condition (with U ) if

∪
m
j=1 f −1

j (U ) ⊂ U and f −1
i (U ) ∩ f −1

j (U ) = ∅

for each (i, j) with i ≠ j.

We remark that the above concept of “open set condition” (for “backward IFSs”) is an
analogue of the usual open set condition in the theory of IFSs.

The following theorem is important for our investigations.

Theorem 3.2 ([28]). Let f = ( f1, . . . , fm) ∈ Exp(m). If f satisfies the open set condition,
then HD(J (⟨ f1, . . . , fm⟩)) = δ( f ).

It is interesting to ask for an estimate of the Hausdorff dimension of the Julia set of G in the
case when it is not known whether G satisfies the open set condition or not. The goal of our paper
is to provide answers to this question. We start with introducing the following setting.

Setting (∗). Let d,m ∈ N. Let U be a non-empty bounded open subset of Rd . For each λ ∈ U ,
let fλ = ( fλ,1, . . . , fλ,m) ∈ Exp(m) and let Gλ := ⟨ fλ,1, . . . , fλ,m⟩. We suppose that { fλ}λ∈U
is a continuous family of Exp(m), i.e., the map U ∋ λ → fλ ∈ Exp(m) is continuous. Fix a
parameter λ0 ∈ U . Suppose that for each λ ∈ U , there exists a homeomorphism hλ : J ( f̃λ0) →

J ( f̃λ) of the form hλ(ω, z) = (ω, hλ(ω, z)) such that hλ0 = I d|J ( f̃λ0 )
, hλ ◦ f̃λ0 = f̃λ ◦ hλ on

J ( f̃λ0), and such that the map (ω, z, λ) → hλ(ω, z) ∈ Ĉ, (ω, z, λ) ∈ J ( f̃λ0)×U , is continuous.
The point λ0 is called the base point of { fλ}λ∈U . Let C > 0, η > 1 be such that for each n ∈ N,
inf

(ω,z)∈J ( f̃λ0 )
∥( f̃ n

λ0
)′(ω, z)∥ ≥ Cηn . For each λ ∈ U , we set s(λ) := δ( fλ), where δ( fλ) is the

Bowen parameter of the multimap fλ.
We now will explain (in Definition 3.3 and Remark 3.4) that Setting (∗) is natural.

Definition 3.3. Let M be a finite dimensional complex manifold. Let m ∈ N. For each λ ∈ M , let
fλ = ( fλ,1, . . . , fλ,m) be an element of Exp(m). We say that { fλ}λ∈M is a holomorphic family
in Exp(m) over M if the map λ → fλ ∈ Exp(m), λ ∈ M , is holomorphic. If a holomorphic
family { fλ}λ∈M in Exp(m) satisfies that fλ ∈ Epb(m) for each λ ∈ M , then we say that { fλ}λ∈M
is a holomorphic family in Epb(m).

Remark 3.4. Let { fλ}λ∈M be a holomorphic family in Exp(m) over a complex manifold M and
let λ0 ∈ M. Then there exists a neighborhood U of λ0 such that for the holomorphic family
{ fλ}λ∈U over U , there exists a unique family {hλ}λ∈U of conjugacy maps as in Setting (∗).
Moreover, λ → hλ(ω, z) is holomorphic. For the proof of this result, see [40, Theorem 4.9,
Lemma 6.2] and its proof (in fact, the assumption “ f is simple” in [40, Theorem 4.9] is not
needed).
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Remark 3.5. Let { fλ}λ∈M be a holomorphic family in Exp(m) over M and let λ0 ∈ M . Since
the map λ → J (Gλ) is continuous with respect to the Hausdorff metric [24, Theorem 2.3.4],
[40, Lemma 4.1], there exist a Möbius transformation α, an open neighborhood U of λ0, and a
compact subset K of C such that setting G̃λ := {α ◦ g ◦ α−1

: g ∈ Gλ} for each λ ∈ U , we have
J (G̃λ) ⊂ K for each λ ∈ U.

From Lemma 3.6 through Theorem 3.12, we assume Setting (∗).

Notation. For a x ∈ Rd and r > 0, we denote by Br (x) the open r -ball with center x with
respect to the Euclidean distance. For a y ∈ C and r > 0 we set Dr (y) := {z ∈ C : |z − y| < r}.

We denote by Lebd the d-dimensional Lebesgue measure on a d-dimensional manifold.
Under Setting (∗), the following lemma is immediate.

Lemma 3.6. Let s, ϵ > 0 be given with s > ϵ. Then there exist constants v > 0 and δ > 0 such
that for any (ω, z, ω′, z′, λ) ∈ J ( f̃λ0)

2
× U, if ρ((ω, z), (ω′, z′)) < v and λ ∈ Bδ(λ0), then

• (η
3ϵ

4(s−ϵ) )−1
≤

∥ f̃ ′
λ(ω

′,z′)∥

∥ f̃ ′
λ0
(ω,z)∥

≤ min{η
3ϵ

4(s−ϵ) , η
ϵ
4 } and

• ρ̂(z, hλ(ω, z)) < 1
2v.

We now give the definition of the transversality condition, the concept of our primary interests
in this paper.

Definition 3.7. Let { fλ}λ∈U be as in Setting (∗). We say that { fλ}λ∈U satisfies the transversality
condition (TC) if there exists a constant C1 > 0 such that for each r ∈ (0, diam(Ĉ)) and for each
(ω, z), (ω′, z′) ∈ J ( f̃λ0) with ω1 ≠ ω′

1,

Lebd({λ ∈ U : ρ̂(hλ(ω, z), hλ(ω
′, z′)) ≤ r}) ≤ C1r2. (3.1)

Remark 3.8. If { fλ}λ∈U with base λ0 ∈ U satisfies the transversality condition, then for any
λ1 ∈ U , the family { fλ}λ∈U with base λ1 satisfies the transversality condition with the same
constant C1 (we just consider the family {hλh−1

λ1
}λ∈U of conjugacy maps).

Lemma 3.9. Suppose that { fλ}λ∈U satisfies the transversality condition. Let α ∈ (0, 2). Then
there exists a constant C2 > 0 such that for each (ω, z), (ω′, z′) ∈ J ( f̃λ0) with ω1 ≠ ω′

1,
U

dλ

ρ̂(hλ(ω, z), hλ(ω′, z′))α
≤ C2.

Proof. Let (ω, z), (ω′, z′) ∈ J ( f̃λ0) with ω1 ≠ ω′

1. Then
U

dλ

ρ̂(hλ(ω, z), hλ(ω′, z′))α

=


∞

0
Lebd


λ ∈ U :

1

ρ̂(hλ(ω, z), hλ(ω′, z′))α
≥ x


dx

= α


∞

0
Lebd({λ ∈ U : ρ̂(hλ(ω, z), hλ(ω

′, z′)) ≤ r})r−α−1dr

= α

 diam(Ĉ)

0
Lebd({λ ∈ U : ρ̂(hλ(ω, z), hλ(ω

′, z′)) ≤ r})r−α−1dr
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+α


∞

diam(Ĉ)
Lebd({λ ∈ U : ρ̂(hλ(ω, z), hλ(ω

′, z′)) ≤ r})r−α−1dr

≤ α

 diam(Ĉ)

0
C1r2

· r−α−1dr + Lebd(U )


1

−α
r−α

∞

diam(Ĉ)



= α


C1

2 − α
(diam(Ĉ))2−α

+ Lebd(U )


1
α
(diam(Ĉ))−α


.

Thus we have proved our lemma. �

Lemma 3.10. Suppose that { fλ}λ∈U satisfies the transversality condition. Then for each λ1 ∈ U
and for each ϵ > 0, there exists δ > 0 such that for Lebd -a.e. λ ∈ Bδ(λ1), HD(J (Gλ)) ≥

min{s(λ1), 2} − ϵ.

Proof. We may assume that λ1 = λ0. Since λ → J (Gλ) is continuous with respect to the
Hausdorff metric in the space of all non-empty compact subsets of Ĉ [24, Theorem 2.3.4], and
[40, Lemma 4.1], by conjugating Gλ0 with a Möbius transformation, we may assume without
loss of generality that there exists a compact subset K of C such that for each λ in a small
neighborhood of λ0, J (Gλ) ⊂ K . Let s := min{s(λ0), 2}. Let ϵ > 0 with ϵ < s. For this pair
(ϵ, s), let v, δ > 0 be as in Lemma 3.6. We may assume that v is small enough. Let µ be the
s(λ0)-conformal measure for f̃λ0 . Let µ2 := µ ⊗ µ. This is a Borel probability measure on
J ( f̃λ0)

2. For each λ ∈ U , let

R(λ) :=


J ( f̃λ0 )

2

dµ2(ω, z, ω′, z′)

|hλ(ω, z)− hλ(ω′, z′)|s−ϵ
.

By Falconer [4, Theorem 4.13], it suffices to show that

R(λ) < ∞ for Lebd -a.e. λ ∈ Bδ(λ0). (3.2)

In order to prove (3.2), assuming v is small enough, for each (ω, z, ω′, z′) ∈ J ( f̃λ0)
2 with

(ω, z) ≠ (ω′, z′), let n = n(ω, z, ω′, z′) ∈ N ∪ {0} be the minimum number such that

either |π2( f̃ n
λ0
(ω, z))− π2( f̃ n

λ0
(ω′, z′))| ≥ v or ωn+1 ≠ ω′

n+1.

For each n ∈ N ∪ {0}, let En := {(ω, z, ω′, z′) ∈ J ( f̃λ0)
2

: n(ω, z, ω′, z′) = n}. Let
H := {(ω, z, ω′, z′) ∈ J ( f̃λ0)

2
: (ω, z) = (ω′, z′)}. Then we have J ( f̃λ0)

2
= H ⨿ ⨿n≥0 En

(disjoint union). We obtain that

µ2(H) =


J ( f̃λ0 )

µ({(ω′, z′) ∈ J ( f̃λ0) : (ω, z, ω′, z′) ∈ H})dµ(ω, z)

=


J ( f̃λ0 )

µ({(w, z)})dµ(ω, z) = 0.

Hence, by Lemma 3.6 and Koebe’s distortion theorem, we obtain that
Bδ(λ0)

R(λ)dλ =


Bδ(λ0)

dλ


J ( f̃λ0 )
2

dµ2(ω, z, ω′, z′)

|hλ(ω, z)− hλ(ω′, z′)|s−ϵ

=

∞
n=0


En

dµ2(ω, z, ω′, z′)


Bδ(λ0)

dλ

|hλ(ω, z)− hλ(ω′, z′)|s−ϵ
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≤

∞
n=0


En

dµ2(ω, z, ω′, z′)


Bδ(λ0)

Const.∥( fλ,ω|n )
′(hλ(ω, z))∥s−ϵdλ

|hλ( f̃ n
λ0
(ω, z))− hλ( f̃ n

λ0
(ω′, z′))|s−ϵ

≤

∞
n=0


En

dµ2(ω, z, ω′, z′)


Bδ(λ0)

Const.∥( fλ0,ω|n )
′(z)∥s−ϵ(η

3ϵ
4(s−ϵ) )(s−ϵ)ndλ

|hλ( f̃ n
λ0
(ω, z))− hλ( f̃ n

λ0
(ω′, z′))|s−ϵ

=

∞
n=0


En

dµ2(ω, z, ω′, z′)

·


Bδ(λ0)

Const.∥( f̃ n
λ0
)′(ω, z)∥s− ϵ

4 ∥( f̃ n
λ0
)′(ω, z)∥−

3ϵ
4 (η

3ϵ
4 )ndλ

|hλ( f̃ n
λ0
(ω, z))− hλ( f̃ n

λ0
(ω′, z′))|s−ϵ

≤

∞
n=0


En

dµ2(ω, z, ω′, z′)


Bδ(λ0)

Const.∥( f̃ n
λ0
)′(ω, z)∥s− ϵ

4 dλ

|hλ( f̃ n
λ0
(ω, z))− hλ( f̃ n

λ0
(ω′, z′))|s−ϵ

,

where Const. denotes a constant although all Const. above may be mutually different, and
fλ0,ω|0 = Id. By Lemma 3.9, it follows that

Bδ(λ0)

R(λ)dλ ≤ Const.
∞

n=0


En

∥( f̃ n
λ0
)′(ω, z)∥s− ϵ

4 dµ2(ω, z, ω′, z′)

≤ Const.
∞

n=0

(Cηn)−
ϵ
4


En

∥( f̃ n
λ0
)′(ω, z)∥s(λ0)dµ2(ω, z, ω′, z′)

= Const.
∞

n=0

(Cη−
ϵ
4 n)


J ( f̃λ0 )

dµ(ω, z)

·


En,ω,z

∥( f̃ n
λ0
)′(ω, z)∥s(λ0)dµ(ω′, z′)

= Const.
∞

n=0

Cη−
ϵ
4 n


J ( f̃λ0 )

(∥( f̃ n
λ0
)′(ω, z)∥s(λ0)µ(En,ω,z))dµ(ω, z),

where En,ω,z := {(ω′, z′) ∈ J ( f̃λ0) : (ω, z, ω′, z′) ∈ En}. As, by Koebe’s distortion theorem,
∥( f̃ n

λ0
)′(ω, z)∥s(λ0)µ(En,ω,z) is comparable with µ( f̃ n

λ0
(En,ω,z)), we therefore, obtain that

Bδ(λ0)

R(λ)dλ ≤ Const.
∞

n=0

Cη−
ϵ
4 n < ∞.

Hence, (3.2) holds. Thus, we have proved Lemma 3.10. �

Lemma 3.11. Suppose that { fλ}λ∈U satisfies the transversality condition. Suppose s(λ0) > 2.
Let µ be the s(λ0)-conformal measure on J ( f̃λ0) for f̃λ0 . Then there exists δ > 0 such that for
Lebd -a.e. λ ∈ Bδ(λ0), the Borel probability measure (hλ)∗(µ) on J (Gλ) is absolutely continuous
with respect to Leb2 with L2 density and Leb2(J (Gλ)) > 0.

Proof. As in the proof of Lemma 3.10, we may assume that there exists a compact subset K0
of C such that for each λ ∈ U , J (Gλ) ⊂ K0. Take an ϵ > 0 with s(λ0) − ϵ > 2. For this
ϵ and s = s(λ0), take a couple (v, δ) coming from Lemma 3.6. We use the notation and the
arguments from the proof of Lemma 3.10. For each λ ∈ Bδ(λ0), let νλ := (hλ)∗(µ). Then supp
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νλ ⊂ J (Gλ). It is enough to show that νλ is absolutely continuous with respect to Leb2 with L2

density for Lebd -a.e. λ ∈ Bδ(λ0). In order to do that, we set

I :=


Bδ(t0)

dλ


C
D(νλ, x)dνλ(x),

where

D(νλ, x) := lim inf
r→0

νλ(B(x, r))

r2 .

We remark that if I < ∞, then by Mattila [10, p. 36,43], for Lebd -a.e. λ ∈ Bδ(λ0), νλ is
absolutely continuous with respect to Leb2 with L2 density. Therefore, it is enough to show that
I < ∞. In order to do that, by Fatou’s lemma, we have

I ≤ lim inf
r→0


Bδ(λ0)


C

νλ(B(x, r))

r2 dνλ(x)dλ. (3.3)

Moreover, we have
C
νλ(B(x, r))dνλ(x) =


J ( f̃λ0 )

2
1
{(ω,z,ω′,z′)∈J ( f̃λ0 )

2:|hλ(ω,z)−hλ(ω′,z′)|<r}

· dµ2(ω, z, ω′, z′),

where 1A denotes the characteristic function with respect to the set A, and µ2 := µ⊗µ. Hence,
by using (3.3), we obtain that

I ≤ lim inf
r→0

1

r2


J ( f̃λ0 )

2
Lebd({λ ∈ Bδ(λ0) : |hλ(ω, z)− hλ(ω

′, z′)| < r})

· dµ2(ω, z, ω′, z′)

= lim inf
r→0

1

r2

∞
n=0


En

Lebd({λ ∈ Bδ(λ0) : |hλ(ω, z)− hλ(ω
′, z′)| < r})

· dµ2(ω, z, ω′, z′).

By Koebe’s distortion theorem (we take v and δ sufficiently small), there exists a constant K > 0
such that for each n ∈ N ∪ {0}, for each (ω, z, ω′, z′) ∈ En and for each λ ∈ Bδ(λ0),

|hλ(ω, z)− hλ(ω
′, z′)| ≥ K∥( fλ,ω|n )

′(z)∥−1
|hλ( f̃ n

λ0
(ω, z))− hλ( f̃ n

λ0
(ω′, z′))|.

Therefore, by Lemma 3.6, for each n ∈ N ∪ {0}, for each (ω, z, ω′, z′) ∈ En and for each
λ ∈ Bδ(λ0),

|hλ(ω, z)− hλ(ω
′, z′)| ≥ K∥( f̃ n

λ0
)′(ω, z)∥−1(η

ϵ
4 )−n

|hλ( f̃ n
λ0
(ω, z))− hλ( f̃λ0(ω

′, z′))|

≥ K∥( f̃ n
λ0
)′(ω, z)∥−1−

ϵ
4 (Cηn)

ϵ
4 η−

ϵ
4 n

× |hλ( f̃ n
λ0
(ω, z))− hλ( f̃λ0(ω

′, z′))|

≥ K C
ϵ
4 ∥( f̃ n

λ0
)′(ω, z)∥−1−

ϵ
4 |hλ( f̃ n

λ0
(ω, z))− hλ( f̃λ0(ω

′, z′))|.

Hence, by transversality condition, for each n and for each (ω, z, ω′, z′) ∈ En ,

Lebd({λ ∈ Bδ(λ0) : |hλ(ω, z)− hλ(ω
′, z′)| < r})

≤ Lebd({λ ∈ Bδ(λ0) : |hλ( f̃ n
λ0
(ω, z))− hλ( f̃ n

λ0
(ω′, z′))|
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≤ (K C
ϵ
4 )−1r∥( f̃ n

λ0
)′(ω, z)∥1+

ϵ
4 })

≤ Const.r2
∥( f̃ n

λ0
)′(ω, z)∥2+

ϵ
2 .

Therefore,

I ≤ Const.
∞

n=0


En

∥( f̃ n
λ0
)′(ω, z)∥2+

ϵ
2 dµ2(ω, z, ω′, z′)

= Const.
∞

n=0


J ( f̃λ0 )

dµ(ω, z)


En,ω,z

∥( f̃ n
λ0
)′(ω, z)∥2+

ϵ
2 dµ(ω′, z′),

where En,ω,z = {(ω′, z′) ∈ J ( f̃λ0) : (ω, z, ω′, z′) ∈ En}. Thus,

I ≤ Const.
∞

n=0


J ( f̃λ0 )

(∥( f̃ n
λ0
)′(ω, z)∥s(λ0) · µ(En,ω,z)) · ∥ f̃ n

λ0
(ω, z)∥−

ϵ
2 dµ(ω, z)

≤ Const.
∞

n=0

(Cηn)
−ϵ
2 < ∞.

Hence we have proved Lemma 3.11. �

Theorem 3.12. Let { fλ}λ∈U be a family in Exp(m) satisfying Setting (∗). Suppose that { fλ}λ∈U
satisfies the transversality condition. Let µ be the s(λ0)-conformal measure on J ( f̃λ0) for f̃λ0 .

Then we have the following.

(1) HD(J (Gλ)) = min{s(λ), 2} for Lebd -a.e. λ ∈ U.
(2) For Lebd -a.e. λ ∈ {λ ∈ U : s(λ) > 2}, the Borel probability measure (hλ)∗(µ) on J (Gλ)

is absolutely continuous with respect to the Lebesgue measure Leb2 with L2 density and
Leb2(J (Gλ)) > 0.

Proof. We first prove (1). By Sumi [28], we have that HD(J (Gλ)) ≤ min{s(λ), 2} for each
λ ∈ U. Hence it suffices to show that HD(J (Gλ)) ≥ min{s(λ), 2} for Lebd -a.e. λ ∈ U. Suppose
that this is not true. Then, there exists an ϵ > 0 and a point λ1 ∈ U such that λ1 is a Lebesgue
density point of the set {λ ∈ U : HD(J (Gλ)) < min{s(λ), 2}− ϵ}. Then there exists δ0 > 0 such
that for each δ ∈ (0, δ0),

Lebd({λ ∈ Bδ(λ1) : HD(J (Gλ)) < min{s(λ), 2} − ϵ}) > 0. (3.4)

However, by the continuity of the function λ → s(λ) (see Theorem 2.16, [40]), if δ is small
enough, then s(λ) < s(λ1)+

ϵ
2 for each λ ∈ Bδ(λ1). Thus, for all δ sufficiently small, we obtain

from (3.4) that

Lebd


λ ∈ Bδ(λ1) : HD(J (Gλ)) < min{s(λ1), 2} −

ϵ

2


> 0.

This however contradicts Lemma 3.10. Thus, we have proved assertion (1). Statement (2) follows
from Lemma 3.11. Hence, we have proved our theorem. �

Remark 3.13. Let { fλ}λ∈U be as in Theorem 3.12. Let ν be the equilibrium state with respect
to f̃λ0 : J ( f̃λ0) → J ( f̃λ0) for the potential −δ( fλ0) log ∥ f̃ ′

λ0
∥ (see Remark 2.17). Then for each

λ ∈ U , the Borel probability measure (hλ)∗(µ) in Theorem 3.12 is equivalent to (π2)∗((hλ)∗(ν))
and (hλ)∗(ν) is f̃λ-invariant. Thus (hλ)∗(µ) is equivalent to the projection of an f̃λ-invariant
Borel probability measure on J ( f̃λ).
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We now define the strong transversality condition.

Definition 3.14. For each r > 0 and each subset F of Rd , we denote by Nr (F) the minimal
number of balls of radius r needed to cover the set F.

Let ν be a Borel probability measure in Rd . Let u ≥ 0. Let E be a Borel subset of Rd . We
say that ν is a Frostman measure on E with exponent u if ν(E) = 1 and if there exists a constant
C > 0 such that for each x ∈ Rd and for each r > 0, ν(Br (x)) ≤ Cru .

Definition 3.15. Let d ∈ N. Let U be a non-empty bounded open subset of Rd . Let { fλ}λ∈U
be a family as in Setting (∗). We say that { fλ}λ∈U satisfies the strong transversality condition
(STC) if there exists a constant C ′

1 > 0 such that for each r ∈ (0, diam(Ĉ)) and for each
(ω, z), (ω′, z′) ∈ J ( f̃λ0) with ω1 ≠ ω′

1,

Nr ({λ ∈ U : ρ̂(hλ(ω, z), hλ(ω
′, z′)) ≤ r}) ≤ C ′

1r2−d . (3.5)

Remark 3.16. The strong transversality condition implies the transversality condition. It is
however not known whether or not there exists a family of multimaps of rational maps (or
contracting conformal IFSs) which satisfies the transversality condition but fails to satisfy the
strong transversality condition.

In the same way as Lemma 3.9 we can prove the following.

Lemma 3.17. Let d ∈ N. Let U be a non-empty bounded open subset of Rd . Let { fλ}λ∈U be
a family as in Setting (∗). Suppose that { fλ}λ∈U satisfies the strong transversality condition.
Let ν be a Frostman measure in Rd with exponent u. Suppose u − d + 2 > 0. Then for each
α ∈ (0, u − d + 2) there exists a constant C ′

2 > 0 such that for each (ω, z, ω′, z′) ∈ J ( f̃λ0) with
ω1 ≠ ω′

1,
U

dν(λ)

ρ̂(hλ(ω, z), hλ(ω′, z′))α
≤ C ′

2.

Lemma 3.18. Let d ∈ N. Let U be a non-empty bounded open subset of Rd . Let { fλ}λ∈U be a
family as in Setting (∗). Suppose that { fλ}λ∈U satisfies the strong transversality condition. Then
for each λ1 ∈ U, for each ϵ > 0, and for each u ≥ 0, there exists δ > 0 such that if ν is a
Frostman measure on Bδ(λ1) with exponent u, then

HD(J (Gλ)) ≥ min{s(λ1), u − d + 2} − ϵ

for ν-a.e. λ ∈ Bδ(λ1).

Proof. We may assume that λ1 = λ0 and u − d + 2 > 0. Let s := min{s(λ0), u − d + 2}. We
repeat the proof of Lemma 3.10. The only change is that now we prove


Bδ(λ0)

R(λ)dν(λ) < ∞

by using Lemma 3.17. �

We now give an upper estimate of the Hausdorff dimension of the set of exceptional
parameters. Note that if { fλ = ( fλ,1, . . . , fλ,m)}λ∈U is a family in Exp(m), then by
Theorem 2.15, for each λ ∈ U , HD(J (Gλ)) ≤ s(λ), where Gλ := ⟨ fλ,1, . . . , fλ,m⟩ and
s(λ) := δ( fλ).

Theorem 3.19. Let d ∈ N. Let U be a non-empty bounded open subset of Rd . Let { fλ}λ∈U be
a family as in Setting (∗). Suppose that { fλ}λ∈U satisfies the strong transversality condition. Let
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G be a subset of U. Let ξ ≥ 0. Suppose min{ξ, supλ∈G s(λ)} + d − 2 ≥ 0. Then we have

HD({λ ∈ G : HD(J (Gλ)) < min{ξ, s(λ)}}) ≤ min

ξ, sup
λ∈G

s(λ)


+ d − 2. (3.6)

Proof. We set κ := min{ξ, supλ∈G s(λ)} + d − 2. By the countable stability of Hausdorff
dimension, it is enough to prove that for each n ∈ N,

HD

λ ∈ G : HD(J (Gλ)) < min{ξ, s(λ)} −

1
n


≤ κ. (3.7)

Fix n ∈ N. In order to prove (3.7) it suffices to show that for each λ1 ∈ G there exists a
δ = δλ1 > 0 such that

HD

λ ∈ Bδ(λ1) : HD(J (Gλ)) < min{ξ, s(λ)} −

1
n


≤ κ. (3.8)

To prove (3.8), suppose that it is false. Then there exists λ1 ∈ G such that for each δ > 0,

HD

λ ∈ Bδ(λ1) : HD(J (Gλ)) < min{ξ, s(λ)} −

1
n


> κ. (3.9)

Choose δ > 0 so small that the statement of Lemma 3.18 holds with ϵ =
1

2n and |s(λ)−s(λ1)| <
1

2n for each λ ∈ Bδ(λ1) (by the continuity of s(λ), see Theorem 2.16). Then,
λ ∈ Bδ(λ1) : HD(J (Gλ)) < min{ξ, s(λ)} −

1
n



⊂


λ ∈ Bδ(λ1) : HD(J (Gλ)) < min{ξ, s(λ1)} −

1
2n


:= E .

Hence HD(E) > κ. By Frostman’s Lemma (see [4, Corollary 4.12]), there exists a Frostman
measure ν on the set E with exponent u = κ. By Lemma 3.18, for ν-a.e. λ we have

HD(J (Gλ)) ≥ min {s(λ1), κ − d + 2} −
1

2n
= min


s(λ1),min


ξ, sup
λ∈G

s(λ)


−

1
2n
.

This is a contradiction since for each λ ∈ E we have HD(J (Gλ)) < min{ξ, s(λ1)} −
1

2n and

min{ξ, s(λ1)} ≤ min


s(λ1),min

ξ, sup
λ∈G

s(λ)


.

Thus we have proved Theorem 3.19. �

By continuity of s(λ) (see Theorem 2.16, [40]), as an immediate consequence of Theorem 3.19,
we get the following estimate for the local dimension of the exceptional set.

Corollary 3.20. Let d ∈ N. Let U be a non-empty bounded open subset of Rd . Let { fλ}λ∈U be
a family as in Setting (∗). Suppose that { fλ}λ∈U satisfies the strong transversality condition. Let
ξ ≥ 0. Suppose min{ξ, s(λ1)} + d − 2 ≥ 0. Then, we have all of the following.

(1) For each λ1 ∈ U, we have

lim
r→0

HD({λ ∈ Br (λ1) : HD(J (Gλ)) < min{ξ, s(λ)}}) ≤ min{ξ, s(λ1)} + d − 2.
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(2) If, in addition to the assumptions of our corollary, s(λ1) < 2, then

lim
r→0

HD({λ ∈ Br (λ1) : HD(J (Gλ)) ≠ s(λ)}) ≤ d − (2 − s(λ1)) < d = HD(U ).

We now give a sufficient condition for a holomorphic family { fλ}λ∈U to satisfy the strong
transversality condition.

Definition 3.21. Let U be an open subset of Cd . Let { fλ}λ∈U = {( fλ,1, . . . , fλ,m)}λ∈U be
a holomorphic family in Exp(m) over U . We set Gλ := ⟨ fλ,1, . . . , fλ,m⟩ for each λ ∈ U.
Let λ0 ∈ U be a point. Suppose that for each λ ∈ U , there exists a homeomorphism
hλ : J ( f̃λ0) → J ( f̃λ) of the form hλ(ω, z) = (ω, hλ(ω, z)) such that hλ0 = I d|J ( f̃λ0 )

, hλ◦ f̃λ0 =

f̃λ ◦ hλ on J ( f̃λ0), and such that for each (ω, z) ∈ J ( f̃λ0) the map (ω, z, λ) → hλ(ω, z) ∈

Ĉ, (ω, z, λ) ∈ J ( f̃λ0) × U , is continuous and the map λ → hλ(ω, z) is holomorphic. We
say that the family { fλ}λ∈U satisfies the analytic transversality condition (ATC) if the following
hold.

(a) J (Gλ) ⊂ C for each λ ∈ U .
(b) For each (ω, z, ω′, z′, λ) ∈ J ( f̃λ0)

2
× U , let gω,z,ω′,z′(λ) := hλ(ω, z) − hλ(ω′, z′). Then

for each (ω, z, ω′, z′, λ) ∈ J ( f̃λ0)
2

× U with gω,z,ω′,z′(λ) = 0 and ω1 ≠ ω′

1, we have

▽λ gω,z,ω′,z′(λ) ≠ 0, where ▽λ gω,z,ω′,z′(λ) := (
∂gω,z,ω′,z′

∂λ1
(λ), . . . ,

∂gω,z,ω′,z′

∂λd
(λ)).

Proposition 3.22. Let U be a bounded open subset of Cd . Let { fλ}λ∈U be a holomorphic family
in Exp(m) over U. Suppose that { fλ}λ∈U satisfies the analytic transversality condition. Then for
each non-empty, relative compact, open subset U ′ of U, the family { fλ}λ∈U ′ satisfies the strong
transversality condition, and consequently, the transversality condition.

Proof. Let λ0 ∈ U and let hλ and gω,z,ω′,z′(λ) be as in Definition 3.21. We set

W := {(ω, z, ω′, z′, ζ ) ∈ J ( f̃λ0)
2
× U : gω,z,ω′,z′(ζ ) = 0 and ω1 ≠ ω′

1}.

For each λ ∈ U write λ = (λ1, . . . , λd). Let (ω, z, ω′, z′, ζ ) ∈ W. Then ▽λ gω,z,ω′,z′(ζ ) ≠ 0.

Without loss of generality, we may assume that
∂gω,z,ω′,z′

∂λ1
(ζ ) ≠ 0. Then by the arguments in

[1, p. 154], there exists a neighborhood A0 of (ω, z, ω′, z′), a constant δ > 0, and a constant
r0 > 0, such that for each (x, y, x ′, y′) ∈ A0 and for each (λ2, . . . , λd) ∈ D2δ(ζ2) × · · · ×

D2δ(ζd), setting gx,y,x ′,y′,λ2,...,λd (λ1) := gx,y,x ′,y′(λ1, . . . , λd) for each λ1 ∈ D2δ(ζ1), we have
that

(i) gx,y,x ′,y′,λ2,...,λd is injective on D2δ(ζ1), and

(ii) there exists a holomorphic function αx,y,x ′,y′,λ2,...,λd : D2r0(0) → D2δ(ζ1) such that

gx,y,x ′,y′,λ2,...,λd ◦ αx,y,x ′,y′,λ2,...λd = Id on D2r0(0).

We may assume that there exists a constant C0 > 0 such that for each (x, y, x ′, y′) ∈ A0, for
each (λ2, . . . , λd , z) ∈

d
j=2 D2δ(ζ j )× D2r0(0), and for each j = 2, . . . , d, we have

|α′

x,y,x ′ y′,λ2,...,λd
(z)| ≤ C0, and

∂αx,y,x ′,y′,λ2,...,λd (z)

∂λ j

 ≤ C0. (3.10)
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For every (x, y, x ′, y′) ∈ A0 and for every r ∈ (0, r0),
(λ1, . . . , λd) ∈

d
j=1

Dδ(ζ j ) : |gx,y,x ′,y′(λ1, . . . , λd)| < r



=


(αx,y,x ′,y′,λ2,...,λd (z), λ2, . . . , λd) : (λ2, . . . , λd) ∈

d
j=2

Dδ(ζ j ), z ∈ Dr (0)



= Ψx,y,x ′ y′


d

j=2

Dδ(ζ j )× Dr (0)


,

where Ψx,y,x ′,y′(λ2, . . . , λd , z) := (αx,y,x ′,y′,λ2,...,λd (z), λ2, . . . , λd). Let Ar :=
d

j=2 Dδ(ζ j )×

Dr (0). Then there exists a constant C1 > 0 such that for each r > 0, Nr (Ar ) ≤ C1(
1
r )

2(d−1). Let

{E j }
Nr (Ar )
j=1 be a family of r -balls with Ar ⊂

Nr (Ar )
j=1 E j . By (3.10), there exists a constant C2 >

0 such that for each (x, y, x ′, y′) ∈ A0, for each r ∈ (0, r0) and for each j ∈ {1, . . . , Nr (Ar )},
Ψx,y,x ′,y′(E j ) is included in a C2r -ball. Therefore, there exists a constant C3 > 0 such that for
each (x, y, x ′, y′) ∈ A0 and r ∈ (0, r0), Nr (Ψx,y,x ′ y′(Ar )) ≤ C3r2−2d . Hence, we obtain

Nr


{(λ1, . . . , λd) ∈

d
j=1

Dδ(ζ j ) : |gx,y,x ′,y′(λ1, . . . , λd)| < r}


≤ C3r2−2d .

Therefore, for each non-empty relative compact open subset U ′ of U , the family { fλ}λ∈U satisfies
the strong transversality condition and, consequently, the transversality condition. �

Remark 3.23. If d = 1 and the strong transversality condition holds (which is equivalent to
that inf{ρ̂(a, b) : a ∈ f −1

λ,i (J (Gλ)), b ∈ f −1
λ, j (J (Gλ)), λ ∈ U, i ≠ j > 0}), then the analytic

transversality condition is not satisfied. However, it is not known whether or not there exists
a holomorphic family of multimaps of rational maps (or contracting conformal IFSs on C)
which satisfies the strong transversality condition but fails to satisfy the analytic transversality
condition.

Looking at Proposition 3.22 we see that in order to obtain a sufficient condition for a
holomorphic family { fλ}λ∈U in Exp(m) to satisfy the strong transversality condition, it is

important to calculate
∂gω,z,ω′,z′ (λ)

∂λ j
. We give now several methods of doing this.

Lemma 3.24. Let U be a bounded open set subset of C. Let λ0 ∈ U. Let { fλ}λ∈U =

{ fλ,1, . . . , fλ,m}λ∈U be a holomorphic family in Exp(m). For each λ ∈ U, let Gλ, hλ, hλ be
as in Setting (∗). Suppose that for each λ ∈ U, J (Gλ) ⊂ C. Then for each (ω, z) ∈ J ( f̃λ0),

∂hλ(ω, z)

∂λ


λ=λ0

=

∞
n=1

1
f ′

λ0,ω|n
(z)

−
∂ fλ,ωn ( fλ0,ω|n−1(z))

∂λ


λ=λ0

 , (3.11)

where fλ0,ω|0 is the identity map.

Proof. Since f̃λ ◦ hλ = hλ ◦ f̃λ0 , we have that for each λ ∈ U and for each (ω, z) ∈ J ( f̃λ0),
fλ,ω1(hλ(ω, z)) = hλ(σ (ω), fλ0,ω1(z)). Hence

∂ fλ,ω1

∂λ
(hλ(ω, z))+ f ′

λ,ω1
(hλ(ω, z))

∂hλ(ω, z)

∂λ
=
∂hλ(σ (ω), fλ0,ω1(z))

∂λ
.
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Therefore,

∂hλ(ω, z)

∂λ


λ=λ0

=
1

f ′
λ0,ω1

(z)

−
∂ fλ,ω1(z)

∂λ


λ=λ0

+
∂hλ(σ (ω), fλ0,ω1(z))

∂λ


λ=λ0

 . (3.12)

Iterating this calculation, since the right hand side of (3.11) converges due to the expandingness
of Gλ0 , we obtain Eq. (3.11). �

We remark that the calculation like (3.11) is a well-known technique in contracting IFSs with
overlaps (e.g. [20]), though in Lemma 3.24 we deal with “expanding” semigroups in which each
map may not be injective.

We now provide several corollaries of Lemma 3.24.

Corollary 3.25. Let (g1, . . . , gm) ∈ Exp(m). Let U be a bounded open subset of C. Let λ0 ∈ U.
For each λ ∈ U, let αλ ∈ Aut(Ĉ). We assume that the map Ĉ × U ∋ (z, λ) → αλ(z) ∈ Ĉ is
holomorphic, and that αλ0 = Id. For each λ ∈ U let

fλ := (g1, . . . , gm−1, αλ ◦ gm ◦ α−1
λ ).

Suppose that { fλ}λ∈U is a holomorphic family in Exp(m) which satisfies the Setting (∗).
Further, letting Gλ, hλ, hλ be as in the Setting (∗) assume that U ∋ λ → hλ(ω, z) is
holomorphic. Note that if U is small enough, then we do not need any extra hypotheses, namely,
by Lemma 2.9 and Remark 3.4, { fλ}λ∈U is automatically a holomorphic family in Exp(m)
satisfying Setting (∗), and the map U ∋ λ → hλ(ω, z) is holomorphic. In any case we also extra
assume that for each λ ∈ U, J (Gλ) ⊂ C (see Remark 3.5). For each ω = (ω1, . . . , ωn) ∈ Σ ∗

m ,
let gω = gωn ◦ · · · ◦ gω1 . Then, we have all of the following.

(1) For each (ω, z) ∈ J ( f̃λ0),

∂hλ(ω, z)

∂λ


λ=λ0

=

∞
n=1

1
g′

ω|n
(z)

an(z),

where

an(z)

:=


0 if ωn = 1, . . . ,m − 1

g′
m(gω|n−1(z))

−
∂αλ(gω|n−1(z))

∂λ


λ=λ0

+
∂αλ(gω|n (z))

∂λ


λ=λ0

if ωn = m. (gω |0 := Id).

(2) Let j ≠ m, β = jm∞ and γ = mj∞. Then for each z ∈ Ĉ with (β, z) ∈ J ( f̃λ0),

∂hλ(β, z)

∂λ


λ=λ0

=
1

g′

j (z)

∂αλ(g j (z))

∂λ


λ=λ0

,

and for each z ∈ Ĉ with (γ, z) ∈ J ( f̃λ0),

∂hλ(γ, z)

∂λ


λ=λ0

=
∂αλ(z)

∂λ


λ=λ0

−
1

g′
m(z)

∂αλ(gm(z))

∂λ


λ=λ0

.
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Proof. It is easy to see that

∂(αλgmα
−1
λ (z))

∂λ


λ=λ0

= g′
m(z)

−
∂αλ(z)

∂λ


λ=λ0

+
∂αλ(gm(z))

∂λ


λ=λ0

. (3.13)

By Lemma 3.24 and (3.13), statement (1) holds. We now prove statement (2). By the uniqueness
of the conjugacy map hλ [40, Theorem 4.9], we have for each λ close to λ0 and for each j ≠ m,
that hλ( j∞, z) = z (z ∈ J j∞( f̃λ0) = J (g j )) and hλ(m∞, z) = αλ(z) (z ∈ Jm∞( f̃λ0) = J (gm)).

Therefore, by (3.12) and (3.13), statement (2) holds. �

Corollary 3.26. Let (g1, . . . , gm) ∈ Exp(m)∩ (Aut(C)∪ P)m . Let U be a bounded open subset
of C with 0 ∈ U. Let λ0 = 0 ∈ U. Let j ∈ N ∪ {0} with 0 ≤ j ≤ deg(gm). For each λ ∈ U, let

fλ := (g1, . . . , gm−1, gm + λz j ).

Assume that { fλ}λ∈U is a holomorphic family in Exp(m) satisfying the Setting (∗). Further,
letting Gλ, hλ, hλ be as in the Setting (∗) suppose that the map U ∋ λ → hλ(ω, z) is
holomorphic. Note that if the open set U is small enough, then by Lemma 2.9 and Remark 3.4,
{ fλ}λ∈U is automatically a holomorphic family in Exp(m) satisfying the Setting (∗) and the map
U ∋ λ → hλ(ω, z) is holomorphic. For each ω = (ω1, . . . , ωn) ∈ Σ ∗

m , let gw = gωn ◦ · · · ◦ gω1 .

Then, for each (ω, z) ∈ J ( f̃λ0),

∂hλ(ω, z)

∂λ


λ=λ0

=

∞
n=1

1
g′

ω|n
(z)

an(z),

where

an(z) =


−(gω|n−1(z))

j if ωn = m
0 if ωn ≠ m.

Proof. The proof follows immediately from Lemma 3.24. �

Corollary 3.27. Let (g1, . . . , gm) ∈ Exp(m)∩ (Aut(C)∪ P)m . Let U be a bounded open subset
of C with 0 ∈ U. Let λ0 = 0 ∈ U. For each λ ∈ U, let

fλ := (g1, . . . , gm−1, gm + λg′
m).

Assume that { fλ}λ∈U is a holomorphic family in Exp(m) satisfying the Setting (∗). Further,
letting Gλ, hλ, hλ be as in Setting (∗) suppose that λ → hλ(ω, z) is holomorphic. Note that if
the open set U is small enough, then by Lemma 2.9 and Remark 3.4, { fλ}λ∈U is automatically
a holomorphic family in Exp(m) satisfying Setting (∗) and the map U ∋ λ → hλ(ω, z) is
holomorphic. For each ω = (ω1, . . . , ωn) ∈ Σ ∗

m , let gw = gωn ◦ · · · ◦ gω1 . Then, for each
(ω, z) ∈ J ( f̃λ0),

∂hλ(ω, z)

∂λ


λ=λ0

=

∞
n=1

1
g′

ω|n
(z)

an(z),

where

an(z) =


−g′

m(gω|n−1(z)) if ωn = m
0 if ωn ≠ m.
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Proof. By Lemma 3.24, our Corollary holds. �

Lemma 3.28. Let U be a bounded open set in Cd . Let λ0 ∈ U. Let { fλ}λ∈U = { fλ,1,
. . . , fλ,m}λ∈U be a holomorphic family in Exp(m) satisfying Setting (∗). Letting Gλ, hλ, hλ be
as in Setting (∗) we suppose that U ∋ λ → hλ(ω, z) is holomorphic. Note that if U is small
enough, then by Lemma 2.9 and Remark 3.4, { fλ}λ∈U is automatically a holomorphic family in
Exp(m) satisfying Setting (∗) and λ → hλ(ω, z) is holomorphic. Suppose that for each λ ∈ U,
J (Gλ) ⊂ C. We also require all of the following conditions to hold.

(i) For each (i, j) with i ≠ j and f −1
λ0,i
(J (Gλ0)) ∩ f −1

λ0, j (J (Gλ0)) ≠ ∅, there exists a number

αi j ∈ {1, . . . ,m} such that fλ0,i ( f −1
λ0,i
(J (Gλ0)) ∩ f −1

λ0, j (J (Gλ0))) ⊂ J ( fλ0,αi j ).

(ii) If i, j, k are mutually distinct elements in {1, . . . ,m}, then

fλ0,k( f −1
λ0,i
(J (Gλ0)) ∩ f −1

λ0, j (J (Gλ0))) ⊂ F(Gλ0).

(iii) For each ( j, k) with j ≠ k, fλ0,k(J ( fλ0, j )) ⊂ F(Gλ0).

(iv) If i ≠ j and if z ∈ f −1
λ0,i
(J (Gλ0)) ∩ f −1

λ0, j (J (Gλ0)) (note: for such z, by (i)–(iii) we have

z ∈ Jiα∞
i j
( f̃λ0) ∩ J jα∞

j i
( f̃λ0)), then

∇λ(hλ(iα
∞

i j , z)− hλ( jα∞

j i , z))|λ=λ0 ≠ 0.

Then, there exists an open neighborhood U0 of λ0 in U such that { fλ}λ∈U0 satisfies the analytic
transversality condition, the strong transversality condition and the transversality condition.

Proof. By conditions (i)–(iii), Lemma 2.10 and Remark 2.3(1), we obtain that

{(ω, z, ω′, z′) ∈ J ( f̃λ0)
2

: ω1 ≠ ω′

1, h0(ω, z)− h0(ω
′, z′) = 0}

⊂


(i, j):i≠ j

{(iα∞

i j , z, jα∞

j i , z′) ∈ J ( f̃λ0)
2

:

z = z′
∈ f −1

λ0,i
(J (Gλ0)) ∩ f −1

λ0, j (J (Gλ0))}. (3.14)

From (3.14) and condition (iv), we conclude that there exists an open neighborhood U0 of λ0
in U such that { fλ}λ∈U0 satisfies the analytic transversality condition. By Proposition 3.22,
shrinking U0 if necessary, it follows that { fλ}λ∈U0 satisfies the strong transversality condition
and the transversality condition. �

Lemma 3.29. Let d1, d2 ∈ N with d1 ≤ d2. Let U be a bounded open subset of Cd1 and let V be
a bounded open subset of Cd2 . Let { fλ}λ∈U be a holomorphic family in Exp(m) over U with base
point λ0 satisfying the analytic transversality condition. Let {gγ }γ∈V be a holomorphic family in
Exp(m) over V and let γ0 ∈ V . Suppose that there exists a holomorphic embedding η : U → V
with η(λ0) = γ0 such that gη(λ) = fλ for each λ ∈ U. Then there exists an open neighborhood
W of γ0 in V such that {gγ }γ∈W is a holomorphic family in Exp(m) over W with base point
γ0 satisfying the analytic transversality condition, the strong transversality condition, and the
transversality condition.

Proof. By Remark 3.4, there exists an open neighborhood W of γ0 in V such that {gγ }γ∈W

satisfies Setting (∗) and letting hγ , hγ be as in Setting (∗), for each (ω, z) ∈ J (g̃γ0) the map

W ∋ γ → hγ (ω, z) is holomorphic. Let h0
λ(ω, z) = (ω, h

0
λ(ω, z)) be the conjugacy map as

in the Setting (∗) for the family { fλ}λ∈U . Then shrinking U if necessary, by the uniqueness
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of the family of conjugacy maps (see Remark 3.4), we obtain hη(λ) = h0
λ for each λ ∈ U.

Since { fλ}λ∈U satisfies the analytic transversality condition, shrinking W if necessary, it follows
that {gγ }γ∈W satisfies the analytic transversality condition. By Proposition 3.22, shrinking W
if necessary again, we obtain that {gγ }γ∈W satisfies the strong transversality condition and the
transversality condition. �

Remark 3.30. By Lemma 3.24, Corollaries 3.25–3.27, Lemmas 3.28 and 3.29, and
Proposition 3.22, we can obtain many examples of holomorphic families { fλ}λ∈U in Exp(m)
satisfying the analytic transversality conditions, the strong transversality condition and the
transversality condition. In the following section we will provide various kinds of examples of
the holomorphic families satisfying the analytic transversality condition.

4. Applications and examples

In this section, we apply the results of the previous one to describe various examples and to
solve a variety of emerging problems. For a polynomial g ∈ P , we set

K (g) := {z ∈ C : {gn(z)}n∈N is bounded in C}

and we recall that K (g) is commonly referred to as the filled in Julia set of the polynomial g.

Theorem 4.1. Let (d1, d2) ∈ N2 be such that d1, d2 ≥ 2 and (d1, d2) ≠ (2, 2). Let b = ueiθ
∈

{0 < |z| < 1}, where 0 < u < 1 and θ ∈ [0, 2π). Let α ∈ [0, 2π) be a real number such
that there exists an integer n ∈ Z with d2(π + θ) + α = θ + 2nπ. Let β1(z) = zd1 . For
each t > 0, let gt (z) = teiα(z − b)d2 + b. Then there exists a point t1 ∈ (0,∞) and an open
neighborhood U of 0 in C such that the family { fλ = (β1, gt1 + λg′

t1)}λ∈U with λ0 = 0 satisfies
all the conditions (i)–(iv).

(i) { fλ}λ∈U is a holomorphic family in Epb(2) satisfying the analytic transversality condition,
the strong transversality condition and the transversality condition.

(ii) For each λ ∈ U, s(λ) < 2, where we recall that s(λ) = δ( fλ).
(iii) There exists a subset Ω of U with HD(U \ Ω) < HD(U ) = 2 such that for each λ ∈ Ω ,

1 <
log(d1 + d2)

2
j=1

di
d1+d2

log(di )

< HD(J (Gλ)) = s(λ) < 2.

(iv) J (Gλ0) is connected and HD(J (Gλ0)) = s(λ0) < 2. Moreover, Gλ0 satisfies the open
set condition. Furthermore, for each t ∈ (0, t1), ⟨β1, gt ⟩ satisfies the separating open set
condition, β−1

1 (J (⟨β1, gt ⟩)) ∩ g−1
t (J (⟨β1, gt ⟩)) = ∅, J (⟨β1, gt ⟩) is disconnected, and

1 <
log(d1 + d2)

2
j=1

di
d1+d2

log(di )

< HD(J (⟨β1, gt ⟩)) = δ(β1, gt ) < 2.

Moreover, there exists an open connected neighborhood Y of (β1, gt1) in P 2 such that the family
{γ = (γ1, γ2)}γ∈Y satisfies all the conditions (v)–(viii).

(v) {γ = (γ1, γ2)}γ∈Y is a holomorphic family in Epb(2) satisfying the analytic transversality
condition, the strong transversality condition and the transversality condition.
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(vi) For each γ ∈ Y , δ(γ ) < 2.
(vii) There exists a subset Γ of Y with HD(Y \ Γ ) < HD(Y ) = 2(d1 + d2 + 2) such that for

each λ ∈ Γ ,

1 <
log(d1 + d2)

2
j=1

di
d1+d2

log(di )

< HD(J (⟨γ1, γ2⟩)) = δ(γ ) < 2.

(viii) For each neighborhood V of (β1, gt1) in Y there exists a non-empty open set W in V such
that for each γ = (γ1, γ2) ∈ W , we have that γ−1

1 (J (⟨γ1, γ2⟩)) ∩ γ−1
2 (J (⟨γ1, γ2⟩)) ≠ ∅

and that J (⟨γ1, γ2⟩) is connected.

Proof. Let z0 ∈ {|z| = 1} = J (β1) be a point such that |z0 − b| = supz∈J (β1)
|z − b|. Then

z0 = ei(π+θ). Let v := |z0 −b| = 1+|b|. Let z1 := 2b − z0. Then z1 ∈ {z : |z −b| = v} \ J (β1).

We note that

g
1
v

d2−1(z0) = z1. (4.1)

Let r ∈ (1 − u, 1). Then D(b, r) ⊂ int(K (β1)). We also note that for each t > 0,

g−1
t (D(b, r)) = D


b, (r/t)

1
d2


. (4.2)

Let R ∈ R be any real number such that

R > exp


1
d1d2 − d1 − d2

(−d1 log r + d1d2 log 2)

. (4.3)

We take R satisfying (4.3) so large that

D


b,

3
4

R
1

d1


⊂ β−1

1 (D(b, R)) ⊂ D


b,

3
2

R
1

d1


⊂⊂ D(b, R), (4.4)

where A ⊂⊂ B denotes that A is contained in a compact subset of B. Let aR = 1/Rd2−1. By
(4.3), we obtain

r

aR

 1
d2
> 2R

1
d1 . (4.5)

We remark that

J (gaR ) = {z : |z − b| = (1/aR)
1

d2−1 } = {z : |z − b| = R}. (4.6)

We take a large R so that

D


b,

1
2

R
1

d1


⊃ K (β1). (4.7)

Then by (4.2) and (4.4)–(4.7), we get that

K (β1) ⊂ D


b,

1
2

R
1

d1


⊂⊂ D


b,

3
4

R
1

d1


⊂ β−1

1 (K (gaR )) ⊂ D


b,

3
2

R
1

d1
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⊂⊂ D(b, (r/aR)
1

d2 ) = g−1
aR
(D(b, r)) ⊂ g−1

aR
(K (β1))

⊂⊂ int(K (gaR )). (4.8)

Since the function R → aR is continuous and limR→+∞ aR = 0, it follows from (4.8) that

t1 := sup{t ∈ [0, 1/vd2−1
] : ∀c ∈ (0, t), K (β1) ⊂ int(β−1

1 (K (gc)))

⊂⊂ int(g−1
c (K (β1))) ⊂⊂ int(K (gc))} > 0. (4.9)

By the definition of t1, we get that

K (β1) ⊂ β−1
1 (K (gt1)) ⊂ g−1

t1 (K (β1)) ⊂ K (gt1). (4.10)

Therefore, by (2.2),

P∗(⟨β1, gt ⟩) ⊂ K (β1) for each t ∈ (0, t1]. (4.11)

In addition, for each t ∈ (0, t1),

β−1
1 (K (gt ) \ int(K (β1)))⨿ g−1

t (K (gt ) \ int(K (β1))) ⊂ K (gt ) \ int(K (β1)). (4.12)

In particular, for each t ∈ (0, t1), the multimap (β1, gt ) satisfies the separating open set condition
with At := int(K (gt )) \ K (β1). Moreover, by (1.1) and (4.12) and [8, Corollary 3.2], for each
t ∈ (0, t1), the Julia set J (⟨β1, gt ⟩) is disconnected. Furthermore, by the definition (4.9) of t1, for
each t ∈ (0, t1), we have that gt (K (β1)) ⊂ int(K (β1)). Therefore, by (2.2), for every t ∈ (0, t1),
P∗(⟨β1, gt ⟩) ⊂ int(K (β1)) ⊂ F(⟨β1, gt ⟩). Thus for each t ∈ (0, t1), (β1, gt ) ∈ Epb(2). Since
(β1, gt ) satisfies the open set condition, [28, Theorem 1.2] implies that for every t ∈ (0, t1),
HD(J (⟨β1, gt ⟩)) = δ(β1, gt ). Moreover, by (4.12), [8, Corollary 3.2], and (1.1), J (⟨β1, gt ⟩) is a
proper subset of At for each t ∈ (0, t1). Thus by Sumi [29, Theorem 1.25], HD(J (⟨β1, gt ⟩)) < 2
for each t ∈ (0, t1).

We now prove the following claim.

Claim 1. We have t1 < 1
vd2−1 . In particular, J (β1) ∩ J (gt1) = ∅.

In order to prove this claim, suppose on the contrary that t1 =
1

vd2−1 . Then J (gt1) =

{z : |z − b| = v} and z0 ∈ J (β1) ∩ J (gt1). By (4.10), gt1(K (β1)) ⊂ K (β1). Hence
gt1(z0) ∈ K (β1) ∩ J (gt1). Since gt1(z0) = z1 ∉ J (β1), we obtain J (gt1) ∩ int(K (β1)) ≠ ∅.

However, since K (β1) ⊂ K (gt1) (see (4.10)), we obtain a contradiction. Thus, we have proved
Claim 1.

We now prove the following claim.

Claim 2. We have K (β1) ⊂ int(β−1
1 (K (gt1))) and g−1

t1 (K (β1)) ⊂ int(K (gt1)). In particular,

K (β1) ⊂ int(g−1
t1 (K (β1))) and gt1(K (β1)) ⊂ int(K (β1)).

To prove Claim 2, suppose J (β1) ∩ β−1
1 (J (gt1)) ≠ ∅. Then J (β1) ∩ J (gt1) ≠ ∅, and this

contradicts Claim 1. Similarly, we must have that g−1
t1 (J (β1)) ∩ J (gt1) = ∅. Therefore, we have

proved Claim 2.
Since gt1(K (β1)) ⊂ int(K (β1)) (Claim 2), from (2.2) it is easy to see that P∗(⟨β1, gt1⟩) ⊂

int(K (β1)) ⊂ F(⟨β1, gt1⟩). Therefore, (β1, gt1) ∈ Epb(2). We now prove the third claim.

Claim 3. β−1
1 (J (gt1)) ≠ g−1

t1 (J (β1)).
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To prove Claim 3, let ϕ1 be Green’s function on Ĉ \ K (β1) (with pole at infinity) and ϕ2 be
Green’s function on Ĉ \ K (gt1). Then ϕ1(z) = log |z| and ϕ2(z) = log |z|+ 1

d2−1 log t1 + O( 1
|z| ).

Note that since J (β1) ⊂ int(K (gt1)) (Claim 2), we have 1
d2−1 log t1 < 0. It is easy to see

that Green’s function ϕ3 on Ĉ \ g−1
t1 (K (β1)) satisfies ϕ3(z) =

1
d2
(ϕ1(gt1(z))) = log |z| +

1
d2

log t1 + O( 1
|z| ). Similarly, Green’s function ϕ4 on Ĉ \ β−1

1 (K (gt1)) satisfies ϕ4(z) =

1
d1
ϕ2(β1(z)) = log |z| +

1
d1(d2−1) log t1 + O(1/|z|). Therefore, if β−1

1 (J (gt1)) = g−1
t1 (J (β1)),

then 1
d2

log t1 =
1

d1(d2−1) log t1. Since (d1, d2) ≠ (2, 2), we obtain log t1 = 0. However, this

contradicts 1
d2−1 log t1 < 0. Thus we have proved Claim 3.

Let A := int(K (gt1)) \ K (β1). By (4.10) and Claim 2, A is a non-empty open set in C
and β−1

1 (A) ∪ g−1
t1 (A) ⊂ A and β−1

1 (A) ∩ g−1
t1 (A) = ∅. Hence (β1, gt1) satisfies the open set

condition with A. Combining it with the expandingness of ⟨β1, gt1⟩, [28, Theorem 1.2] implies
that HD(J (⟨β1, gt1⟩)) = δ(β1, gt1). Moreover, by Claim 3, we have that β−1

1 (A) ∪ g−1
t1 (A) is a

proper subset of A. Therefore by Hinkkanen and Martin [8, Corollary 3.2] and (1.1), J (⟨β1, gt1⟩)

is a proper subset of A. Combining it with the expandingness of ⟨β1, gt1⟩ again and [29, Theorem
1.25], we obtain HD(J (⟨β1, gt1⟩)) < 2. Hence, δ(β1, gt1) = HD(J (⟨β1, gt1⟩)) < 2. By
Lemma 2.12 and Theorem 2.16, there exists an open neighborhood Y0 of (β1, gt1) in P 2 such
that for each γ = (γ1, γ2) ∈ Y0, γ ∈ Epb(2) and δ(γ ) < 2.

We now consider the holomorphic family { fλ}λ∈U in Epb(2), where U is a small open
neighborhood of 0. Let λ0 = 0. Let Gλ, hλ, hλ be as in the Setting (∗) (see Remark 3.4). By
(4.10) and Claim 2, it is easy to see that { fλ}λ∈U satisfies conditions (i)–(iii) in Lemma 3.28 with
α12 = 2, α21 = 1. Let z ∈ f −1

λ0,1
(J (Gλ0)) ∩ f −1

λ0,2
(J (Gλ0)) = β−1

1 (J (gt1)) ∩ g−1
t1 (J (β1)). Then

by Corollary 3.27,

∂(hλ(21∞, z)− hλ(12∞, z))

∂λ


λ=λ0

= −1 −

∞
n=2

−g′
t1(g

n−2
t1 (β1(z)))

(gn−1
t1 ◦ β1)′(z)

= −1 −

∞
n=2

−1

(gn−2
t1 ◦ β1)′(z)

. (4.13)

Since


∞

n=2 |
−1

(gn−2
t1

◦β1)
′(z)

| =


∞

n=2
1

|(gn−2
t1

)′(β1(z))∥β ′

1(z)|
=


∞

n=2
1

dn−2
2 d1|z|d1−1 < 1, it follows that

∂(hλ(21∞, z)− hλ(12∞, z))

∂λ


λ=λ0

≠ 0.

Therefore, by Lemma 3.28, shrinking U if necessary, we obtain that { fλ}λ∈U satisfies the analytic
transversality condition, the strong transversality condition and the transversality condition.
Since δ(β1, gt1) = s(λ0) < 2 and λ → s(λ) is continuous, shrinking U if necessary, we obtain
that for each λ ∈ U , s(λ) < 2. Therefore, by Theorems 2.15 and 3.19, there exists a subset Ω of
U with HD(U \ Ω) < HD(U ) = 2 such that for each λ ∈ Ω , HD(J (Gλ)) = s(λ) < 2.

By the definition of t1, we have β−1
1 (J (gt1)) ∩ g−1

t1 (J (β1)) ≠ ∅. In particular,

β−1
1 (J (⟨β1, gt1⟩)) ∩ g−1

t1 (J (⟨β1, gt1⟩)) ≠ ∅.
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Combining this with the fact that the semigroup ⟨β1, gt1⟩ is postcritically bounded, [33,
Theorems 1.7, 1.5(2)] implies that the Julia set J (⟨β1, gt1⟩) = J (Gλ0) is connected. Since
{ fλ}λ∈U satisfies the analytic transversality condition, by using Lemma 3.29 and shrinking Y0
if necessary, we obtain that {γ = (γ1, γ2)}γ∈Y0 satisfies the analytic transversality condition, the
strong transversality condition and the transversality condition. Since δ(γ ) < 2 for each γ ∈ Y0,
Theorems 2.15, 2.16 and 3.19 imply that there exists a subset Γ of Y0 with HD(Y0 \ Γ ) <
HD(Y0) = 2(d1+d2+2) such that for each γ = (γ1, γ2) ∈ Γ , HD(J (⟨γ1, γ2⟩)) = δ(γ ) < 2. Let
c0 ∈ β−1

1 (J (gt1)) ∩ g−1
t1 (J (β1)). Let w0 = β1(c0) ∈ J (gt1). There exists an open neighborhood

Y1 of gt1 in P and a holomorphic map ζ : Y1 → Ĉ such that ζ(gt1) = w0 and ζ(γ2) ∈ J (γ2) for
each γ2 ∈ Y1. Let ξ be a well-defined inverse branch of β1 defined on a neighborhood D0 of w0
in Ĉ such that ξ(w0) = c0. Let η(γ2) := γ2 ◦ξ ◦ζ(γ2), which is defined on an open neighborhood
B0 of gt1 in Y1. Then η is holomorphic on B0. Moreover, η(gt1) ∈ J (β1). Furthermore, by the
definition of t1, for each t close to t1 with t < t1, we have η(gt ) ∉ J (β1). Hence η is not constant
on B0. Therefore, for each neighborhood V of (β1, gt1) in Y0, there exists an element γ 2 with
(β1, γ 2) ∈ V such that η(γ 2) ∈ C \ K (β1). In particular,

β−1
1 (J (γ 2)) ∩ γ−1

2 (C \ K (β1)) ≠ ∅. (4.14)

Moreover, by (4.10) and Claim 3, β−1
1 (J (gt1)) ∩ int(g−1

t1 (K (β1))) ≠ ∅. Therefore, we may
assume that

β−1
1 (J (γ 2)) ∩ int(γ−1

2 (K (β1))) ≠ ∅. (4.15)

By (4.14) and (4.15), there exists an open neighborhood W of (β1, γ 2) in V such that for each
(ψ1, ψ2) ∈ W ,

ψ−1
1 (J (ψ2)) ∩ ψ−1

2 (J (ψ1)) ≠ ∅.

In particular,

ψ−1
1 (J (⟨ψ1, ψ2⟩)) ∩ ψ−1

2 (J (⟨ψ1, ψ2⟩)) ≠ ∅.

Combining this with the fact that the semigroup ⟨ψ1, ψ2⟩ is postcritically bounded, [33, Theorem
1.7, 1.5(2)] implies that the Julia set J (⟨ψ1, ψ2⟩) is connected for each (ψ1, ψ2) ∈ W.

Finally, we remark that by Sumi and Urbański [41, Theorem 3.15], for any (γ1, γ2) ∈ Epb(2)
with deg(γ1) = d1, deg(γ2) = d2, if γ1(z) = zd1 and γ2(z) = a(z − b)d2 + b with b ≠ 0, then
we have

1 <
log(d1 + d2)

2
j=1

di
d1+d2

log(di )

< δ(γ1, γ2).

Thus we have proved Theorem 4.1. �

Fig. 1 represents the Julia set of the 2-generator polynomial semigroup Gλ0 with (d1, d2) =

(3, 2), b = 0.1. For the relation between Theorem 4.1 and random complex dynamics, see
Remark 1.5.

We now fix a complex number a as required in the proposition below and we consider a family
of small perturbations of the multimap (z2, az2). In the following we will see that for a typical
value of the perturbation parameter, the 2-dimensional Lebesgue measure of the Julia set of the
corresponding semigroup is positive.
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Proposition 4.2. Let A := {a ∈ C : |a| ≠ 0, 1, and |2 + a +
1
a | ≠ 4}. Let a ∈ A be a

point. For each b ∈ C, let fb,1(z) := az2 (independent of b) and fb,2(z) := (z − b)2 + b and
let fb := ( fb,1, fb,2) ∈ P 2. For each b ∈ C, let Gb := ⟨ fb,1, fb,2⟩. Then there exists an open
neighborhood U of 0 in C such that { fb}b∈U is a holomorphic family in Epb(2) satisfying Setting
(∗) with base point 0 and all of the following hold.

(1) The family { fb}b∈U satisfies the analytic transversality condition, the strong transversality
condition and the transversality condition.

(2) For Leb2-a.e. b ∈ U, Leb2(J (Gb)) > 0.
(3) For each b ∈ U, let hb be the conjugacy map of the form hb(ω, z) = (ω, hb(ω, z)) between

f̃0 : J ( f̃0) → J ( f0) and f̃b : J ( f̃b) → J ( f̃b) as in Setting (∗). Let µ be the s(0)-conformal
measure on J ( f̃0) for f̃0. Then for Leb2-a.e. b ∈ U, the Borel probability measure (hb)∗(µ)

on J (Gb) is absolutely continuous with respect to Leb2 with L2 density.

Proof. It is easy to see that P∗(G0) = {0}. Therefore f0 ∈ Epb(2). By Lemma 2.12, there
exists an open neighborhood U of 0 such that for each b ∈ U , fb ∈ Epb(2). By Remark 3.4,
shrinking U if necessary, for each b ∈ U , there exists a unique conjugacy map hb of the form
hb(ω, z) = (ω, hb(ω, z)) between f̃0 : J ( f̃0) → J ( f̃0) and f̃b : J ( f̃b) → J ( f̃b) as in
Setting (∗), and b → hb(ω, z), b ∈ U , is holomorphic for each (ω, z) ∈ J ( f̃0). It is easy to
see that J (G0) is equal to the closed annulus between J ( f0,1) = {z ∈ C : |z| = 1/|a|} and
J ( f0,2) = {z ∈ C : |z| = 1}, and that

f −1
0,1 (J (G0)) ∩ f −1

0,2 (J (G0)) =


z ∈ C : |z| = |a|

−
1
2


= f −1

0,1 (J ( f0,2)) = f −1
0,2 (J ( f0,1)).

Therefore,

{(ω, z, ω′, z′) ∈ J ( f̃0)
2

: ω1 ≠ ω′

1, h0(ω, z)− h0(ω
′, z′) = 0}

⊂ {(12∞, z, 21∞, z′) : z = z′
∈ {w ∈ C : |w| = |a|

−
1
2 }}. (4.16)

By Corollary 3.25, for each z ∈ {w ∈ C : |w| = |a|
−

1
2 },

∂(hb(21∞, z)− hb(12∞, z))

∂b


b=0

= 1 −
1
2z

−
1

2za
.

Since a ∈ A, it is easy to see that for each z ∈ {w ∈ C : |w| = |a|
−

1
2 }, 1 −

1
2z −

1
2za ≠ 0.

Therefore, for each z ∈ {w ∈ C : |w| = |a|
−

1
2 },

∂(hb(21∞, z)− hb(12∞, z))

∂b


b=0

≠ 0.

Combining this with (4.16), and shrinking U if necessary, we obtain that the family { fb}b∈U
satisfies the analytic transversality condition. By Proposition 3.22, shrinking U if necessary, the
family { fb}b∈U satisfies the strong transversality condition and the transversality condition. By
Sumi and Urbański [41, Corollary 3.19], for each b ∈ U \{0}, s(b) > 2.Hence, by Theorem 3.12,
statements (2) and (3) of our proposition hold. Thus, we have proved our proposition. �

Theorem 4.3. Let a ∈ C with |a| > 1. For each λ ∈ C, let fλ,1(z) := az2 (independent of λ)
and fλ,2(z) := z2

+ λ and let fλ := ( fλ,1, fλ,2) ∈ P 2. For each λ ∈ C, let Gλ := ⟨ fλ,1, fλ,2⟩.
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Then there exists an open neighborhood U of 0 in C such that { fλ}λ∈U is a holomorphic family
in Epb(2) satisfying Setting (∗) with base point 0 and all of the following hold.

(1) The family { fλ}λ∈U satisfies the analytic transversality condition, the strong transversality
condition and the transversality condition.

(2) For Leb2-a.e. λ ∈ U, Leb2(J (Gλ)) > 0.
(3) For each λ ∈ U, let hλ be the conjugacy map of the form hλ(ω, z) = (ω, hλ(ω, z)) between

f̃0 : J ( f̃0) → J ( f0) and f̃λ : J ( f̃λ) → J ( f̃λ) as in Setting (∗) (with λ0 = 0). Let µ be the
s(0)-conformal measure on J ( f̃0) for f̃0. Then for Leb2-a.e. λ ∈ U, the Borel probability
measure (hλ)∗(µ) on J (Gλ) is absolutely continuous with respect to Leb2 with L2 density.

Proof. It is easy to see that P∗(G0) = {0} ⊂ F(G0). Therefore f0 ∈ Epb(2). By Lemma 2.12,
there exists an open neighborhood U of 0 such that for each λ ∈ U , fλ ∈ Epb(2). By Remark 3.4,
shrinking U if necessary, for each λ ∈ U , there exists a unique conjugacy map hλ of the form
hλ(ω, z) = (ω, hλ(ω, z)) between f̃0 : J ( f̃0) → J ( f̃0) and f̃λ : J ( f̃λ) → J ( f̃λ) as in Setting
(∗) with λ0 = 0, and λ → hλ(ω, z) is holomorphic. It is easy to see that J (G0) is equal to the
closed annulus between J ( f0,1) = {z ∈ C : |z| = 1/|a|} and J ( f0,2) = {z ∈ C : |z| = 1}, and

that f −1
0,1 (J (G0)) ∩ f −1

0,2 (J (G0)) = {z ∈ C : |z| = |a|
−

1
2 } = f −1

0,1 (J ( f0,2)) = f −1
0,2 (J ( f0,1)).

Therefore,

{(ω, z, ω′, z′) ∈ J ( f̃0)
2

: ω1 ≠ ω′

1, h0(ω, z)− h0(ω
′, z′) = 0}

⊂


(12∞, z, 21∞, z′) : z = z′

∈


w ∈ C : |w| = |a|

−
1
2


. (4.17)

By Corollary 3.26, we obtain that for each z ∈ J21∞( f̃0) = {w ∈ C : |w| = |a|
−

1
2 },

∂hλ(21∞, z)

∂λ


λ=0

=
−1
2z
,

and for each z ∈ J12∞( f̃0) = {w ∈ C : |w| = |a|
−

1
2 },

∂hλ(12∞, z)

∂λ


λ=0

=

∞
n=2

−1
f ′

0,(12∞)|n
(z)

=

∞
n=2

−1

2naz
n−1
j=1

f0,(12∞) j (z)

.

Therefore, for each z ∈ {w ∈ C : |w| = |a|
−

1
2 },∂hλ(21∞, z)

∂λ


λ=0

 =
1
2
|a|

1
2 and

∂hλ(12∞, z)

∂λ


λ=0

 ≤
1
2
|a|

−
1
2 .

Thus, for each z ∈ {w ∈ C : |w| = |a|
−

1
2 },

∂hλ(21∞, z)

∂λ


λ=0

−
∂hλ(12∞, z)

∂λ


λ=0

≠ 0.

Combining it with (4.17), and shrinking U if necessary, we obtain that the family { fλ}λ∈U
satisfies the analytic transversality condition. By Proposition 3.22, shrinking U if necessary, the
family { fλ}λ∈U satisfies the strong transversality condition and the transversality condition. By
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Sumi and Urbański [41, Corollary 3.19], for each λ ∈ U\{0}, s(λ) > 2.Hence, by Theorem 3.12,
statements (2) and (3) of our theorem hold. Thus, we have proved our theorem. �

Corollary 4.4. Let a ∈ C with |a| > 1. Let V be an open subset of Cd . Let λ0 ∈ V . Let
{ fλ = ( fλ,1, fλ,2)}λ∈V be a holomorphic family in Exp(2) ∩ P 2. Suppose that there exists an
open neighborhood W of 0 in C and a holomorphic embedding η : W → V with η(0) = λ0
such that for each c ∈ W , fη(c)(z) = (az2, z2

+ c). Then there exists an open neighborhood U
of λ0 in V such that { fλ}λ∈U is a holomorphic family in Epb(2) satisfying Setting (∗) with base
point λ0 and all of the following hold.

(1) The family { fλ}λ∈U satisfies the analytic transversality condition, the strong transversality
condition and the transversality condition.

(2) For Leb2d -a.e. λ ∈ U, Leb2(J (Gλ)) > 0.
(3) For each λ ∈ U, let hλ be the conjugacy map of the form hλ(ω, z) = (ω, hλ(ω, z)) between

f̃λ0 : J ( f̃λ0) → J ( f̃λ0) and f̃λ : J ( f̃λ) → J ( f̃λ) as in Setting (∗). Let µ be the s(λ0)-
conformal measure on J ( f̃λ0) for f̃λ0 . Then for Leb2d -a.e. λ ∈ U, the Borel probability
measure (hλ)∗(µ) on J (Gλ) is absolutely continuous with respect to Leb2 with L2 density.

Proof. By Theorem 4.3, there exists an open neighborhood W1 of 0 in C such that {(az2, z2
+

c)}c∈W1 is a holomorphic family in Epb(2) satisfying the analytic transversality condition.
Hence, by Lemma 3.29, there exists an open disk neighborhood U of λ0 in Cd such that
{ fλ}λ∈U is a holomorphic family in Epb(2) satisfying the analytic transversality condition,
the strong transversality condition and the transversality condition. For each λ ∈ U , we set
Ψ(λ) = fλ ∈ Epb(2) ∩ P 2

2 . By Sumi and Urbański [41, Corollary 3.19],

{g = (g1, g2) ∈ Epb(2) ∩ P 2
2 : δ(g) ≤ 2}

= {(α1(z − b)2 + b, α2(z − b)2 + b) : α1, α2 ∈ C \ {0}, b ∈ C}.

Let A := {(α1(z − b)2 + b, α2(z − b)2 + b) : α1, α2 ∈ C \ {0}, b ∈ C}. Then A is a holomorphic
subvariety of Epb(2) ∩ P 2

2 . Hence Ψ−1(A) is a proper holomorphic subvariety of U. Therefore
Leb2d({λ ∈ U : s(λ) ≤ 2}) = 0. Thus, by Theorem 3.12, statements (2) and (3) of our corollary
hold. �

From Corollary 4.4 we immediately obtain the following.

Corollary 4.5. For each a ∈ C with |a| ≠ 0, 1, there exists an open neighborhood Ya of
(az2, z2) in P 2 such that {g = (g1, g2)}g∈Ya is a holomorphic family in Epb(2) ∩ P 2

2 satisfying
Setting (∗) with base point (az2, z2) and all of the following hold.

(1) The family {g = (g1, g2)}g∈Ya satisfies the analytic transversality condition, the strong
transversality condition and the transversality condition.

(2) For a.e. g = (g1, g2) ∈ Ya with respect to the Lebesgue measure on P 2
2 , Leb2(J (⟨g1, g2⟩))

> 0.
(3) Let λ0 = (az2, z2) ∈ Ya and for each g = (g1, g2) ∈ Ya , let hg be the conjugacy map of the

form hg(ω, z) = (ω, hg(ω, z)) between f̃λ0 : J ( f̃λ0) → J ( f̃λ0) and f̃g : J ( f̃g) → J ( f̃g)

as in Setting (∗). Let µ be the s(λ0)-conformal measure on J ( f̃λ0) for f̃λ0 . Then for a.e.
g ∈ Ya with respect to the Lebesgue measure on P 2

2 , the Borel probability measure (hg)∗(µ)

on J (⟨g1, g2⟩) is absolutely continuous with respect to Leb2 with L2 density.
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Remark 4.6. For an a ∈ C with |a| ≠ 0, 1, J (⟨az2, z2
⟩) is equal to the closed annulus between

{w ∈ C : |w| = 1} and {w ∈ C : |w| = |a|
−1

}; thus int(J (⟨az2, z2
⟩)) ≠ ∅. However, regarding

Corollary 4.5, it is an open problem to determine for any other parameter value (g1, g2) ∈ Ya
with Leb2(J (⟨g1, g2⟩)) > 0, whether int(J (⟨g1, g2⟩)) = ∅ or not. (By Sumi [31, Theorem 2.15],
at least we know that for each (γ1, γ2) ∈ Ya , J (⟨γ1, γ2⟩) is connected.) Let a ∈ (0, 1) ⊂ R.
It is easy to see that for a small ϵ > 0, setting g1,ϵ(z) = a(z + ϵ)2 − ϵ and g2(z) = z2, we
have J (g1,ϵ) = {w ∈ C : |w + ϵ| = a−1

}, J (g2) = {z ∈ C : |w| = 1}, g2 |
−1
{x>0}

(a−1
− ϵ) <

g1,ϵ |
−1
{x>0}

(1) and g2 |
−1
{x>0}

([1, a−1
−ϵ])⨿ g1,ϵ |

−1
{x>0}

([1, a−1
−ϵ]) ⊂ [1, a−1

−ϵ]. Thus for each
n ∈ N with n ≥ 3 there exists a small neighborhood Vn of the above (g1,ϵ, g2) in Ya such that
for each (γ1, γ2) ∈ V , F(⟨γ1, γ2⟩) has at least n connected components and J (⟨γ1, γ2⟩) is not a
closed annulus. Since ϵ > 0 can be taken arbitrary small, we can deduce that for any a ∈ R with
a > 0, a ≠ 1, for each neighborhood W of (az2, z2) in Ya and for each n ∈ N with n ≥ 3, there
exists a non-empty open subset Wn of W such that for each (γ1, γ2) ∈ Wn , F(⟨γ1, γ2⟩) has at
least n connected components and J (⟨γ1, γ2⟩) is not a closed annulus. A similar argument shows
that for any a ∈ C with |a| ≠ 0, 1, for each neighborhood W of (az2, z2) in Ya there exists a
non-empty open subset W̃ of W such that for each (γ1, γ2) ∈ W̃ , F(⟨γ1, γ2⟩) has at least three
connected components and J (⟨γ1, γ2⟩) is not a closed annulus.

We now consider families of systems of affine maps.

Remark 4.7. Let m ≥ 2. For each j = 1, . . . ,m, let g j (z) = a j z+b j , where a j , b j ∈ C, |a j | >

1. Let G = ⟨g1, . . . , gm⟩. Since |a j | > 1, ∞ ∈ F(G). Hence, by (1.1), J (G) is a compact subset
of C which satisfies J (G) =

m
j=1 g−1

j (J (G)). Since g−1
j is a contracting similitude on C,

it follows that J (G) is equal to the self-similar set constructed by the family {g−1
1 , . . . , g−1

m } of
contracting similitudes. For the definition of self-similar sets, see [4,5,9]. Note that δ(g1, . . . , gm)

is equal to the unique solution of the equation
m

i=1 |ai |
−t

= 1, t ≥ 0. Thus δ(g1, . . . , gm) is
the similarity dimension of {g−1

1 , . . . , g−1
m }. Conversely, any self-similar set constructed by a

finite family {h1, . . . , hm} of contracting similitudes on C is equal to the Julia set of the rational
semigroup ⟨h−1

1 , . . . , h−1
m ⟩.

Theorem 4.8. Let m ∈ N with m ≥ 2. For each i = 1, . . . ,m, let gi (z) = ai z + bi , where
ai ∈ C, |ai | > 1, bi ∈ C. Let G := ⟨g1, . . . , gm⟩. We suppose all of the following conditions.

(i) For each (i, j) with i ≠ j and g−1
i (J (G)) ∩ g−1

j (J (G)) ≠ ∅, there exists a number
αi j ∈ {1, . . . ,m} such that

gi (g
−1
i (J (G)) ∩ g−1

j (J (G))) ⊂


−bαi j

aαi j − 1


.

(ii) If i, j, k are mutually distinct elements in {1, . . . ,m}, then

gk(g
−1
i (J (G)) ∩ g−1

j (J (G))) ⊂ F(G).

(iii) For each ( j, k) with j ≠ k, gk


−b j

a j −1


∈ F(G).

Then, there exists an open neighborhood U of (g1, . . . , gm) ∈ (Aut(C))m such that {γ =

(γ1, . . . , γm)}γ∈U is a holomorphic family in Exp(m) satisfying the analytic transversality
condition, the strong transversality condition and the transversality condition.



730 H. Sumi, M. Urbański / Advances in Mathematics 234 (2013) 697–734

Proof. We first note that for each j , J (g j ) = {
−b j

a j −1 }. By conditions (i) and (iii), αi j ≠ i for
each (i, j) with i ≠ j. By Lemma 2.9 and Remark 3.4, there exists a small open neighborhood
U of (g1, . . . , gm) in (Aut(C))m such that {γ }γ∈U is a holomorphic family in Exp(m) satisfying
Setting (∗) with base point γ0 = (g1, . . . , gm) and letting hγ , hγ ,Gγ be as in Setting (∗), the
map γ → hγ (ω, z), γ ∈ U , is holomorphic. We shall prove the following claim.

Claim 1: If i ≠ j and z0 ∈ g−1
i (J (G)) ∩ g−1

j (J (G)), then

∇γ (hγ (iα
∞

i j , z0)− hγ ( jα∞

j i , z0))|γ=γ0 ≠ 0. (4.18)

In order to prove Claim 1, let i ≠ j and z0 ∈ g−1
i (J (G)) ∩ g−1

j (J (G)). To show (4.18),

by conjugating G by a map z → z −
−bi

ai −1 , we may assume that bi = 0. Let V be a small
open neighborhood of 0 in C and let A := {(g1, . . . , gi−1, gi + λz, gi+1, . . . , gm)}λ∈V . For this

holomorphic family in Exp(m), let h0
λ, h

0
λ be the conjugating maps as in Setting (∗) with base

point λ0 = 0. By Corollary 3.26 and that bi = 0, we have

∂h
0
λ(iα

∞

i j , z0)

∂λ


λ=0

=
−z0

ai
and

∂h
0
λ( jα∞

j i , z0)

∂λ


λ=0

= 0.

By (iii), we have z0 ≠ 0. Therefore,

∂h
0
λ(iα

∞

i j , z0)

∂λ


λ=0

−
∂h

0
λ( jα∞

j i , z0)

∂λ


λ=0

≠ 0.

Thus, we have proved Claim 1. From this claim and from Lemma 3.28, shrinking U if necessary,
we obtain that {γ }γ∈U satisfies the analytic transversality condition, the strong transversality
condition and the transversality condition. Thus we have proved Theorem 4.8. �

Remark 4.9. Regarding Theorem 4.8, even if we replace “Aut(C)” by “Aut(Ĉ)”, we obtain
similar results by using Lemma 3.29.

We give some examples to which we can apply Theorem 4.8. It seems true that those examples
have not been dealt with explicitly in any literature of contracting IFSs with overlaps.

Example 4.10. Let g1(z) = 2z and g2(z) = 2z − 1. Let G = ⟨g1, g2⟩. Then J (G) = [0, 1].

It is easy to see that (g1, g2) satisfies the assumptions of Theorem 4.8. Moreover, δ(g1, g2) =

HD(J (G)) = 1 < 2. By Theorems 2.15, 3.19 and 4.8, there exists an open neighborhood
U of (g1, g2) in (Aut(C))2 and a subset A of U with HD(U \ A) < HD(U ) = 8 such that
(1) {γ = (γ1, γ2)}γ∈U is a holomorphic family in Exp(2) satisfying the analytic transversality
condition, the strong transversality condition and the transversality condition, and (2) for each
γ = (γ1, γ2) ∈ A, HD(J (⟨γ1, γ2⟩)) = δ(γ1, γ2) < 2.

Example 4.11. Let p1, p2, p3 ∈ C be such that p1 p2 p3 makes an equilateral triangle. For each
i = 1, 2, 3, let gi (z) = 2(z− pi )+ pi . Let G = ⟨g1, g2, g3⟩. Then J (G) is equal to the Sierpinski
gasket. It is easy to see that (g1, g2, g3) satisfies the assumptions of Theorem 4.8. Moreover,
δ(g1, g2, g3) = HD(J (G)) =

log 3
log 2 < 2. By Theorems 2.15, 3.19 and 4.8, there exists an open

neighborhood U of (g1, g2, g3) in (Aut(C))3 and a subset A of U with HD(U \ A) < HD(U ) =

12 such that (1) {γ = (γ1, γ2, γ3)}γ∈U is a holomorphic family in Exp(3) satisfying the analytic
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transversality condition, the strong transversality condition and the transversality condition, and
(2) for each γ = (γ1, γ2, γ3) ∈ A, HD(J (⟨γ1, γ2, γ3⟩)) = δ(γ1, γ2, γ3) < 2.

Remark 4.12. Regarding Example 4.11, for each open neighborhood U of (g1, g2, g3) in
(Aut(C))3, there exists an open set V in U such that for each γ = (γ1, γ2, γ3) ∈ V ,
HD(J (⟨γ1, γ2, γ3⟩)) = δ(γ1, γ2, γ3) < 2. However, we can show that for each open
neighborhood U of (g1, g2, g3) in (Aut(C))3,

HD({γ = (γ1, γ2, γ3) ∈ U : HD(J (⟨γ1, γ2, γ3⟩)) ≠ δ(γ1, γ2, γ3)}) ≥ 10.

Example 4.13. For each j = 1, . . . , 6, let p j := exp(2 jπ
√

−1/6). Let p7 := 0. For each
j = 1, . . . , 7, let g j (z) = 3(z − p j ) + p j . Let G = ⟨g1, . . . , g7⟩. Then J (G) is equal to
the Snowflake (see [9, Example 3.8.12, Fig. 2]). It is easy to see that (g1, . . . , g7) satisfies the
assumptions of Theorem 4.8 (see Fig. 2). Moreover, δ(g1, . . . , g7) = HD(J (G)) =

log 7
log 3 < 2. By

Theorems 2.15, 3.19 and 4.8, there exists an open neighborhood U of (g1, . . . , g7) in (Aut(C))7
and a subset A of U with HD(U \ A) < HD(U ) = 28 such that (1) {γ = (γ1, . . . , γ7)}γ∈U
is a holomorphic family in Exp(7) satisfying the analytic transversality condition, the strong
transversality condition and the transversality condition, and (2) for each γ = (γ1, . . . , γ7) ∈ A,
HD(J (⟨γ1, . . . , γ7⟩)) = δ(γ1, . . . , γ7) < 2.

Example 4.14. For each j = 1, . . . , 5, let p j := exp(2 jπ
√

−1/5). For each j = 1, . . . , 5,
let g j (z) =

2
3−

√
5
(z − p j ) + p j . Let G = ⟨g1, . . . , g5⟩. Then J (G) is equal to the Pentakun

[9, Example 3.8.11, Fig. 2]). It is easy to see that (g1, . . . , g5) satisfies the assumptions of
Theorem 4.8 (see Fig. 2). Moreover, δ(g1, . . . , g5) = HD(J (G)) =

log 5
log( 2

3−
√

5
)
< 2. By

Theorems 2.15, 3.19 and 4.8, there exists an open neighborhood U of (g1, . . . , g5) in (Aut(C))5
and a subset A of U with HD(U \ A) < HD(U ) = 20 such that (1) {γ = (γ1, . . . , γ5)}γ∈U
is a holomorphic family in Exp(5) satisfying the analytic transversality condition, the strong
transversality condition and the transversality condition, and (2) for each γ = (γ1, . . . , γ5) ∈ A,
HD(J (⟨γ1, . . . , γ5⟩)) = δ(γ1, . . . , γ5) < 2.

Example 4.15. There are infinitely many analogues of Sierpinski gasket or Pentakun which are
called Hexakun, Heptakun, Octakun and so on (see [9, p. 119]). As in Example 4.14, for each
such analogue, we obtain similar results on the family of small perturbations of the system of the
analogue.

Remark 4.16. Regarding Examples 4.10–4.15, even if we replace “Aut(C)” by “Aut(Ĉ)”, we
obtain similar results by using Lemma 3.29.

As we see in Examples 4.10, 4.11 and 4.13–4.15 and Remark 4.16, we have many examples
to which we can apply Theorem 4.8.

5. Remarks

We finally give a remark.

Remark 5.1. We can prove similar results to those in Sections 3 and 4 (especially Theorems 3.12
and 3.19, Proposition 3.22, Lemma 3.24, Theorem 4.8) for a family {Φλ

}λ∈U = {{ϕλi }i∈I }λ∈U
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Fig. 2. (From left to right) Snowflake, Pentakun.

of hyperbolic conformal iterated function systems (CIFSs) on an open subset V of Rp(p ∈ N)
without the open set condition, where ϕλi : V → V is a contracting conformal map, and U is
a bounded open subset of Rd , d ≥ p. For each λ ∈ U , we consider the limit set J (Φλ) of Φλ.

In the above setting, the definition of the transversality condition is modified such that the right
hand side of (3.1) is replaced by C1r p. The definition of the strong transversality condition is
modified such that the right hand side of (3.5) is replaced by C ′

1r p−d . If p = 2 and each ϕλi is a
holomorphic map, then we can define “analytic transversality family” just like Definition 3.21.
The number “2” (which represents the dimension of the phase space Ĉ) in results of the previous
sections are replaced by the number p. These results will be stated and will be proved in the
authors’ upcoming paper [42].
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