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Global convergence

1. Introduction

We deal with the following unconstrained optimization problem:

min f(x), (1.1)
XxeR"
where f : R" — R is continuously differentiable and its gradient g = Vf is available. For solving (1.1), the iterative method
is widely used and its form is given by

Xpr1 = Xk + ody, (1.2)

where x;, € R" is the kth approximation to a solution of (1.1), & € R is a step size and d; € R" is a search direction.

Recently, the conjugate gradient method has been paid attention to as an effective numerical method for solving large-
scale unconstrained optimization problems because it does not need the storage of any matrices. The search direction of the
conjugate gradient method is defined by

_g/(» k - O,
d, = 1.3
k {_gk + ,3kdk—ls k > 1’ ( )

where g; denotes g(xy) and fy is a parameter which characterizes the conjugate gradient method. Well known formulas
for By are the Hestenes-Stiefel (HS) [1], Fletcher-Reeves (FR) [2], Polak-Ribiére (PR) [3], Polak-Ribiére Plus (PR+) [4], and
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Dai-Yuan (DY) [5] formulas, which are respectively given by

HS __ g];r)/k—l FR __ ”gk”2
CT Ay T T gl
T T 2
PR — g"ykflz, }:H = max {O, g"ykig } , = M, (1.4)
llgk—1 llgi—1l] di_1Yk-1
where y,_; is defined by
V-1 = 8k — 8k-1

and || - || denotes the £, norm. Furthermore, we define

Sk—1 = Xk — Xk—1,

which is used in the subsequent sections. Note that these formulas for g are equivalent if the objective function is a strictly
convex quadratic function and «y, is the one dimensional minimizer. There is a lot of research on convergence properties
of conjugate gradient methods with (1.4). The global convergence properties of these methods have been proved in the
previous works (for example, see [3,6]).

In this decade, in order to incorporate the second-order information of the objective function into conjugate gradient
methods, many researchers have proposed conjugate gradient methods based on secant conditions. Dai and Liao [7]
proposed a conjugate gradient method based on the secant condition and proved its global convergence property. Later
some researchers gave its variants based on other secant conditions, and they proved global convergence properties of their
proposed methods [8-10]. Kobayashi et al. [ 11] proposed conjugate gradient methods based on structured secant conditions
for solving nonlinear least squares problems. Although numerical experiments of the previous works show effectiveness of
these methods for solving large-scale unconstrained optimization problems, these methods do not necessarily satisfy the
descent condition (g,(T dy < 0 for all k), or the sufficient descent condition, namely, there exists a constant ¢ > 0 such that

gidy < —Cllgll* for allk. (1.5)

In order to overcome this weakness, Sugiki et al. [12] proposed three-term conjugate gradient methods based on secant
conditions which always satisfy the sufficient descent condition (1.5) with ¢ = 1, by combining the three-term conjugate
gradient method in [13] with parameters S given in [7-11].

On the other hand, Hager and Zhang [ 14] proposed a formula of gy

2
1 (7= [yl
e g (y“ — 2dj— 17— =pS -2 g di—1, (1.6)

4T T T
d;HJ’IH dk71YI<f1 dk71_Vk71

and prove that the conjugate gradient method with (1.6) satisfies the sufficient descent condition (1.5) with ¢ = 7/8, if
di_,yk—1 # 0 holds for all k. Hager and Zhang [6] extended B{** and gave the following formula

2
1 7= Y11l
1 = il (e ) e () o 17)

4T T
dk71yk—] dk71y1<—1 k71yk—1

where A > 1/4. Note that their method satisfies the sufficient descent condition with ¢ = 1 — 1/(4A). Following
Hager-Zhang’s idea, Yu et al. [15] proposed a modified Polak-Ribiére method whose B is given by

1 ||yk_1||2> Iyl )2
YGL T PR T

= 8 | Vi1 — Adi—q = —A 8 dk—1, (1.8)
« g2 ( ‘ gl K lge1l2) *

where A > 1/4. They showed that a conjugate gradient method with ;3,:“1 also satisfies the sufficient descent condition

with ¢ = 1 — 1/(4A). After that, Yuan [16] proposed some variants of the method of Yu et al.

Considering that ,3,';’2 can beregarded as a modification of ﬂ,'js, we propose, in this paper, new conjugate gradient methods
which are based on S in [7-10] and satisfy the sufficient descent condition. The present paper is organized as follows. In
Section 2, we propose the parameter g by making use of the technique of Hager and Zhang [6], and give its related algorithm.
In Section 3, we show global convergence of our method given in Section 2. Finally, in Section 4, some numerical experiments
are presented.

2. Conjugate gradient methods based on the secant conditions that generate descent search directions

In this section, we propose conjugate gradient methods based on the secant conditions that generate descent search
directions. In Section 2.1, we review conjugate gradient methods based on secant conditions. In Section 2.2, making use of
Hager and Zhang’s idea, we give new formulas of .
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2.1. Conjugate gradient methods based on the secant conditions

The conjugacy condition of (nonlinear) conjugate gradient methods is given by

diyi—1 = 0. (2.1)

In order to incorporate the second-order information into the conjugacy condition (2.1), Perry [17] extended the conjugacy
condition (2.1) by using the secant condition of quasi-Newton methods:

BiSk—1 = Yk-1, (2.2)
and the search direction d; of quasi-Newton methods:
Bidy = —gk, (2.3)

where By, is a symmetric approximation matrix to the Hessian V2f (x;). Specifically, based on the relations (2.2) and (2.3),
Perry gave the following relation

diyi—1 = dy (Bisi—1) = (Bidi) se—1 = — g k1.

Thus, Perry’s conjugacy condition is defined by

diyk—1 = —& Sk-1- (2.4)

After that, by incorporating nonnegative parameter t, Dai and Liao [7] proposed the following condition:

dpyi-1 = —tg; Sk-1. (2.5)

Note that, if t = 0, then (2.5) reduces to the usual conjugacy condition (2.1), and if t = 1, (2.5) becomes Perry’s
condition (2.4). Moreover, if we use the exact line search, the condition (2.5) is equivalent to the conjugacy condition (2.1),
independently of choices of t. By substituting (1.3) into condition (2.5), Dai and Liao proposed a parameter Sy as follows:

DL __ ng(V/H — tSk—1)

(2.6)
k dL])’kq

Note that dL]y,H > 0 holds for all k if the Wolfe conditions are used in the line search. They showed that the
conjugate gradient method with BP* converges globally for a uniformly convex objective function under the assumption
that the method satisfies the descent condition. They also showed that the conjugate gradient method with /6,?“
g yi-1 }— g st

d[,]}’k—I d£,1Yk—1
satisfies the sufficient descent condition (1.5).

Recently, following Dai and Liao, several conjugate gradient methods have been studied by using other secant conditions
instead of the secant condition (2.2). We first introduce some secant conditions, and next review conjugate gradient methods
based on these secant conditions.

Zhang et al. [18] and Zhang and Xu [19] presented a modified secant condition. After that, Yabe and Takano [8]
incorporated a nonnegative parameter ¢y, into the modified secant condition by Zhang et al. and gave the following modified
secant condition:

max{0, converges globally for a general objective function under the assumption that the method

O,
Bisici =201 20 =yt + e | 5wt | (27)
Sg—1Uk—1
where
Ok—1 = 6(fic1 — fi) + 3(Zk—1 + 8 Sk—1. (2.8)

fr denotes f (xi) and ux_; € R" is any vector such that s,f_luk_l # 0 holds. Note that the original modified secant condition
by Zhang et al. is (2.7) with ¢, = 1. Li and Fukushima [20] gave the MBFGS secant condition:

Bisk—1 = 2251, Zi5 1 = Vi1 + ClgkllIsk—1, (2.9)

where ¢ > 0and q > 0 are constants. Ford and Moghrabi [21,22] proposed the multi-step secant condition. Later on, Ford
et al. [9] introduced the following specific choices of the multi-step secant conditions:

F1 F1 F1 F1
Bkhk_1 =Zy 1, hk_1 = Sk—1 — Ek—1Sk—2, Zy_ 1 =Yk—1— Ek—1Yk—2, (2.10)

and

F2 F2 F2 F2
Bih 2y =272, hEq =Skt — &—1Sk—2, 221 = Yk—1 — tk—1Vk—2, (2.11)
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Table 1
Zx—1 and hyg_ in (2.19).
Name Zk—1 hy 1
E - Yk—1 Sk—1
BT zZT,in(2.7) Sk—1
22 z#,in(2.9) Sk—1
B0 zf,in(2.10) K, in(2.10)
BF? zf?,in(2.11) hE2 in(2.11)
where
8 lISk—1 1l
bk = L, k=1 =Nk > (2.12)
1+ 281 s
and i, > 0is a scaling factor.
Based on the modified secant condition (2.7), Yabe and Takano [8] proposed the following formula for gy:
T (YT
v & @_q — tsk—1)
= 2.13
& di1z 4 213
On the other hand, based on (2.9), Zhou and Zhang [10] proposed
2z 8@ — 1)
k = ﬁ (2.14)
di_1254
In addition, based on (2.10) and (2.11), Ford et al. [9] proposed two types of formulas for §; given by
F1 _ gzl — thil))
k — T F1 s (215)
A 1224
F2 _ 8 (z2, — thi2 )
de1zi24
We now treat a unified formula of 8y in (2.6) and (2.13)-(2.16). Secant conditions are generally represented by
Behg—1 = z¢_1. (2.17)
In the case of hy_1 = s¢_1 and zx_; = yx_1, (2.17) reduces to the usual secant condition (2.2). Following Dai and Liao, we
have a general form of conjugacy condition d£2k_1 = —tng hy_1. By substituting (1.3) into the above condition,
Brd_1Zk-1 = 8 Zk—1 — L& M (2.18)

is obtained. If dlek_l = 0, then gy satisfying (2.18) does not necessarily exist. Thus we set 8y = 0 when dL]qu = 0.
Taking into account the above arguments, we have the formula for 8y as follows:

st — gl (z—y — thy— ) (d}_1zk-1)", (2.19)

where t implies the following generalized inverse:

1
aT — 57 a 75 07
0, a=0.
In Table 1, we give z,_y and hy_; in (2.19) for the cases P, B\, B¢, Bf' and BE2.

The conjugate gradient method with (2.19) does not necessarily generate descent search directions. If we try to establish
the global convergence of conjugate gradient method with (2.19), we need to assume that the search direction satisfies the
(sufficient) descent condition. In order to overcome this weakness, Sugiki et al. applied (2.19) to the three-term conjugate
gradient method in [13] and proposed three-term conjugate gradient methods satisfying ng di = —||gk||? which implies the
sufficient descent condition (1.5). Zhang [23] also proposed three-term conjugate gradient methods based on the secant
condition. Zhang set the search direction such as

dy = —8k + Brdk—1 + Fxpr, (2.20)

where p, = gy or yx_1 and ¥ is a parameter, and gave ¥, by substituting (2.20) into condition (2.5). Note that Zhang’s
method satisfies the sufficient descent condition (1.5) with ¢ = 1 — p, where p € [0, 1) is a given parameter. On the other
hand, we propose, in this section, a conjugate gradient method which satisfies the sufficient descent condition by modifying
the unified formula of g in (2.19).
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2.2. Proposed method

In this section, we give conjugate gradient methods that are based on secant conditions and satisfy the sufficient descent
condition. Taking into account BM" in (1.7) or BY°" in (1.8), we propose the following formula of By:

DS — gecint _ alze—y — the_1lgq di1{(d}_,zi_1)?}

= g @1 — the D (di_1zk-1)" — Mlzie1 — the111°g de—1{(d}_12k-1)°}, (2.21)
where X is a parameter such that A > 1/4, and “DS” denotes “Descent and Secant conditions”. If d]_,z,_; = 0, then 82° =
and ngdk = —||gk|I?, otherwise, considering the fact thatu”v < %(Ilull2 + ||v]|?) holds for any vector u and v, we have

gedi = —llgll® + B g dir
24 1 T T 2
= —|lgll” + ﬁ{d 1 Zk18h (Zk—1 — the-D)g i1 — A(gg di—1)* zk—1 — theq 1%}
1 Zk—1

1 (dr_ zk—180)"
—llgl? + [ Sl

@z o) {(V2rgl di_1(z1 — thi—1)} — A(gh dk—1)|1Zk—1 — thi1 | :|

||d£_1zk71gk||
(df_12k-1)? 4A

1— 1) jgl?
. ) &l

Summarizing the above arguments, the following lemma is obtained.

—llgxll® +

+ Allgy di—1(zk—1 — the ) I> — A(gp dk—1)*|zk—1 — thy_1 ]l }

Lemma 2.1. Consuier the conjugate gradient method (1.2)-(1.3) with (2.21). Then the sufficient descent condition (1.5) holds
withc =1— -
4A

To establish the global convergence of the methods for a general objective function, 8, > 0 is often needed. Then we
replace P by
25t = max{0, B°). (2.22)
Note that Lemma 2.1 still holds for the conjugate gradient method with (2.22). We now give an algorithm of conjugate
gradient method with (2.21) or (2.22).

Algorithm 2.1. Step 0. Give an initial point xo € R" and positive parameters . > 1/4,0 < o7 < o3 < 1. Set the initial
search direction dg = —go. Let k = 0 and go to Step 2.
Step 1. Compute d by (1.3) with (2.21) (or (2.22)).
Step 2. Determine a step size oy, satisfying the Wolfe conditions:
f @i+ onedi) — f (X)) < o100y d., (2.23)
g(x + andy) dy > a8 dy. (2.24)

Step 3. Update x;,1 by (1.2).
Step 4. If the stopping criterion is satisfied, then stop. Otherwise go to Step 5.
Step 5. Letk :== k + 1 and go to Step 1.

Note that the Wolfe conditions and (1.5) yield
di_1Yk—1 = (02 — Dgg_qdk—1 > (1 — 02)[Ige—1/*(> 0). (2.25)

Now we introduce the concrete choices of /3 and B, bS+ by using the same arguments in Section 2.1. Considering Table 1
and (2.21), concrete choices of ﬂ and ﬂD” are respectively given by the following:

B = gl -1 — tsi- ) (i) = Ayicr — tsicalPg dea (-1}, (2.26)
=g @y — tsk-) (G2 )T = Mzl — tsieallPgedia (i 2% (2:27)
P =gl (2 — tsie) iz )T = Mz — tsealPgy di{(dy gz )Y (2.28)

B =g (7l — )izl )T = Mzl — i 1Pl e (a2 D) (2:29)
D2 = gl (72 — th2 (22 )" = Allz?y — e Pgg di{(dy_ 1287 )Y, (2:30)
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and
IBESDH— — max{0, ﬂ’?sm}, (2.31)
BT = max{o, g5}, (2.32)
IBESFH- — max({0, 51‘35H}» (2.33)
IBkDSF2+ — max({0, 5’l<)SF2}’ (2.34)
where BP'" is BP° with hy_; = s,_; and
Ze1 =200 = Yier + ¢ (Wuk_1>. (2.35)
Sk—1Uk-1

3. Global convergence of the proposed methods

In this section, we investigate the global convergence property of Algorithm 2.1. For this purpose, we make the following
assumptions for the objective function.
Assumption 3.1.
A1l. The level set £ = {x|f(x) < f(xo)} at xo is bounded, namely, there exists a constant@ > 0 such that
x| <@ forallx € L. (3.1)

A2. In some open convex neighborhood & of £, f is continuously differentiable, and its gradient g is Lipschitz continuous,
namely, there exists a positive constant L such that

lgx) —g&)|| <L|x—x| forallx,x € N.

Note that Assumption 3.1 means that there exists a positive constant y such that
le@)| <y forallx € L. (3.2)

We also assume g, # O for all k, otherwise a stationary point has been found.
To establish the global convergence of the methods, we give a lemma for general iterative methods. The lemma can be
easily shown by using the Zoutendijk condition [24], and hence we omit the proof (for example, see [13]).

Lemma 3.1. Suppose that Assumption 3.1 holds. Consider any iterative method of the form (1.2), where d;, and o satisfy the
sufficient descent condition (1.5) and the Wolfe conditions (2.23) and (2.24), respectively. If

1

>
= lldil?

then liminf,_, o ||gk|| = O holds.

By using Lemma 3.1, we have the following theorem.

Theorem 3.1. Suppose that Assumption 3.1 holds. Let the sequence {x,} be generated by Algorithm 2.1. If there exist positive
constants ¢, and c; such that zy_q and hy_1 satisfy

zk—1 — th—all < crllsi-1ll, (3.3)
- ldi1lIP1df_1ze1] < ¢ (3.4)

for all k, then the method converges globally in the sense that liminfy_,  ||gkll = O.

Proof. By (2.23) and Lemma 2.1, the sequence {x,} is contained in the level set .£. It follows from (2.21) and (3.2)-(3.4) that
1B k-1l < |8 (@1 = the-) (i1 2e-0) | lldier | + 2 [ge dien| Nze-1 — thiea IP{(di_yze-0)} i |

i llgell k-1 1121y zia | + Aty llgiel di—r1* (1211 ")?

(c1c2 + Aclzczz)y,

IA

IA

and hence we have from (1.3) that
ldill < llgell + 18] ldi—1]l < (14 c1c2 + Acicd)y,

which implies that ).~ 1/[|dk||*> = oo holds. Therefore from Lemma 3.1, the proof is complete. [
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By using Theorem 3.1, we can show global convergence properties of Algorithm 2.1 with PP, BP5YT, gP5F1 and gP5F

for a uniformly convex objective function, and Algorithm 2.1 with /S,?SZZ for a general objective function.

First we give the definition of uniformly convex function. The function f is said to be uniformly convex (on R") with
modulus w if f(1=X)x+Ay) < (A1 =1)fx) +Af () — %,u(l — A)Alx — y||? holds forany x, y € R" and A € (0, 1). Note
that, if f is a continuously differentiable uniformly convex function, the following holds:

(gx) —g@)T(x—X) > ulx —x||*> forallx,x € R". (3.5)

We also note that, if f is a uniformly convex function, then the level set .£ is bounded for any x,, and hence Assumption A1l
is satisfied.
The proof of the following theorem is similar to that of [ 12, Theorem 2], but we do not omit the proof for readability.

Theorem 3.2. Suppose that Assumption 3.1 holds and that f is a uniformly convex function. Let x* be a unique optimal solution
to (1.1).
(i) Algorithm 2.1 with B2°°" in (2.26) converges globally, i.e. limy_, o X = X*.
(ii) Assume that ¢y and uy satisfy 0 < ¢ < ¢ and
Isi_qtta] = mlseall llueall, (356)

where ¢ is a positive constant such that ¢ < w/(3L), and m is some positive constant. Then Algorithm 2.1 with ﬂ,‘?m in
(2.27) converges globally, i.e. limy_, o X = X*.

(iii) If n satisfies 0 < nx < 7 for some positive constant 7 such that 2; — 7L > 0 holds, then Algorithm 2.1 with g2 in
(2.29) converges globally, i.e. limy_, o X = Xx*.

(iv) If ny satisfies 0 < ny < 7 for some positive constant 7 such that 2ju — tiiL > 0 holds, then Algorithm 2.1 with B2 in
(2.30) converges globally, i.e. limy_, o X, = x*.

Proof. (i) By Table 1, we have
lzk—1 — the—1ll = llyk-1 — tsk—1ll < (L + O)lIsk-1ll (3.7)

which implies (3.3) with ¢; = L + t. Since from (3.5), y;_;Sk—1 > f|Isk—1|* holds, we have

T T 2
|dp_1zk—1] = |d_1Yk—1] = poge—qllde—1 1~

Thus (3.4) is satisfied with c; = 1/u. It follows from Theorem 3.1 that lim infy_, », [|gk|| = 0 holds.
(ii) By the mean value theorem, the following holds:

fier = fie = —g(t'xc1 + (1 — T)x) s
for some 7’ € (0, 1). Then it follows from (2.8) and Assumption A2 that

1011 = 16(fi—1 — fi) + 3(8k—1 + &) Sk—1l

= | —68(t'xk—1 + (1 — T)x0) " sk1 + 3(Ze—1 + 81) " se1

3{llgk-1 — g X1+ (1 = ) + llgk — &(T %1 + (1 = T)x) [} Ise-1 I
3L{[1%k—1 — (%1 + (1 = )+ I — (%1 + (1= ) [ Ise-1
3LIsg—1 I (3.8)
We have from Table 1, (3.6), (3.8) and Assumption A2 that

IATA

Ok—1
lZk—1 — the—all = ||Yk—1 + P | 77— Uk—1 | — tSk—1
Sp—qUk—1
3L
< Llise-1ll + b Il + tlIse—all
mise—1ll llue—1l
-3L
< (L+o=+¢t] skl (3.9)
m
The relations (3.5) and (3.8) yield
T T Ok—1 T
|dk71zk—1| = dk71.Vk—l + ¢I<T7dk71uk—l
k—1Uk—1

T Pr 2
> |dp_1Yr—1l — T3L”5k71”
k—1

> (1 — 3L [l di—1 1% (3.10)
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We note that 1—3¢L > 0.The relations (3.9)and (3.10)imply (3.3)and (3.4) withc; = (L+3¢L/m+t)andc, = 1/(u—3¢L),
and hence we get, from Theorem 3.1, that lim infy_, », ||gk]| = O.
(iii) The relation (2.12) yields

Sk=1 Mk ISkl

Ek—1 < = , (3.11)
T2 T 2 sl
and hence we have from Table 1 and (3.11) that
lzk—1 — the—qll = NYk—1 — Ex—1Yr—2 — t(Sk—1 — Ex—15k=2) |l
< Myk—1ll + Ek—1llyk—2l + tllsk—1ll + t&k—1 k-2l
e Isk—11l
< LA+ Dlserll + = o (L + D) [Ise—ll
2 |Is—2ll
< (1 + g) L+ Ollse-ll. (3.12)
which implies (3.3) with ¢; = (14 1/2) (L 4 t). We have from (3.5), (3.11), and Assumption A2
|di_1Zk—1| = |di_ Vi1 — E—1df_ Y2l
> |di_ 1 Yk—1] — Ek—1ld}_ Vil
M Isk—1ll
> pogetlldi—|* — = ldi—1 1l ly—2]l

2 ||sk—2ll

v

7
et lldi—1l1* — > Lot lldis |12

]
(M - 5’-) i1l diea |

We note that u—7L/2 > 0,and hence (3.4) holds with c; = 1/(u—1nL/2). Thus by Theorem 3.1, we get lim infy_, », [|g|| = 0.
(iv) By Table 1 and (3.11), we have

lzr—1 — the—qll = Yk—1 — tEx—1Vk—2 — t(Sk—1 — Ex—1Sk=2) |l
Nk
< (L+O)lIs=1ll + f?(1 + DlIsg-1ll

< {L+t+ gt(1+L)} lseall- (3.13)

It follows from (3.5) and (3.11) that

T T T
|di_12k—1] = |di_1Yk—1 — tEr—1di_1Yr—2|

v

Nk
ot lldi—11I* — tLEHSk—l” ldi—1l

v

1
(M - ELt) a1 llde-1l1%. (3.14)

We note ; — iLt /2 > 0. Therefore, we have from (3.13) and (3.14) that (3.3) and (3.4) hold withc; = L+t + nt(1 + L)/2
and c; = 1/(u — nLt/2). 1t follows from Theorem 3.1 that we have lim infy_, », [|gk|| = 0.

Summarizing (i)-(iv), we have liminf,_. o, ||gx|| = O for each case. Since f is uniformly convex, we obtain the desired
result. Therefore the theorem is proved. O

Although condition (3.6) for u,_4 is assumed in (ii) of Theorem 3.2, this condition is reasonable. For example, if uy_; =
Sk—1, (3.6) is satisfied with m = 1. If u,_; = y,_1, it follows from (3.5) that

T T 2 M
[Se_qte—1] = IS, _1Yk—1] = pllse=1ll” = I”5k—1 I 1Ye—1ll,

which implies that (3.6) is satisfied withm = /L.
Next we show global convergence of Algorithm 2.1 with 87%? for a general function.

Theorem 3.3. Suppose that Assumption 3.1 holds. Consider Algorithm 2.1 with BP%?* in (2.28). Then the method converges
globally in the sense that lim infy_, » ||gk]| = 0.



Y. Narushima, H. Yabe / Journal of Computational and Applied Mathematics 236 (2012) 4303-4317 4311

Proof. To prove this theorem by contradiction, we suppose that there exists a positive constant ¢ such that
llgkll > ¢ forall k. (3.15)
It follows from Table 1 and (3.2) that

=1 = theall = [yt + ¢l 19 skt — i1 | < L+ ¢y T+ O llseall. (3.16)

We have from (2.25) that d{fly,H > 0, and hence it follows from (3.15) that

|d£_1zkf1| = dg_ﬂ/kfl + ¢ 18k ||qd£_15k4 > geloy—qlldk— ||2 (3.17)

Therefore, it follows from (3.16) and (3.17) that (3.3) and (3.4) hold withc; = L4+ ¢y? 4+t and c; = 1/(¢&?). Although, by
Theorem 3.1, we have liminfy_, » ||gk]| = O, this contradicts (3.15). Therefore the proof is complete. O

Although we proved, in Theorem 3.2, global convergence properties of the method with gPPt, BPSYT, BDSF1 and gPSF2
for uniformly convex objective functions, we have not shown their global convergence properties for general objective
functions. Accordingly, in the rest of this section, we consider the global convergence properties of the methods for such
functions.

The following property is originally given in [4], and this property shows that 8, will be small when the step si_q is small.

Property . Consider the conjugate gradient method (1.2)-(1.3) and suppose that there exist positive constants ¢ and y such
that ¢ < ||gk|| < y for all k. If there exist b > 1 and v > 0 such that |Bx| < b and

1
Sk—1ll S v = < —,
lIsk-1ll < |,Bk|_2b
then we say that the method has Propertyx.

The general result under Property « is the following (for example, see [6]).

Theorem 3.4. Suppose that Assumption 3.1 holds. Let {x,} be the sequence generated by the conjugate gradient
method (1.2)-(1.3) which satisfies the following conditions:

(C1) By = Oforallk,

(C2) the sufficient descent condition,
(C3) the Zoutendijk condition,

(C4) Propertyx.

Then the sequence {x;} converges globally in the sense that lim infy_,  ||g| = O.

In order to apply Theorem 3.4 to Algorithm 2.1, 8, must be nonnegative. As mentioned around (2.22), we consider
Algorithm 2.1 with B°" instead of BP°. We note that, if 8?5 < 0 then ** = 0 and the search direction becomes

the steepest descent direction (i.e. d, = —g), and hence Algorithm 2.1 with ,3,?S+ still satisfies the sufficient descent

condition (1.5).
Now we give the following global convergence property for general objective functions.

Theorem 3.5. Suppose that Assumption 3.1 holds.

(i) Algorithm 2.1 with ﬂ,’?SDH in (2.31) converges globally in the sense that lim infy_,  ||gk]| = 0.
(ii) Assume that uy and ¢y satisfy (3.6) and 0 < ¢y < ¢ where ¢ is any fixed positive constant. Then Algorithm 2.1 with ,B,?SYT“L
in (2.32) converges globally in the sense that lim infy_, o ||gk|| = O.
(iii) Assume that there exists a positive constant ¢, such that, for all k,

max{lge_,di—1l, lggdi—11}1d;_1z¢141" < ¢ (3.18)

holds. If ny, satisfies 0 < n, < n for any fixed positive constant 7, then Algorithm 2.1 with ﬂ,?SF” in (2.33) converges globally

in the sense that lim inf,_, o, ||gk|| = O.
(iv) Assume that there exists a positive constant ¢, such that, for all k,

max{|gq_ di—1l, 18t di—11} [de_12i2 11" < @2 (3.19)

holds. If ny satisfies 0 < n, < n for any fixed positive constant 7, then Algorithm 2.1 with ﬁESFH in (2.34) converges globally
in the sense that lim inf,_, o, ||gk|| = O.
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Proof. By (2.22), ,3,'3” > 0 holds, and hence condition (C1) is satisfied. As mentioned above, the method with ,BDS+ satisfies
the sufficient descent condition, which implies condition (C2). Assumption A2 and the Wolfe conditions yield the Zoutendijk
condition, and hence condition (C3) is also satisfied. Therefore, we need to prove Property » only, and hence we assume, in

the rest of the proof, that there exists a positive constant ¢ such that
e < |lgll

holds for any k. Since the level set .£ is bounded and {x;} C .£, we have from (3.1) that
lIse—1ll < 2a.

Under the condition (3.20), if there exists a positive constant c3 satisfying

18571 < csllsical
for all k, then we have, by putting v = 1/(2bcs), that |8°"| < max{1, 2dcs} = b and

1

DS+
Isk—1ll v = 1871 < b7

which implies that Property « is satisfied. Thus it suffices to prove that (3.22) holds for cases (i)-(iv).

Here, we give some facts. It follows from (2.25) and (3.20) that
Ay Vi1 = €(1 = o) llgi1l® = E(1 — op)e?.
The relation g} _,dx_1 < 0 and (2.24) yield

T T T T
g di—1 < gedi—1 — &_1dk—1 = dy_1Yk—1,

T T T T
8 dk—1 = 028;_1dk—1 = —02d,_1Yk—1 + 028, dk—1,

and hence we have from o, € (0, 1) and dk 1Yk—1 > O that
T 02 T T
g, dk—1] < max {1, 1—o } di_1Yr—1 = Cadi_1Yk—1,
— 02

where ¢, = max{1, 02/(1 — 02)}.
Now we prove (3.22) for each case.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(i) By taking into account z)*, = y,_q and h™, = s,_, it follows from (3.7), (3.23), (3.24), (3.21) and the Lipschitz

continuity of g that

1B < lgh (2Pt — thp DI Id_zps 1T+ Allzgty — tht 11 |gh diet [{(df_1z= )2}
y(L+1) ca(L +1t)?

< — |[|Sk= A———m—||Sk— 2
S fana A el
L+t 2c4(L+t)%a
< (s > ) sl
C(] — 0'2)8 C(] — 0'2)8

which implies that (3.22) holds.
(ii) By (2.35), (3.23) and ¢, > 0, we have

(o _
di_ Vi1 + o max{0, Op—1}| > di_,yk—1 > c(1 — 03)e>.

k—1

|dk 1%k— 1| =

It follows from (3.24) and (3.25) (namely, |dk 12 1| > |d _1Vk—1]) that

lge di—1| < cald)_,yi—1] < caldf_,2"F .

Similar to (3.9), we have from (2.35) that
max{0, 6x_1}

Vi1 + G U1 — Sk
Sk 1Uk—1

YT+ YT
lzel7 — th"|| = =< CslIsk-1lls

where ¢s = t + (1 4+ 3¢/m)L. Therefore, it follows from (3.21), (3.25) and (3.26) that

(3.25)

(3.26)
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BT < lgl T — hT )12 1T+ AT — h TP diea (22
YCs C4C5 2
S T e+ g e e

YCs 2c4c2a
<|z 5+ Az > 5 ) lIsk=1ll,
c(1—o0y)e c(1—o0y)e

which implies that (3.22) holds.
(iii) The relations (1.5) and (3.18) yield

®1 T T _F1
|dk 1Zk " < =2 lgi di—1l 1dg_1z 14 1T < @1

and therefore, it follows from (3.12) and (3.21) that

1B < Igp (z6)y — thi D1 Idy_yze )T+ Aizfty — ehEl 1% 1gr diea | {(dy_ iz )Y
(pz
skl + 2 ! 6||sk 112

©1YC Z(p C,
< ( 1 oo+ A—S ) lst—1ll.
ce ce
where cg = (1 + 1/2)(L + t), which implies that (3.22) holds.

(iv) The relations (1.5) and (3.19) yield

$2 T T _F2
= 682 , 8k dy—1] |dk71‘zk71|]L =@

f/)ﬂ/ 6

|dk 1Zk 1|T
and therefore, it follows from (3.13) and (3.21) that
1B < gk (2%, — thi? DI dy 421"+ Aizg%, — thi? 171l dia ()22 1)%)

2.2
f/)zy 7 ©y¢7
== lISk—1ll -H» IISIHII2

Y2y C7 2¢3c
S( ——— 4+ A 52827 >||Sk—1||,

ce?

where ¢c; = L+t + nt(L + 1)/2, which implies that (3.22) holds.
Summarizing (i)-(iv), the proof is complete. O

Although (3.18) and (3.19) look like strong assumptions, these are reasonable if we use (2.23) and the condition
— 038 di > g(xic + ued) dy > 028, d, (3.27)

as the line search rules, where 0 < 07 < 0, < 1and 0 < o3 < 1. Note that the conditions (2.23) and (3.27) are the Wolfe
conditions with the additional condition —a3ngdk > g(x; + axdy)Tdy. We also note that, if o3 = o5, then the conditions
(2.23) and (3.27) become the strong Wolfe conditions: (2.23) and

lg (xic + cedi) " di| < —02gg di,
and in addition, if o3 = 1 — 207 and o7 < 1/2, then (2.23) and (3.27) become the approximate Wolfe conditions: (2.23) and
— (1 —201)gl dx > g(xi + axdi) dy > 0] dy. (3.28)

We now demonstrate why (3.18) is reasonable under the conditions (2.23) and (3.27).
Ifd}_,zf', = 0, then (3.18) is automatically satisfied. So that, we consider the case d]._,zf', # 0.Then we need to justify

8e—1dk-1] < p1ldi1ze]4 . (329)

gk dil < @rldi_z¢t - (3.30)
It follows from (3.27) that

|g; di—1| < max{oy, o3}1gp_1di—1| < Igx_1dirl,

which implies that (3.30) holds if (3.29) is satisfied. Thus it suffices to consider (3.29). From the definition ofzk 1in (2.10),
we have

di_1zpty = di_ Vi1 — Ex—1df_1Yi—2- (3.31)
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Ifs[_lyk,z < 0, then we have, from (3.31), £&,_; > 0 and (3.27), that

dg_lz]fl] = d;{_]yk—l = _(1 - UZ)glz_ldk—l (> O)a

which implies (3.29) with ¢; = 1/(1 — 03). If sL]yk_z > 0, we can control the magnitude of the last term in (3.31) by
using the parameter ;. For example, if we choose n, = 0, then —“g‘k_ldLlyk_z = 0, which implies (3.29) holds with
¢1 = 1/(1—03).Thus (3.29) is justified. Therefore, (3.18) is reasonable. We can also justify (3.19) in a similar way for (3.18).

4. Numerical results

In this section, we give numerical results of Algorithm 2.1 to compare our methods with other conjugate gradient
methods. We investigated numerical performance of the proposed algorithms on 70 problems from the CUTEr library
[25,26]. Note that we tested the proposed algorithms on 145 problems, but we omit the numerical results on small-scale
problems. Table 2 shows problem names and dimensions of 70 problems.

We tested the following methods:

CG-DESCENT : Software in [14,27,28],

DSDL+ : Algorithm 2.1 with 2°°"" and (A, t) = (2, 0.3),

DSYT+ : Algorithm 2.1 with 82°™, (A, t, ¢) = (2,0.3,0.3) and uy, = yj,
DSZZ+ : Algorithm 2.1 with 82" = max{0, P} and (A, t) = (2,0.3),
DSF1+ : Algorithm 2.1 with 82°F'* and (1, t, ) = (2, 0.3,0.3),

DSF2+ : Algorithm 2.1 with 8°"* and (1, t, n) = (2, 0.3,0.3).

Following Zhou and Zhang [10], we chose, in DSZZ+, { = 0.001, and g = 1.0 if ||gi|| > 1.0, otherwise g = 3.0. Although
Algorithm 2.1 with BPS% converges globally for a general objective function, we used B¢°*“", instead of BPS%, because the
methods with B2°*** performed a little better than the methods with B, = AP? did. We should note that the global
convergence property of the method with ,BESZH is still established. To choose values of parameters A, t, ¢ and n;, we

had preliminarily performed the algorithm by using two or three kinds of values for each parameter. In this numerical
experiment, we chose values of parameters which relatively performed better in these preliminary numerical results.
CG-DESCENT is a software package of conjugate gradient method with (1.6) and an efficient line search which computes
the step size «y, satisfying the approximate Wolfe conditions (2.23) and (3.28). We coded DSDL+, DSYT+, DSZZ+, DSF1+ and
DSF2+ by using CG-DESCENT [14,27,28], in which parameters were set as 6; = 10™* and o, = 0.1. The stopping condition
was

llgklloo < 107°.

We also stopped the algorithm if CPU time exceeded 500 seconds. We note from the numerical results in [ 12] that the three-
term conjugate gradient method given in[12] is almost comparable with CG-DESCENT. Thus we omit numerical comparisons
of our methods with the three-term conjugate gradient method by Sugiki et al.

We adopt the performance profiles in [29] to compare the performance among the tested methods. For n solvers and n,
problems, the performance profile P : R — [0, 1] is defined as follows:

Let & and 4 be the set of problems and the set of solvers, respectively. For each problem p € & and for each solvers € 4,
we define t, s := (computing time (or number of iterations, etc.) required to solve problem p by solver s). The performance
ratio is given by r, s := t, s/ Minses t, 5. Then, the performance profile is defined by P(7) = isize{p € Plrps < 7} for
all T € R, where size{p € #|r,s < 7} stands for the number of elements of the set {p € P|r,s < t}. Note that if the
performance profile of a method is over the performance profiles of the other methods, then this method performed better
than the other methods.

Figs. 1-4 are the performance profiles measured by CPU time, the number of iterations, the number of function
evaluations and the number of gradient evaluations, respectively. From the viewpoint of CPU time, we see from Fig. 1 that
CG-DESCENT performed well in the interval 1 < 7 < 2, and DSF1+and DSF2+ were at least comparable with CG-DESCENT in
the interval 2 < t < 5.0n the other hand, DSDL+ and DSYT+ were outperformed by CG-DESCENT. From the viewpoint of the
number of iterations, the number of function evaluations and the number of gradient evaluations, Figs. 2-4 show that DSF1+
and DSF2+ were superior to CG-DESCENT, and that DSDL+, DSYT+ and DSZZ+ were almost comparable with CG-DESCENT.
CG-DESCENT is coded to reduce the computational costs of inner-products that is needed in Hager-Zhang’s method [14]. On
the other hand, DSDL+, DSYT+, DSZZ+, DSF1+ and DSF2+ are not tuned to reduce the computational costs of inner-products,
and hence, as mentioned above, DSDL+, DSYT+, DSZZ+, DSF1+ and DSF2+ need more computational costs for inner-products
than CG-DESCENT does. This is a reason why CG-DESCENT is superior to the other methods in the interval 1 < t < 2 of Fig. 1.
We may reduce computational costs of DSDL+, DSYT+, DSZZ+, DSF1+ and DSF2+ by effectively tuning the code. However, it
is beyond the scope of this paper.

Summarizing the above observations, we can conclude that DSF1+ and DSF2+ are efficient in our numerical experiments,
and DSDL+, DSYT+ and DSZZ+ are almost comparable with CG-DESCENT. On the other hand, since the methods have some
parameters, a suitable choice of parameters in the methods is our further study.
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Table 2
Test problems (problem name and dimension).

ARWHEAD 5000 DIXMAAND 9000 FLETCHCR 10000 PENALTY1 10000
BDEXP 5000 DIXMAANE 9000 FMINSRF2 5625 POWELLSG 20000
BDQRTIC 5000 DIXMAANF 9000 FMINSURF 5625 POWER 20000
BIGGSB1 5000 DIXMAANG 9000 FREUROTH 5000 QUARTC 10000
BOX 7500 DIXMAANH 9000 GENHUMPS 5000 SCHMVETT 5000
BROYDN7D 5000 DIXMAANI 9000 GENROSE 5000 SINQUAD 10000
BROYDN7D 10000 DIXMAAN] 9000 GENROSE 10000 SPARSINE 5000
BRYBND 10000 DIXMAANK 3000 LIARWHD 10000 SPARSQUR 10000
CHAINWOO 4000 DIXMAANL 9000 MODBEALE 10000 SROSENBR 10000
CHAINWOO 10000 DIXON3DQ 10000 MOREBV 5000 TESTQUAD 5000
COSINE 10000 DQDRTIC 5000 MOREBV 10000 TOINTGSS 10000
CRAGGLVY 5000 DQRTIC 5000 NONCVXU2 5000 TQUARTIC 10000
CURLY10 10000 EDENSCH 10000 NONDIA 10000 TRIDIA 10000
CURLY20 10000 EG2 1000 NONDQUAR 5000 VAREIGVL 5000
CURLY30 5000 ENGVAL1 10000 NONDQUAR 10000 WOODS 4000
DIXMAANA 9000 EXTROSNB 1000 NONSCOMP 5000 WOO0DS 10000
DIXMAANB 9000 EXTROSNB 10000 OSCIPATH 10000

DIXMAANC 9000 FLETCHCR 1000 PENALTY1 1000

5. Conclusion

P(7)

P(7)

0.4

0.2

m—— CG-DESCENT
DSDL+
DSYT+
DSZZ+
—— DSFI+

. DSF2+

DSDL+
"""" DSYT+
DSZZ+
DSF1+
. DSF2+

m—— CG-DESCENT

Fig. 2. Performance based on the number of iterations.

In this paper, we have proposed conjugate gradient methods based on secant conditions that generate descent search
directions. Under suitable assumptions, our methods have been shown to converge globally. In numerical experiments, we

have confirmed the effectiveness of the proposed methods by using performance profiles.
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Fig. 3. Performance based on the number of function evaluations.

= CG-DESCENT
e DSDL+
""" DSYT+
DSZZ+

—— DSFI+ 7

. DSF2+

P(7)

0.2

Fig. 4. Performance based on the number of gradient evaluations.
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