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a b s t r a c t

Conjugate gradient methods have been paid attention to, because they can be directly
applied to large-scale unconstrained optimization problems. In order to incorporate second
order information of the objective function into conjugate gradient methods, Dai and Liao
(2001) proposed a conjugate gradient method based on the secant condition. However,
their method does not necessarily generate a descent search direction. On the other
hand, Hager and Zhang (2005) proposed another conjugate gradient method which always
generates a descent search direction.

In this paper, combining Dai–Liao’s idea and Hager–Zhang’s idea, we propose conjugate
gradient methods based on secant conditions that generate descent search directions.
In addition, we prove global convergence properties of the proposed methods. Finally,
preliminary numerical results are given.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We deal with the following unconstrained optimization problem:

min
x∈Rn

f (x), (1.1)

where f : Rn
→ R is continuously differentiable and its gradient g ≡ ∇f is available. For solving (1.1), the iterative method

is widely used and its form is given by

xk+1 = xk + αkdk, (1.2)

where xk ∈ Rn is the kth approximation to a solution of (1.1), αk ∈ R is a step size and dk ∈ Rn is a search direction.
Recently, the conjugate gradient method has been paid attention to as an effective numerical method for solving large-

scale unconstrained optimization problems because it does not need the storage of anymatrices. The search direction of the
conjugate gradient method is defined by

dk =


−gk, k = 0,
−gk + βkdk−1, k ≥ 1, (1.3)

where gk denotes g(xk) and βk is a parameter which characterizes the conjugate gradient method. Well known formulas
for βk are the Hestenes–Stiefel (HS) [1], Fletcher–Reeves (FR) [2], Polak–Ribière (PR) [3], Polak–Ribière Plus (PR+) [4], and
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Dai–Yuan (DY) [5] formulas, which are respectively given by

βHS
k =

gT
k yk−1

dTk−1yk−1
, βFR

k =
∥gk∥2

∥gk−1∥
2
,

βPR
k =

gT
k yk−1

∥gk−1∥
2
, βPR+

k = max

0,

gT
k yk−1

∥gk−1∥
2


, βDY

k =
∥gk∥2

dTk−1yk−1
, (1.4)

where yk−1 is defined by

yk−1 = gk − gk−1

and ∥ · ∥ denotes the ℓ2 norm. Furthermore, we define

sk−1 = xk − xk−1,

which is used in the subsequent sections. Note that these formulas for βk are equivalent if the objective function is a strictly
convex quadratic function and αk is the one dimensional minimizer. There is a lot of research on convergence properties
of conjugate gradient methods with (1.4). The global convergence properties of these methods have been proved in the
previous works (for example, see [3,6]).

In this decade, in order to incorporate the second-order information of the objective function into conjugate gradient
methods, many researchers have proposed conjugate gradient methods based on secant conditions. Dai and Liao [7]
proposed a conjugate gradient method based on the secant condition and proved its global convergence property. Later
some researchers gave its variants based on other secant conditions, and they proved global convergence properties of their
proposedmethods [8–10]. Kobayashi et al. [11] proposed conjugate gradientmethods based on structured secant conditions
for solving nonlinear least squares problems. Although numerical experiments of the previous works show effectiveness of
these methods for solving large-scale unconstrained optimization problems, these methods do not necessarily satisfy the
descent condition (gT

k dk < 0 for all k), or the sufficient descent condition, namely, there exists a constant c̄ > 0 such that

gT
k dk ≤ −c̄∥gk∥2 for all k. (1.5)

In order to overcome this weakness, Sugiki et al. [12] proposed three-term conjugate gradient methods based on secant
conditions which always satisfy the sufficient descent condition (1.5) with c̄ = 1, by combining the three-term conjugate
gradient method in [13] with parameters βk given in [7–11].

On the other hand, Hager and Zhang [14] proposed a formula of βk

βHZ
k =

1
dTk−1yk−1

gT
k


yk−1 − 2dk−1

∥yk−1∥
2

dTk−1yk−1


= βHS

k − 2


∥yk−1∥

dTk−1yk−1

2

gT
k dk−1, (1.6)

and prove that the conjugate gradient method with (1.6) satisfies the sufficient descent condition (1.5) with c̄ = 7/8, if
dTk−1yk−1 ≠ 0 holds for all k. Hager and Zhang [6] extended βHZ

k and gave the following formula

βMHZ
k =

1
dTk−1yk−1

gT
k


yk−1 − λdk−1

∥yk−1∥
2

dTk−1yk−1


= βHS

k − λ


∥yk−1∥

dTk−1yk−1

2

gT
k dk−1, (1.7)

where λ > 1/4. Note that their method satisfies the sufficient descent condition with c̄ = 1 − 1/(4λ). Following
Hager–Zhang’s idea, Yu et al. [15] proposed a modified Polak–Ribière method whose βk is given by

βYGL
k =

1
∥gk−1∥

2
gT
k


yk−1 − λdk−1

∥yk−1∥
2

∥gk−1∥
2


= βPR

k − λ


∥yk−1∥

∥gk−1∥
2

2

gT
k dk−1, (1.8)

where λ > 1/4. They showed that a conjugate gradient method with βYGL
k also satisfies the sufficient descent condition

with c̄ = 1 − 1/(4λ). After that, Yuan [16] proposed some variants of the method of Yu et al.
Considering thatβHZ

k can be regarded as amodification ofβHS
k , we propose, in this paper, new conjugate gradientmethods

which are based on βk in [7–10] and satisfy the sufficient descent condition. The present paper is organized as follows. In
Section 2,we propose the parameterβk bymaking use of the technique ofHager and Zhang [6], and give its related algorithm.
In Section 3,we showglobal convergence of ourmethod given in Section 2. Finally, in Section 4, somenumerical experiments
are presented.

2. Conjugate gradient methods based on the secant conditions that generate descent search directions

In this section, we propose conjugate gradient methods based on the secant conditions that generate descent search
directions. In Section 2.1, we review conjugate gradient methods based on secant conditions. In Section 2.2, making use of
Hager and Zhang’s idea, we give new formulas of βk.
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2.1. Conjugate gradient methods based on the secant conditions

The conjugacy condition of (nonlinear) conjugate gradient methods is given by

dTkyk−1 = 0. (2.1)

In order to incorporate the second-order information into the conjugacy condition (2.1), Perry [17] extended the conjugacy
condition (2.1) by using the secant condition of quasi-Newton methods:

Bksk−1 = yk−1, (2.2)

and the search direction dk of quasi-Newton methods:

Bkdk = −gk, (2.3)

where Bk is a symmetric approximation matrix to the Hessian ∇
2f (xk). Specifically, based on the relations (2.2) and (2.3),

Perry gave the following relation

dTkyk−1 = dTk (Bksk−1) = (Bkdk)T sk−1 = −gT
k sk−1.

Thus, Perry’s conjugacy condition is defined by

dTkyk−1 = −gT
k sk−1. (2.4)

After that, by incorporating nonnegative parameter t , Dai and Liao [7] proposed the following condition:

dTkyk−1 = −tgT
k sk−1. (2.5)

Note that, if t = 0, then (2.5) reduces to the usual conjugacy condition (2.1), and if t = 1, (2.5) becomes Perry’s
condition (2.4). Moreover, if we use the exact line search, the condition (2.5) is equivalent to the conjugacy condition (2.1),
independently of choices of t . By substituting (1.3) into condition (2.5), Dai and Liao proposed a parameter βk as follows:

βDL
k =

gT
k (yk−1 − tsk−1)

dTk−1yk−1
. (2.6)

Note that dTk−1yk−1 > 0 holds for all k if the Wolfe conditions are used in the line search. They showed that the
conjugate gradient method with βDL

k converges globally for a uniformly convex objective function under the assumption
that the method satisfies the descent condition. They also showed that the conjugate gradient method with βDL+

k =

max{0, gTk yk−1

dTk−1yk−1
} − t gTk sk−1

dTk−1yk−1
converges globally for a general objective function under the assumption that the method

satisfies the sufficient descent condition (1.5).
Recently, following Dai and Liao, several conjugate gradient methods have been studied by using other secant conditions

instead of the secant condition (2.2).We first introduce some secant conditions, and next review conjugate gradientmethods
based on these secant conditions.

Zhang et al. [18] and Zhang and Xu [19] presented a modified secant condition. After that, Yabe and Takano [8]
incorporated a nonnegative parameterφk into themodified secant condition by Zhang et al. and gave the followingmodified
secant condition:

Bksk−1 = zYTk−1, zYTk−1 = yk−1 + φk


θk−1

sTk−1uk−1
uk−1


, (2.7)

where

θk−1 = 6(fk−1 − fk) + 3(gk−1 + gk)T sk−1, (2.8)

fk denotes f (xk) and uk−1 ∈ Rn is any vector such that sTk−1uk−1 ≠ 0 holds. Note that the original modified secant condition
by Zhang et al. is (2.7) with φk = 1. Li and Fukushima [20] gave the MBFGS secant condition:

Bksk−1 = zZZk−1, zZZk−1 = yk−1 + ζ∥gk∥qsk−1, (2.9)

where ζ > 0 and q > 0 are constants. Ford and Moghrabi [21,22] proposed the multi-step secant condition. Later on, Ford
et al. [9] introduced the following specific choices of the multi-step secant conditions:

BkhF1
k−1 = zF1k−1, hF1

k−1 = sk−1 − ξk−1sk−2, zF1k−1 = yk−1 − ξk−1yk−2, (2.10)

and

BkhF2
k−1 = zF2k−1, hF2

k−1 = sk−1 − ξk−1sk−2, zF2k−1 = yk−1 − tξk−1yk−2, (2.11)
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Table 1
zk−1 and hk−1 in (2.19).

Name zk−1 hk−1

βDL
k yk−1 sk−1

βYT
k zYTk−1 in (2.7) sk−1

βZZ
k zZZk−1 in (2.9) sk−1

βF1
k zF1k−1 in (2.10) hF1

k−1 in (2.10)

βF2
k zF2k−1 in (2.11) hF2

k−1 in (2.11)

where

ξk−1 =
δ2
k−1

1 + 2δk−1
, δk−1 = ηk

∥sk−1∥

∥sk−2∥
, (2.12)

and ηk ≥ 0 is a scaling factor.
Based on the modified secant condition (2.7), Yabe and Takano [8] proposed the following formula for βk:

βYT
k =

gT
k (zYTk−1 − tsk−1)

dTk−1z
YT
k−1

. (2.13)

On the other hand, based on (2.9), Zhou and Zhang [10] proposed

βZZ
k =

gT
k (zZZk−1 − tsk−1)

dTk−1z
ZZ
k−1

. (2.14)

In addition, based on (2.10) and (2.11), Ford et al. [9] proposed two types of formulas for βk given by

βF1
k =

gT
k (zF1k−1 − thF1

k−1)

dTk−1z
F1
k−1

, (2.15)

βF2
k =

gT
k (zF2k−1 − thF2

k−1)

dTk−1z
F2
k−1

. (2.16)

We now treat a unified formula of βk in (2.6) and (2.13)–(2.16). Secant conditions are generally represented by

Bkhk−1 = zk−1. (2.17)

In the case of hk−1 = sk−1 and zk−1 = yk−1, (2.17) reduces to the usual secant condition (2.2). Following Dai and Liao, we
have a general form of conjugacy condition dTk zk−1 = −tgT

k hk−1. By substituting (1.3) into the above condition,

βkdTk−1zk−1 = gT
k zk−1 − tgT

k hk−1 (2.18)

is obtained. If dTk−1zk−1 = 0, then βk satisfying (2.18) does not necessarily exist. Thus we set βk = 0 when dTk−1zk−1 = 0.
Taking into account the above arguments, we have the formula for βk as follows:

βSecant
k = gT

k (zk−1 − thk−1)(dTk−1zk−1)
Ď, (2.19)

where Ď implies the following generalized inverse:

aĎ =

1
a
, a ≠ 0,

0, a = 0.

In Table 1, we give zk−1 and hk−1 in (2.19) for the cases βDL
k , βYT

k , βZZ
k , βF1

k and βF2
k .

The conjugate gradient method with (2.19) does not necessarily generate descent search directions. If we try to establish
the global convergence of conjugate gradient method with (2.19), we need to assume that the search direction satisfies the
(sufficient) descent condition. In order to overcome this weakness, Sugiki et al. applied (2.19) to the three-term conjugate
gradient method in [13] and proposed three-term conjugate gradient methods satisfying gT

k dk = −∥gk∥2 which implies the
sufficient descent condition (1.5). Zhang [23] also proposed three-term conjugate gradient methods based on the secant
condition. Zhang set the search direction such as

dk = −gk + βkdk−1 + ϑkpk, (2.20)

where pk = gk or yk−1 and ϑk is a parameter, and gave ϑk by substituting (2.20) into condition (2.5). Note that Zhang’s
method satisfies the sufficient descent condition (1.5) with c̄ = 1 − ρ̄, where ρ̄ ∈ [0, 1) is a given parameter. On the other
hand, we propose, in this section, a conjugate gradient methodwhich satisfies the sufficient descent condition bymodifying
the unified formula of βk in (2.19).
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2.2. Proposed method

In this section, we give conjugate gradient methods that are based on secant conditions and satisfy the sufficient descent
condition. Taking into account βMHZ

k in (1.7) or βYGL
k in (1.8), we propose the following formula of βk:

βDS
k = βSecant

k − λ∥zk−1 − thk−1∥
2gT

k dk−1{(dTk−1zk−1)
2
}
Ď

= gT
k (zk−1 − thk−1)(dTk−1zk−1)

Ď
− λ∥zk−1 − thk−1∥

2gT
k dk−1{(dTk−1zk−1)

2
}
Ď, (2.21)

where λ is a parameter such that λ > 1/4, and ‘‘DS’’ denotes ‘‘Descent and Secant conditions’’. If dTk−1zk−1 = 0, then βDS
k = 0

and gT
k dk = −∥gk∥2, otherwise, considering the fact that uTv ≤

1
2 (∥u∥

2
+ ∥v∥

2) holds for any vector u and v, we have

gT
k dk = −∥gk∥2

+ βDS
k gT

k dk−1

= −∥gk∥2
+

1
(dTk−1zk−1)2

{dTk−1zk−1gT
k (zk−1 − thk−1)gT

k dk−1 − λ(gT
k dk−1)

2
∥zk−1 − thk−1∥

2
}

= −∥gk∥2
+

1
(dTk−1zk−1)2


(dTk−1zk−1gk)T

√
2λ

{
√
2λgT

k dk−1(zk−1 − thk−1)} − λ(gT
k dk−1)

2
∥zk−1 − thk−1∥

2



≤ −∥gk∥2
+

1
(dTk−1zk−1)2


∥dTk−1zk−1gk∥2

4λ
+ λ∥gT

k dk−1(zk−1 − thk−1)∥
2
− λ(gT

k dk−1)
2
∥zk−1 − thk−1∥

2



= −


1 −

1
4λ


∥gk∥2.

Summarizing the above arguments, the following lemma is obtained.

Lemma 2.1. Consider the conjugate gradient method (1.2)–(1.3) with (2.21). Then the sufficient descent condition (1.5) holds
with c̄ = 1 −

1
4λ .

To establish the global convergence of the methods for a general objective function, βk ≥ 0 is often needed. Then we
replace βDS

k by

βDS+
k = max{0, βDS

k }. (2.22)

Note that Lemma 2.1 still holds for the conjugate gradient method with (2.22). We now give an algorithm of conjugate
gradient method with (2.21) or (2.22).

Algorithm 2.1. Step 0. Give an initial point x0 ∈ Rn and positive parameters λ > 1/4, 0 < σ1 < σ2 < 1. Set the initial
search direction d0 = −g0. Let k = 0 and go to Step 2.

Step 1. Compute dk by (1.3) with (2.21) (or (2.22)).
Step 2. Determine a step size αk satisfying the Wolfe conditions:

f (xk + αkdk) − f (xk) ≤ σ1αkgT
k dk, (2.23)

g(xk + αkdk)Tdk ≥ σ2gT
k dk. (2.24)

Step 3. Update xk+1 by (1.2).
Step 4. If the stopping criterion is satisfied, then stop. Otherwise go to Step 5.
Step 5. Let k := k + 1 and go to Step 1.

Note that the Wolfe conditions and (1.5) yield

dTk−1yk−1 ≥ (σ2 − 1)gT
k−1dk−1 ≥ c̄(1 − σ2)∥gk−1∥

2(> 0). (2.25)

Nowwe introduce the concrete choices of βDS
k and βDS+

k by using the same arguments in Section 2.1. Considering Table 1
and (2.21), concrete choices of βDS

k and βDS+
k are respectively given by the following:

βDSDL
k = gT

k (yk−1 − tsk−1)(dTk−1yk−1)
Ď
− λ∥yk−1 − tsk−1∥

2gT
k dk−1{(dTk−1yk−1)

2
}
Ď, (2.26)

βDSYT
k = gT

k (zYTk−1 − tsk−1)(dTk−1z
YT
k−1)

Ď
− λ∥zYTk−1 − tsk−1∥

2gT
k dk−1{(dTk−1z

YT
k−1)

2
}
Ď, (2.27)

βDSZZ
k = gT

k (zZZk−1 − tsk−1)(dTk−1z
ZZ
k−1)

Ď
− λ∥zZZk−1 − tsk−1∥

2gT
k dk−1{(dTk−1z

ZZ
k−1)

2
}
Ď, (2.28)

βDSF1
k = gT

k (zF1k−1 − thF1
k−1)(d

T
k−1z

F1
k−1)

Ď
− λ∥zF1k−1 − thF1

k−1∥
2gT

k dk−1{(dTk−1z
F1
k−1)

2
}
Ď, (2.29)

βDSF2
k = gT

k (zF2k−1 − thF2
k−1)(d

T
k−1z

F2
k−1)

Ď
− λ∥zF2k−1 − thF2

k−1∥
2gT

k dk−1{(dTk−1z
F2
k−1)

2
}
Ď, (2.30)
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and

βDSDL+
k = max{0, βDSDL

k }, (2.31)

βDSYT+
k = max{0, β̃DSYT

k }, (2.32)

βDSF1+
k = max{0, βDSF1

k }, (2.33)

βDSF2+
k = max{0, βDSF2

k }, (2.34)

where β̃DSYT
k is βDS

k with hk−1 = sk−1 and

zk−1 = zYT+k−1 ≡ yk−1 + φk


max{0, θk−1}

sTk−1uk−1
uk−1


. (2.35)

3. Global convergence of the proposed methods

In this section, we investigate the global convergence property of Algorithm 2.1. For this purpose, wemake the following
assumptions for the objective function.

Assumption 3.1.
A1. The level set L = {x|f (x) ≤ f (x0)} at x0 is bounded, namely, there exists a constanta > 0 such that

∥x∥ ≤a for all x ∈ L. (3.1)

A2. In some open convex neighborhood N of L, f is continuously differentiable, and its gradient g is Lipschitz continuous,
namely, there exists a positive constant L such that

∥g(x) − g(x̄)∥ ≤ L∥x − x̄∥ for all x, x̄ ∈ N .

Note that Assumption 3.1 means that there exists a positive constant γ such that

∥g(x)∥ ≤ γ for all x ∈ L. (3.2)

We also assume gk ≠ 0 for all k, otherwise a stationary point has been found.
To establish the global convergence of the methods, we give a lemma for general iterative methods. The lemma can be

easily shown by using the Zoutendijk condition [24], and hence we omit the proof (for example, see [13]).

Lemma 3.1. Suppose that Assumption 3.1 holds. Consider any iterative method of the form (1.2), where dk and αk satisfy the
sufficient descent condition (1.5) and the Wolfe conditions (2.23) and (2.24), respectively. If

∞
k=0

1
∥dk∥2

= ∞,

then lim infk→∞ ∥gk∥ = 0 holds.

By using Lemma 3.1, we have the following theorem.

Theorem 3.1. Suppose that Assumption 3.1 holds. Let the sequence {xk} be generated by Algorithm 2.1. If there exist positive
constants c1 and c2 such that zk−1 and hk−1 satisfy

∥zk−1 − thk−1∥ ≤ c1∥sk−1∥, (3.3)

αk−1∥dk−1∥
2
|dTk−1zk−1|

Ď
≤ c2 (3.4)

for all k, then the method converges globally in the sense that lim infk→∞ ∥gk∥ = 0.

Proof. By (2.23) and Lemma 2.1, the sequence {xk} is contained in the level set L. It follows from (2.21) and (3.2)–(3.4) that

|βDS
k | ∥dk−1∥ ≤

gT
k (zk−1 − thk−1)(dTk−1zk−1)

Ď
 ∥dk−1∥ + λ

gT
k dk−1

 ∥zk−1 − thk−1∥
2
{(dTk−1zk−1)

2
}
Ď
∥dk−1∥

≤ c1αk−1∥gk∥ ∥dk−1∥
2
|dTk−1zk−1|

Ď
+ λc21α

2
k−1∥gk∥ ∥dk−1∥

4(|dTk−1zk−1|
Ď)2

≤ (c1c2 + λc21c
2
2 )γ ,

and hence we have from (1.3) that

∥dk∥ ≤ ∥gk∥ + |βDS
k | ∥dk−1∥ ≤ (1 + c1c2 + λc21c

2
2 )γ ,

which implies that


∞

k=0 1/∥dk∥
2

= ∞ holds. Therefore from Lemma 3.1, the proof is complete. �
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By using Theorem 3.1, we can show global convergence properties of Algorithm 2.1 with βDSDL
k , βDSYT

k , βDSF1
k , and βDSF2

k
for a uniformly convex objective function, and Algorithm 2.1 with βDSZZ

k for a general objective function.
First we give the definition of uniformly convex function. The function f is said to be uniformly convex (on Rn) with

modulus µ if f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y) −
1
2µ(1 − λ)λ∥x − y∥2 holds for any x, y ∈ Rn and λ ∈ (0, 1). Note

that, if f is a continuously differentiable uniformly convex function, the following holds:

(g(x) − g(x̄))T (x − x̄) ≥ µ∥x − x̄∥2 for all x, x̄ ∈ Rn. (3.5)

We also note that, if f is a uniformly convex function, then the level set L is bounded for any x0, and hence Assumption A1
is satisfied.

The proof of the following theorem is similar to that of [12, Theorem 2], but we do not omit the proof for readability.

Theorem 3.2. Suppose that Assumption 3.1 holds and that f is a uniformly convex function. Let x∗ be a unique optimal solution
to (1.1).
(i) Algorithm 2.1 with βDSDL

k in (2.26) converges globally, i.e. limk→∞ xk = x∗.

(ii) Assume that φk and uk satisfy 0 ≤ φk ≤ φ̄ and

|sTk−1uk−1| ≥ m̄∥sk−1∥ ∥uk−1∥, (3.6)

where φ̄ is a positive constant such that φ̄ < µ/(3L), and m̄ is some positive constant. Then Algorithm 2.1 with βDSYT
k in

(2.27) converges globally, i.e. limk→∞ xk = x∗.
(iii) If ηk satisfies 0 ≤ ηk ≤ η̄ for some positive constant η̄ such that 2µ − η̄L > 0 holds, then Algorithm 2.1 with βDSF1

k in
(2.29) converges globally, i.e. limk→∞ xk = x∗.

(iv) If ηk satisfies 0 ≤ ηk ≤ η̄ for some positive constant η̄ such that 2µ − tη̄L > 0 holds, then Algorithm 2.1 with βDSF2
k in

(2.30) converges globally, i.e. limk→∞ xk = x∗.

Proof. (i) By Table 1, we have

∥zk−1 − thk−1∥ = ∥yk−1 − tsk−1∥ ≤ (L + t)∥sk−1∥, (3.7)

which implies (3.3) with c1 = L + t . Since from (3.5), yTk−1sk−1 ≥ µ∥sk−1∥
2 holds, we have

|dTk−1zk−1| = |dTk−1yk−1| ≥ µαk−1∥dk−1∥
2.

Thus (3.4) is satisfied with c2 = 1/µ. It follows from Theorem 3.1 that lim infk→∞ ∥gk∥ = 0 holds.
(ii) By the mean value theorem, the following holds:

fk−1 − fk = −g(τ ′xk−1 + (1 − τ ′)xk)T sk−1

for some τ ′
∈ (0, 1). Then it follows from (2.8) and Assumption A2 that

|θk−1| = |6(fk−1 − fk) + 3(gk−1 + gk)T sk−1|

= | − 6g(τ ′xk−1 + (1 − τ ′)xk)T sk−1 + 3(gk−1 + gk)T sk−1|

≤ 3{∥gk−1 − g(τ ′xk−1 + (1 − τ ′)xk)∥ + ∥gk − g(τ ′xk−1 + (1 − τ ′)xk)∥}∥sk−1∥

≤ 3L{∥xk−1 − (τ ′xk−1 + (1 − τ ′)xk)∥ + ∥xk − (τ ′xk−1 + (1 − τ ′)xk)∥}∥sk−1∥

= 3L∥sk−1∥
2. (3.8)

We have from Table 1, (3.6), (3.8) and Assumption A2 that

∥zk−1 − thk−1∥ =

yk−1 + φk


θk−1

sTk−1uk−1
uk−1


− tsk−1


≤ L∥sk−1∥ + φk

3L∥sk−1∥
2

m̄∥sk−1∥ ∥uk−1∥
∥uk−1∥ + t∥sk−1∥

≤


L + φ̄

3L
m̄

+ t


∥sk−1∥. (3.9)

The relations (3.5) and (3.8) yield

|dTk−1zk−1| =

dTk−1yk−1 + φk
θk−1

sTk−1uk−1
dTk−1uk−1


≥ |dTk−1yk−1| −

φk

αk−1
3L∥sk−1∥

2

≥ (µ − 3φ̄L)αk−1∥dk−1∥
2. (3.10)
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Wenote thatµ−3φ̄L > 0. The relations (3.9) and (3.10) imply (3.3) and (3.4)with c1 = (L+3φ̄L/m̄+t) and c2 = 1/(µ−3φ̄L),
and hence we get, from Theorem 3.1, that lim infk→∞ ∥gk∥ = 0.

(iii) The relation (2.12) yields

ξk−1 ≤
δk−1

2
=

ηk

2
∥sk−1∥

∥sk−2∥
, (3.11)

and hence we have from Table 1 and (3.11) that

∥zk−1 − thk−1∥ = ∥yk−1 − ξk−1yk−2 − t(sk−1 − ξk−1sk−2)∥

≤ ∥yk−1∥ + ξk−1∥yk−2∥ + t∥sk−1∥ + tξk−1∥sk−2∥

≤ (L + t)∥sk−1∥ +
ηk

2
∥sk−1∥

∥sk−2∥
(L + t)∥sk−2∥

≤


1 +

η̄

2


(L + t)∥sk−1∥, (3.12)

which implies (3.3) with c1 = (1 + η̄/2) (L + t). We have from (3.5), (3.11), and Assumption A2

|dTk−1zk−1| = |dTk−1yk−1 − ξk−1dTk−1yk−2|

≥ |dTk−1yk−1| − ξk−1|dTk−1yk−2|

≥ µαk−1∥dk−1∥
2
−

ηk

2
∥sk−1∥

∥sk−2∥
∥dk−1∥ ∥yk−2∥

≥ µαk−1∥dk−1∥
2
−

η̄

2
Lαk−1∥dk−1∥

2

=


µ −

η̄

2
L


αk−1∥dk−1∥
2.

Wenote thatµ−η̄L/2 > 0, and hence (3.4) holdswith c2 = 1/(µ−η̄L/2). Thus by Theorem3.1,we get lim infk→∞ ∥gk∥ = 0.
(iv) By Table 1 and (3.11), we have

∥zk−1 − thk−1∥ = ∥yk−1 − tξk−1yk−2 − t(sk−1 − ξk−1sk−2)∥

≤ (L + t)∥sk−1∥ + t
ηk

2
(1 + L)∥sk−1∥

≤


L + t +

η̄

2
t (1 + L)


∥sk−1∥. (3.13)

It follows from (3.5) and (3.11) that

|dTk−1zk−1| = |dTk−1yk−1 − tξk−1dTk−1yk−2|

≥ µαk−1∥dk−1∥
2
− tL

ηk

2
∥sk−1∥ ∥dk−1∥

≥


µ −

η̄

2
Lt


αk−1∥dk−1∥
2. (3.14)

We note µ − η̄Lt/2 > 0. Therefore, we have from (3.13) and (3.14) that (3.3) and (3.4) hold with c1 = L + t + η̄t(1 + L)/2
and c2 = 1/(µ − η̄Lt/2). It follows from Theorem 3.1 that we have lim infk→∞ ∥gk∥ = 0.

Summarizing (i)–(iv), we have lim infk→∞ ∥gk∥ = 0 for each case. Since f is uniformly convex, we obtain the desired
result. Therefore the theorem is proved. �

Although condition (3.6) for uk−1 is assumed in (ii) of Theorem 3.2, this condition is reasonable. For example, if uk−1 =

sk−1, (3.6) is satisfied with m̄ = 1. If uk−1 = yk−1, it follows from (3.5) that

|sTk−1uk−1| = |sTk−1yk−1| ≥ µ∥sk−1∥
2

≥
µ

L
∥sk−1∥ ∥yk−1∥,

which implies that (3.6) is satisfied with m̄ = µ/L.
Next we show global convergence of Algorithm 2.1 with βDSZZ

k for a general function.

Theorem 3.3. Suppose that Assumption 3.1 holds. Consider Algorithm 2.1 with βDSZZ
k in (2.28). Then the method converges

globally in the sense that lim infk→∞ ∥gk∥ = 0.
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Proof. To prove this theorem by contradiction, we suppose that there exists a positive constant ε such that

∥gk∥ > ε for all k. (3.15)

It follows from Table 1 and (3.2) that

∥zk−1 − thk−1∥ =
yk−1 + ζ∥gk ∥

q sk−1 − tsk−1
 ≤ (L + ζγ q

+ t)∥sk−1∥. (3.16)

We have from (2.25) that dTk−1yk−1 > 0, and hence it follows from (3.15) that

|dTk−1zk−1| = dTk−1yk−1 + ζ∥gk−1∥
qdTk−1sk−1 > ζεqαk−1∥dk−1∥

2. (3.17)

Therefore, it follows from (3.16) and (3.17) that (3.3) and (3.4) hold with c1 = L + ζγ q
+ t and c2 = 1/(ζεq). Although, by

Theorem 3.1, we have lim infk→∞ ∥gk∥ = 0, this contradicts (3.15). Therefore the proof is complete. �

Although we proved, in Theorem 3.2, global convergence properties of the method with βDSDL
k , βDSYT

k , βDSF1
k and βDSF2

k
for uniformly convex objective functions, we have not shown their global convergence properties for general objective
functions. Accordingly, in the rest of this section, we consider the global convergence properties of the methods for such
functions.

The following property is originally given in [4], and this property shows that βk will be small when the step sk−1 is small.

Property ⋆. Consider the conjugate gradient method (1.2)–(1.3) and suppose that there exist positive constants ε and γ such
that ε ≤ ∥gk∥ ≤ γ for all k. If there exist b > 1 and ν > 0 such that |βk| ≤ b and

∥sk−1∥ ≤ ν H⇒ |βk| ≤
1
2b

,

then we say that the method has Property⋆.

The general result under Property ⋆ is the following (for example, see [6]).

Theorem 3.4. Suppose that Assumption 3.1 holds. Let {xk} be the sequence generated by the conjugate gradient
method (1.2)–(1.3) which satisfies the following conditions:

(C1) βk ≥ 0 for all k,
(C2) the sufficient descent condition,
(C3) the Zoutendijk condition,
(C4) Property⋆.

Then the sequence {xk} converges globally in the sense that lim infk→∞ ∥gk∥ = 0.

In order to apply Theorem 3.4 to Algorithm 2.1, βk must be nonnegative. As mentioned around (2.22), we consider
Algorithm 2.1 with βDS+

k instead of βDS
k . We note that, if βDS

k < 0 then βDS+
k = 0 and the search direction becomes

the steepest descent direction (i.e. dk = −gk), and hence Algorithm 2.1 with βDS+
k still satisfies the sufficient descent

condition (1.5).
Now we give the following global convergence property for general objective functions.

Theorem 3.5. Suppose that Assumption 3.1 holds.

(i) Algorithm 2.1 with βDSDL+
k in (2.31) converges globally in the sense that lim infk→∞ ∥gk∥ = 0.

(ii) Assume that uk and φk satisfy (3.6) and 0 ≤ φk ≤ φ̄ where φ̄ is any fixed positive constant. Then Algorithm 2.1with βDSYT+
k

in (2.32) converges globally in the sense that lim infk→∞ ∥gk∥ = 0.
(iii) Assume that there exists a positive constant ϕ1 such that, for all k,

max{|gT
k−1dk−1|, |gT

k dk−1|} |dTk−1z
F1
k−1|

Ď
≤ ϕ1 (3.18)

holds. If ηk satisfies 0 ≤ ηk ≤ η̄ for any fixed positive constant η̄, then Algorithm 2.1withβDSF1+
k in (2.33) converges globally

in the sense that lim infk→∞ ∥gk∥ = 0.
(iv) Assume that there exists a positive constant ϕ2 such that, for all k,

max{|gT
k−1dk−1|, |gT

k dk−1|} |dTk−1z
F2
k−1|

Ď
≤ ϕ2 (3.19)

holds. If ηk satisfies 0 ≤ ηk ≤ η̄ for any fixed positive constant η̄, then Algorithm 2.1withβDSF2+
k in (2.34) converges globally

in the sense that lim infk→∞ ∥gk∥ = 0.
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Proof. By (2.22), βDS+
k ≥ 0 holds, and hence condition (C1) is satisfied. As mentioned above, the method with βDS+

k satisfies
the sufficient descent condition, which implies condition (C2). Assumption A2 and theWolfe conditions yield the Zoutendijk
condition, and hence condition (C3) is also satisfied. Therefore, we need to prove Property ⋆ only, and hence we assume, in
the rest of the proof, that there exists a positive constant ε such that

ε ≤ ∥gk∥ (3.20)

holds for any k. Since the level set L is bounded and {xk} ⊂ L, we have from (3.1) that

∥sk−1∥ < 2a. (3.21)

Under the condition (3.20), if there exists a positive constant c3 satisfying

|βDS+
k | ≤ c3∥sk−1∥ (3.22)

for all k, then we have, by putting ν = 1/(2bc3), that |βDS+
k | ≤ max{1, 2ac3} ≡ b and

∥sk−1∥ ≤ ν H⇒ |βDS+
k | ≤

1
2b

,

which implies that Property ⋆ is satisfied. Thus it suffices to prove that (3.22) holds for cases (i)–(iv).
Here, we give some facts. It follows from (2.25) and (3.20) that

dTk−1yk−1 ≥ c̄(1 − σ2)∥gk−1∥
2

≥ c̄(1 − σ2)ε
2. (3.23)

The relation gT
k−1dk−1 < 0 and (2.24) yield

gT
k dk−1 ≤ gT

k dk−1 − gT
k−1dk−1 = dTk−1yk−1,

gT
k dk−1 ≥ σ2gT

k−1dk−1 = −σ2dTk−1yk−1 + σ2gT
k dk−1,

and hence we have from σ2 ∈ (0, 1) and dTk−1yk−1 > 0 that

|gT
k dk−1| ≤ max


1,

σ2

1 − σ2


dTk−1yk−1 = c4dTk−1yk−1, (3.24)

where c4 = max{1, σ2/(1 − σ2)}.
Now we prove (3.22) for each case.
(i) By taking into account zDLk−1 = yk−1 and hDL

k−1 = sk−1, it follows from (3.7), (3.23), (3.24), (3.21) and the Lipschitz
continuity of g that

|βDSDL+
k | ≤ |gT

k (zDLk−1 − thDL
k−1)| |dTk−1z

DL
k−1|

Ď
+ λ∥zDLk−1 − thDL

k−1∥
2
|gT

k dk−1|{(dTk−1z
DL
k−1)

2
}
Ď

≤
γ (L + t)

c̄(1 − σ2)ε2
∥sk−1∥ + λ

c4(L + t)2

c̄(1 − σ2)ε2
∥sk−1∥

2

≤


γ (L + t)

c̄(1 − σ2)ε2
+ λ

2c4(L + t)2a
c̄(1 − σ2)ε2


∥sk−1∥,

which implies that (3.22) holds.
(ii) By (2.35), (3.23) and φk ≥ 0, we have

|dTk−1z
YT+
k−1 | =

dTk−1yk−1 +
φk

αk−1
max{0, θk−1}

 ≥ dTk−1yk−1 ≥ c̄(1 − σ2)ε
2. (3.25)

It follows from (3.24) and (3.25) (namely, |dTk−1z
YT+
k−1 | ≥ |dTk−1yk−1|) that

|gT
k dk−1| ≤ c4|dTk−1yk−1| ≤ c4|dTk−1z

YT+
k−1 |. (3.26)

Similar to (3.9), we have from (2.35) that

∥zYT+k−1 − thYT
∥ =

yk−1 + φk
max{0, θk−1}

sTk−1uk−1
uk−1 − tsk−1

 ≤ c5∥sk−1∥,

where c5 = t + (1 + 3φ̄/m̄)L. Therefore, it follows from (3.21), (3.25) and (3.26) that
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|βDSTY+

k | ≤ |gT
k (zYT+k−1 − thYT

k−1)| |dTk−1z
YT+
k−1 |

Ď
+ λ∥zYT+k−1 − thYT

k−1∥
2
|gT

k dk−1|{(dTk−1z
YT+
k−1 )2}Ď

≤
γ c5

c̄(1 − σ2)ε2
∥sk−1∥ + λ

c4c25
c̄(1 − σ2)ε2

∥sk−1∥
2

≤


γ c5

c̄(1 − σ2)ε2
+ λ

2c4c25a
c̄(1 − σ2)ε2


∥sk−1∥,

which implies that (3.22) holds.
(iii) The relations (1.5) and (3.18) yield

|dTk−1z
F1
k−1|

Ď
≤

ϕ1

c̄ε2
, |gT

k dk−1| |dTk−1z
F1
k−1|

Ď
≤ ϕ1

and therefore, it follows from (3.12) and (3.21) that

|βDSF1+
k | ≤ |gT

k (zF1k−1 − thF1
k−1)| |dTk−1z

F1
k−1|

Ď
+ λ∥zF1k−1 − thF1

k−1∥
2
|gT

k dk−1|{(dTk−1z
F1
k−1)

2
}
Ď

≤
ϕ1γ c6
c̄ε2

∥sk−1∥ + λ
ϕ2
1c

2
6

c̄ε2
∥sk−1∥

2

≤


ϕ1γ c6
c̄ε2

+ λ
2ϕ2

1c
2
6a

c̄ε2


∥sk−1∥,

where c6 = (1 + η̄/2)(L + t), which implies that (3.22) holds.
(iv) The relations (1.5) and (3.19) yield

|dTk−1z
F2
k−1|

Ď
≤

ϕ2

c̄ε2
, |gT

k dk−1| |dTk−1z
F2
k−1|

Ď
≤ ϕ2

and therefore, it follows from (3.13) and (3.21) that

|βDSF2+
k | ≤ |gT

k (zF2k−1 − thF2
k−1)| |dTk−1z

F2
k−1|

Ď
+ λ∥zF2k−1 − thF2

k−1∥
2
|gT

k dk−1|{(dTk−1z
F2
k−1)

2
}
Ď

≤
ϕ2γ c7
c̄ε2

∥sk−1∥ + λ
ϕ2
2c

2
7

c̄ε2
∥sk−1∥

2

≤


ϕ2γ c7
c̄ε2

+ λ
2ϕ2

2c
2
7a

c̄ε2


∥sk−1∥,

where c7 = L + t + η̄t(L + 1)/2, which implies that (3.22) holds.
Summarizing (i)–(iv), the proof is complete. �

Although (3.18) and (3.19) look like strong assumptions, these are reasonable if we use (2.23) and the condition

− σ3gT
k dk ≥ g(xk + αkdk)Tdk ≥ σ2gT

k dk, (3.27)

as the line search rules, where 0 < σ1 < σ2 < 1 and 0 < σ3 < 1. Note that the conditions (2.23) and (3.27) are the Wolfe
conditions with the additional condition −σ3gT

k dk ≥ g(xk + αkdk)Tdk. We also note that, if σ3 = σ2, then the conditions
(2.23) and (3.27) become the strong Wolfe conditions: (2.23) and

|g(xk + αkdk)Tdk| ≤ −σ2gT
k dk,

and in addition, if σ3 = 1− 2σ1 and σ1 < 1/2, then (2.23) and (3.27) become the approximateWolfe conditions: (2.23) and

− (1 − 2σ1)gT
k dk ≥ g(xk + αkdk)Tdk ≥ σ2gT

k dk. (3.28)

We now demonstrate why (3.18) is reasonable under the conditions (2.23) and (3.27).
If dTk−1z

F1
k−1 = 0, then (3.18) is automatically satisfied. So that, we consider the case dTk−1z

F1
k−1 ≠ 0. Then we need to justify

|gT
k−1dk−1| ≤ ϕ1|dTk−1z

F1
k−1|, (3.29)

|gT
k dk−1| ≤ ϕ1|dTk−1z

F1
k−1|. (3.30)

It follows from (3.27) that

|gT
k dk−1| ≤ max{σ2, σ3}|gT

k−1dk−1| ≤ |gT
k−1dk−1|,

which implies that (3.30) holds if (3.29) is satisfied. Thus it suffices to consider (3.29). From the definition of zF1k−1 in (2.10),
we have

dTk−1z
F1
k−1 = dTk−1yk−1 − ξk−1dTk−1yk−2. (3.31)



4314 Y. Narushima, H. Yabe / Journal of Computational and Applied Mathematics 236 (2012) 4303–4317

If sTk−1yk−2 ≤ 0, then we have, from (3.31), ξk−1 > 0 and (3.27), that

dTk−1z
F1
k−1 ≥ dTk−1yk−1 ≥ −(1 − σ2)gT

k−1dk−1 (> 0),

which implies (3.29) with ϕ1 = 1/(1 − σ2). If sTk−1yk−2 > 0, we can control the magnitude of the last term in (3.31) by
using the parameter ηk. For example, if we choose ηk = 0, then −ξk−1dTk−1yk−2 = 0, which implies (3.29) holds with
ϕ1 = 1/(1−σ2). Thus (3.29) is justified. Therefore, (3.18) is reasonable. We can also justify (3.19) in a similar way for (3.18).

4. Numerical results

In this section, we give numerical results of Algorithm 2.1 to compare our methods with other conjugate gradient
methods. We investigated numerical performance of the proposed algorithms on 70 problems from the CUTEr library
[25,26]. Note that we tested the proposed algorithms on 145 problems, but we omit the numerical results on small-scale
problems. Table 2 shows problem names and dimensions of 70 problems.

We tested the following methods:

CG-DESCENT : Software in [14,27,28],
DSDL+ : Algorithm 2.1 with βDSDL+

k and (λ, t) = (2, 0.3),
DSYT+ : Algorithm 2.1 with βDSYT+

k , (λ, t, φk) = (2, 0.3, 0.3) and uk = yk,
DSZZ+ : Algorithm 2.1 with βDSZZ+

k ≡ max{0, βDSZZ
k } and (λ, t) = (2, 0.3),

DSF1+ : Algorithm 2.1 with βDSF1+
k and (λ, t, ηk) = (2, 0.3, 0.3),

DSF2+ : Algorithm 2.1 with βDSF2+
k and (λ, t, ηk) = (2, 0.3, 0.3).

Following Zhou and Zhang [10], we chose, in DSZZ+, ζ = 0.001, and q = 1.0 if ∥gk∥ ≥ 1.0, otherwise q = 3.0. Although
Algorithm 2.1 with βDSZZ

k converges globally for a general objective function, we used βDSZZ+
k , instead of βDSZZ

k , because the
methods with βDSZZ+

k performed a little better than the methods with βk = βDSZZ
k did. We should note that the global

convergence property of the method with βDSZZ+
k is still established. To choose values of parameters λ, t, φk and ηk, we

had preliminarily performed the algorithm by using two or three kinds of values for each parameter. In this numerical
experiment, we chose values of parameters which relatively performed better in these preliminary numerical results.
CG-DESCENT is a software package of conjugate gradient method with (1.6) and an efficient line search which computes
the step size αk satisfying the approximate Wolfe conditions (2.23) and (3.28). We coded DSDL+, DSYT+, DSZZ+, DSF1+ and
DSF2+ by using CG-DESCENT [14,27,28], in which parameters were set as σ1 = 10−4 and σ2 = 0.1. The stopping condition
was

∥gk∥∞ ≤ 10−6.

We also stopped the algorithm if CPU time exceeded 500 seconds.We note from the numerical results in [12] that the three-
termconjugate gradientmethod given in [12] is almost comparablewith CG-DESCENT. Thusweomit numerical comparisons
of our methods with the three-term conjugate gradient method by Sugiki et al.

We adopt the performance profiles in [29] to compare the performance among the tested methods. For ns solvers and np
problems, the performance profile P : R → [0, 1] is defined as follows:

Let P and S be the set of problems and the set of solvers, respectively. For each problem p ∈ P and for each solver s ∈ S,
we define tp,s := (computing time (or number of iterations, etc.) required to solve problem p by solver s). The performance
ratio is given by rp,s := tp,s/mins∈S tp,s. Then, the performance profile is defined by P(τ ) :=

1
np
size{p ∈ P |rp,s ≤ τ } for

all τ ∈ R, where size{p ∈ P |rp,s ≤ τ } stands for the number of elements of the set {p ∈ P |rp,s ≤ τ }. Note that if the
performance profile of a method is over the performance profiles of the other methods, then this method performed better
than the other methods.

Figs. 1–4 are the performance profiles measured by CPU time, the number of iterations, the number of function
evaluations and the number of gradient evaluations, respectively. From the viewpoint of CPU time, we see from Fig. 1 that
CG-DESCENT performedwell in the interval 1 ≤ τ ≤ 2, and DSF1+ and DSF2+were at least comparablewith CG-DESCENT in
the interval 2 ≤ τ ≤ 5. On the other hand, DSDL+ andDSYT+were outperformed by CG-DESCENT. From the viewpoint of the
number of iterations, the number of function evaluations and the number of gradient evaluations, Figs. 2–4 show that DSF1+
and DSF2+ were superior to CG-DESCENT, and that DSDL+, DSYT+ and DSZZ+ were almost comparable with CG-DESCENT.
CG-DESCENT is coded to reduce the computational costs of inner-products that is needed in Hager–Zhang’s method [14]. On
the other hand, DSDL+, DSYT+, DSZZ+, DSF1+ and DSF2+ are not tuned to reduce the computational costs of inner-products,
and hence, as mentioned above, DSDL+, DSYT+, DSZZ+, DSF1+ and DSF2+ needmore computational costs for inner-products
than CG-DESCENT does. This is a reasonwhy CG-DESCENT is superior to the othermethods in the interval 1 ≤ τ ≤ 2 of Fig. 1.
We may reduce computational costs of DSDL+, DSYT+, DSZZ+, DSF1+ and DSF2+ by effectively tuning the code. However, it
is beyond the scope of this paper.

Summarizing the above observations, we can conclude that DSF1+ and DSF2+ are efficient in our numerical experiments,
and DSDL+, DSYT+ and DSZZ+ are almost comparable with CG-DESCENT. On the other hand, since the methods have some
parameters, a suitable choice of parameters in the methods is our further study.
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Table 2
Test problems (problem name and dimension).

ARWHEAD 5000 DIXMAAND 9000 FLETCHCR 10000 PENALTY1 10000
BDEXP 5000 DIXMAANE 9000 FMINSRF2 5625 POWELLSG 20000
BDQRTIC 5000 DIXMAANF 9000 FMINSURF 5625 POWER 20000
BIGGSB1 5000 DIXMAANG 9000 FREUROTH 5000 QUARTC 10000
BOX 7500 DIXMAANH 9000 GENHUMPS 5000 SCHMVETT 5000
BROYDN7D 5000 DIXMAANI 9000 GENROSE 5000 SINQUAD 10000
BROYDN7D 10000 DIXMAANJ 9000 GENROSE 10000 SPARSINE 5000
BRYBND 10000 DIXMAANK 3000 LIARWHD 10000 SPARSQUR 10000
CHAINWOO 4000 DIXMAANL 9000 MODBEALE 10000 SROSENBR 10000
CHAINWOO 10000 DIXON3DQ 10000 MOREBV 5000 TESTQUAD 5000
COSINE 10000 DQDRTIC 5000 MOREBV 10000 TOINTGSS 10000
CRAGGLVY 5000 DQRTIC 5000 NONCVXU2 5000 TQUARTIC 10000
CURLY10 10000 EDENSCH 10000 NONDIA 10000 TRIDIA 10000
CURLY20 10000 EG2 1000 NONDQUAR 5000 VAREIGVL 5000
CURLY30 5000 ENGVAL1 10000 NONDQUAR 10000 WOODS 4000
DIXMAANA 9000 EXTROSNB 1000 NONSCOMP 5000 WOODS 10000
DIXMAANB 9000 EXTROSNB 10000 OSCIPATH 10000
DIXMAANC 9000 FLETCHCR 1000 PENALTY1 1000

Fig. 1. Performance based on CPU time.

Fig. 2. Performance based on the number of iterations.

5. Conclusion

In this paper, we have proposed conjugate gradient methods based on secant conditions that generate descent search
directions. Under suitable assumptions, our methods have been shown to converge globally. In numerical experiments, we
have confirmed the effectiveness of the proposed methods by using performance profiles.
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Fig. 3. Performance based on the number of function evaluations.

Fig. 4. Performance based on the number of gradient evaluations.
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