
 Procedia Engineering   97  ( 2014 )  1745 – 1754 

Available online at www.sciencedirect.com

1877-7058 © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the Organizing Committee of GCMM 2014
doi: 10.1016/j.proeng.2014.12.326 

ScienceDirect

12th GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT, GCMM 2014 

A Comparison of Artificial Bee Colony algorithm and Genetic 
Algorithm to minimize the makespan for Job Shop Scheduling 

Muthiah Aa* and Rajkumar Rb 

aAsst.Professor, Department of Mechanical Engineering, P.S.R. Engineering College, Sivakasi – 626140, India 
bProfessor, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi – 626015, India 

  

Abstract 

Job shop scheduling is predominantly an Non deterministic polynomial (NP)- complete challenge which is successfully tackled 
by the ABC algorithm by elucidating its convergence. The Job Shop Scheduling Problem (JSSP) is one of the most popular 
scheduling models existing in practice which is among the hardest combinatorial optimization problems. The ABC (Artificial 
Bee Colony) technique is concerned, it is observed that the entire specific artificial bees move about in a search space and select 
food sources by suitably adapting their location, know-how and having a full awareness of their nest inhabitants. Moreover, 
several scout bees soar and select the food sources discretely without making use of any skills. In the event of the quantity of the 
nectar in the fresh source becoming larger than the nectar quantity of an available source, they remember the fresh location and 
conveniently disregard the earlier position. In this way, the ABC system integrates local search techniques, executed by 
employed and onlooker bees, with universal search approaches, administered by onlookers and scouts. In our ambitious approach 
we have employed these three bees to furnish optimization in makespan, machine work load and the whole run period in an 
optimized method.    In this way, with the efficient employment of our effective technique we make an earnest effort to minimize 
the makespan and number of machines. This paper compares GA to minimize the make span of the job scheduling process with 
ABC and proved that ABC algorithm produces the better result. 
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1. Introduction 

Permutation sequence-dependent setup times are the most significant combinational optimization challenges 
extensively encountered by the industries everywhere [1]. Of late, scheduling issues have assumed a crucial part on 
account of the zooming customer quest for diversity, abridged product life periods, ever-progressing markets with 
international competition and swift expansion of sophisticated technologies [2].  Generally, Job-shop scheduling is, 
in fact, a powerful NP-complete issue.  Many an investigator has launched innovative JSP model in terms of issue 
constraints. It is essential that every job must be processed without preemption for a pre-determined time frame in 
respect of a particular machine [3]. A schedule, in turn, is an allotment of functions to time intervals on a machine. 
The makespan represents the highest run time of the processes and the aim of the JSP is to arrive at a schedule that 
ensures the least make span which represents the interval between the start of the initial process to the end of the 
final process, i.e. from start to finish.  A good schedule is A schedule which achieves ensures the least   idle time for 
the machines is considered to be a superb one [4]. Artificial neural network brands have been efficiently executed to 
tackle with a job-shop scheduling problem (JSSP) called a Non polynomial (NP-complete) trait contentment issue.  
Usually, an NP-complete issue is one which for a certain input of dimension N consumers a time  in direction 
proportion to at least 2N [5]. Here, we follow a flow shop mechanism comprising M machines which are intended to 
process N similar tasks.  It is to be noted that for getting swift services, added attention and administration are highly 
essential. On the other hand, prolonged services cause hindrances by taking longer runtimes which result in missing 
the time frame desired. Our target in this investigation is to arrive at the cost reducing service period [6]. And we 
target at reducing a certain standards, which are preset and known earlier.  Every function of JSP process is capable 
of being processed on any machine from among a set of existing machines and the runtime on diverse machines are 
obviously dissimilar. In this way, JSP is endowed with the potency of decreasing the machine parameters, widening 
the search domain of realistic solutions, thereby tackling the challenges faced [7]. 

GA has been widely performed on several scheduling issues and is observed to present a superb performance in 
many of the cases. [8]. The GA employs two vectors to symbolize solutions. Advanced crossover and mutation 
operators are employed to harmonize to the extraordinary chromosome structure and the traits of the issue. The 
primary population is segregated into sub-populations, and every sub-population is formulated individually. 
Communication between sub-populations is limited to the migration of chromosomes [9]. Anyhow, the current 
genetic algorithms for the JSSP are generally found to have a slow convergence tempo and hence it is effortless to 
entrap local optimal solutions [10]. To speed up the process we employ hybridization of Genetic Algorithm along 
with Artificial Bee Colony algorithm. The Bee Colony is an optimization process triggered by the attitude of nectar 
collecting honeybees well represented by “waggle dance” [11]. In the ABC algorithm, the artificial bees are 
categorized into three distinct groups: the employed bees, the onlookers and the scouts. A bee that takes advantage 
of a food source is termed as employed.  On the other hand, the onlooker enjoys the dances of the employed bees. 
The duties entrusted to scout bees are to hunt for fresh food resources discretely in the neighborhood of the hive 
[12]. This throws open before them several challenges  such as being  effortlessly entrapped in local optimum and in 
this  the  calculation period is found to be  extremely high [13]. Moreover we resort to employing the hybridization 
of Genetic Algorithm with PSO, which takes cues from the scrutiny of the community nature of animals, like birds 
in flocks or fish in schools as well as on swarm concept. The rapport between the swarm and particles in PSO is 
identical to the association between the population and chromosomes in a GA [14]. The population of PSO is known 
by the name ’swarm’, and every individual in swarm is termed as a particle. Every particle is a prospective solution 
in the PSO and is identified with its present location and velocity [15].  

With a view to tackle this menace, we employ  ABC algorithm in our new technique which is capable of yielding 
amazing accuracy in addition to reducing to the least the  make span and generating incessant outcomes. 

In this investigation, we aim at reducing the following three parameters: 
(1) The minimization of make span of the tasks. 
(2) The minimization of maximal machine workload, represented by the maximum runtime consumed by any 

machine. The aim is to block a solution from allocating colossal tasks on a solitary machine and also to maintain 
equilibrium of work allocation among the machines. 

(3)The minimization of the entire workload, symbolized by the overall run time allocated to all the machines. 
This aim has special significance, in cases where machines have diverse efficiency levels. 



1747 A. Muthiah and R. Rajkumar  /  Procedia Engineering   97  ( 2014 )  1745 – 1754 

2. Literature Review 

The yesteryears have enthusiastically witnessed the august appearance and advancement of the amazing Job-Shop 
Scheduling Problem (JSSP) which has invoked the interest of inquisitive investigators, primarily on account of its 
inherent combinatorial traits, making it very hard to solve. Triggered by the superb performance turned out by local 
search processes, these relentless researchers have resolved to integrate local search engines with universal 
technologies. Anan Banharnsakun et. [16] have amazingly launched an innovative and efficient scheduling technique 
using Best-so-far Artificial Bee Colony (Best-so-far ABC) for tackling the unresolved issues of the JSSP. They have, 
in their technique, inclined the solution direction in the direction of the Best-so-far solution disregarding an adjacent 
solution advocated in the original ABC method. They have also resorted to exploit the set theory to define the 
mapping of their novel approach to the vexed issue haunting the combinatorial optimization region. The efficiency 
of the epoch-making technique was scientifically estimated by using 62 benchmark issues extracted from the 
Operations Research Library (OR- Library). The solution excellence was graded based on ‘‘Best’’, ‘‘Average’’, 
‘‘Standard Deviation (S.D.)’’, and ‘‘Relative Percent Error (RPE)’’of the objective value. The cheering outcomes 
have established without an iota of doubt that our innovative technique has turned out superb quality solutions in 
relation to the traditional high-tech heuristic-based algorithms. 

Rui Zhang et al. [17] have remarkably given shape to an innovative discrete artificial bee colony (DABC) 
algorithm for tackling the multi-objective flexible job shop scheduling hassles with preservation tasks.  The 
efficiency benchmarks taken into consideration include the highest run time extensively expressed as makespan, the 
overall workload of machines and the workload of the crucial machine. A proficient initialization technique is 
devised to build the primary population with a distinct echelon of excellence and multiplicity. A self-adaptive 
technique is followed to ensure the DABC algorithm with learning competence for yielding adjacent solutions in 
various potential areas whereas an exterior Pareto archive set is formulated to document the non-dominated solutions 
located till now. Moreover, an innovative deciphering device is introduced to take suitable care of preservation tasks 
in schedules produced. The projected DABC algorithm is experimented on a set of the famous yardstick examples 
extracted   from the modern literature.  An extensive and impartial assessment of the performance of our novel 
method well-backed by test outcomes proclaims to the world in no unclear terms the superb excellence and 
charismatic performance of the system. 

Antonin Ponsich et al. [18] have proficiently put forward the novel concept of hybridizing DE (Differential 
Evolution) with Tabu Search (TS) with a view to tackle the issues of the JSSP. Aggressive vicinity is incorporated 
within the TS with a target of assessing whether DE is competent to substitute the re-start traits forming part of the 
core competencies of i-TSAB represented by a long-term memory and a path-re linking process. The computation 
investigations recorded in respect of 100 plus JSSP models have exhibited the fact that the projected hybrid DE–TS 
algorithm has mercilessly beaten down parallel high-tech methods. Still, we feel, there is greater scope for 
refinement if the satisfactoriness between the solution representation modes within DE and TS is suitably given 
thrust to. 

In 2013, T.C.Wong et al. [19] has wonderfully launched a hybrid genetic algorithm (HGA) and a hybrid particle 
swarm optimization (HPSO) designed for tackling the issues inherent in AJSSP by taking into account the LS 
technique. Job shop scheduling problem (JSSP) turns a blind eye to assembly association and lot splitting. If an 
assembly phase is annexed to JSSP for the ultimate product, the issue then metamorphoses into an assembly job shop 
scheduling problem (AJSSP). To enable lot splitting, lot streaming (LS) method is considered in which jobs may be 
divided into a number of smaller sub-jobs for analogous processing on diverse phases so that the system efficiency 
takes a dynamic leap forward.  In the present investigation, the system mission is demarcated as the makespan 
reduction to the possible. A constraint of the captioned model is the dearth of its relevance to situations wherein the 
lot dimension suffers either from lack of distinctness or from rigidity. 

Rui Zhang et al. [20] have resourcefully targeted at reducing the overall weighted tardiness in JSSP. Taking into 
account the increased intricacy, an artificial bee colony (ABC) algorithm is launched for tackling the perennial 
paradox. A vicinity trait of the issue is found out, and thereafter a tree search algorithm is formulated to boost the 
utilization potential of ABC.  On the basis of cheering outcomes of wide-ranging investigations, it is crystal clear the 
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well-conceived technique goes northward in terms of excellence in successfully tackling the job shop scheduling 
problem with total weighted tardiness benchmark. 

3. Problem Definition 

The sluggish job-shop scheduling problem entails processing of predetermined jobs by predetermined machines. 
A superior schedule must be capable of minimizing the redundant interval by which the machines are delayed.  
Hence, the decisive issue is to calculate the process series on the machines with a view to reduce the make span to 
the minimum. By make span, we mean the time interval needed from the start of the initial process to the close of the 
final process, i.e. from beginning to end. Every one of the job comprises a pre-fixed series of process actions, which 
required to be processed without causing any preemption for a scheduled period of interval on a predetermined 
machine. As functions of the identical job are not capable of being processed simultaneously, each job is entrusted 
with the task of visiting every machine precisely once. In the job shop scheduling problem (JSSP), a set of n jobs are 
to be processed on a set of m machines. Each job has a steady processing path which moves through all the machines 
in a prearranged manner. At last, the algorithm is experimented on instances of 8 working processes and 5 machines. 
Every solitary machine is expected to process 5 jobs and every job, in turn, must perform about 8 diverse tasks. In 
our novel technique, we have carried out the tests with solitary machine which has 5 diverse jobs, with each job 
discharging 8 diverse tasks. 
3.1. Assumption in our proposed work 

In our paper we have taken 5 different jobs with 8 different process and the technique is applicable with any type 
of job and process We consider the flexible job shop case where stages might be skipped. In our work the following 
assumption are being made and they are as follows. 

 All 5 jobs must be processed in a single machine. 
 In each job must be processed in the allocated time 
 Each job can be processed with the shortest time such that it completes with shortest time.  

At a given time, a machine can execute at most one operation. 

4. Proposed Methodology 

The Job Shop Scheduling Problem (JSSP) is an annex of the traditional job scheduling problem which enables a 
task to be processed by any of the machines in a prearranged set. The important function is to allocate each and 
every task to a machine and to organize the functions on the machines, in order that the maximum duration of 
completion (make span) of the entire task is reduced to the minimum. Compared with the traditional Job-shop 
Scheduling Problem (JSP, the flexible job-shop scheduling problem (FJSP) is an extension of the classical JSP, 
which is a more complex NP-hard problem. Each operation of FJSP job can be processed on any among a set of 
available machines and operation on different machines needs different time. Thus, FJSP reduces the machine 
constraints, enlarges the search range of feasible solution, and hence increases the difficulties greatly [7].  
 
4.1. ABC algorithm   
 
In our projected task,  we are launching a new model for the decrease of make span by means of Artificial Bee 
Colony (ABC) algorithm,  with a view to ensure that  the time interval for the finish of the entire scheduling 
procedure is brought down to the least possible time. For this function, we are allotting n jobs and m process for a 
solitary machine task. With an eye on tackling prohibiting time interval and a large number of machines for the 
purpose of accomplishing tasks, we have employed ABC algorithm as our innovative part technique. At first, every 
job has its individual function which is demarcated by bee. The bee thus engendered is entrusted with the task of 
locating the nectar quantity of the food source relative to fitness value and in this task, if the fitness value is lower, 
then the survival prospect tends to be higher.  In this regard, run interval and machines allocations are the most 
important constraints. In our envisaged work, we have targeted our aim at decreasing the overall makespan, solitary 
machine work load and the overall work load. The trigger of this investigation is to execute ABC algorithms on the 
modules level so as to achieve advantage from its vigor.  
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Figure 1 Proposed Algorithm 
 

In the artificial bee colony algorithm, the artificial bee is arbitrarily classified into three diverse categories such as 
employed bee, onlooker bee and scout bee with each category of bees equipped with distinct and unique 
characteristics. A bee who is an expert in utilizing its food source to the full gets the name ‘employed bee’ and he is 
entrusted with the task of communicating this piece of data with the onlooker bee. The onlooker bee waits in the hive 
enjoys the dance of employed bee and selects a food source according to the prospect resonance of the food source. 
Thus superb food sources are engaged to onlooker bee. In the accompany phase,  scout bee hunts for the fresh food 
source and on successfully achieving it by locating a fresh food source it metamorphoses into an employed bee. This 
newly converted employed bee performs the tasks of utilizing the whole food source, in the process gets rid of its 
position and eventually reincarnates as the scout bee.  Thus, we are able to comprehend that the function of scout bee 
is investigation and the task of employed and onlooker bee is utilization. 

 
4.1.1. Initialization of random solution: 

At the outset, the population of the food source is initialized. Subsequently, the population goes through cycles 
with 4 fundamental phases such as revising of viable solutions by employed bee, choice of realistic solution by 
onlooker bee, reviewing viable solution by onlooker bee and evading optimal solution by scout bee. In our proficient 
method the food sources are tasks which are performed under every task in an arbitrary way. 
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4.1.2. Fitness computation: 
With the created food source we have to determine the amount of the nectar available in the food source. 

Therefore, we proceed to estimate the fitness value with the available amount of food source. This fitness function 
decides the pertinent food source which proceeds to the following generation. If the fitness values of optimal 
solution are lower, then the probability to stay alive in the ensuing generation is greater. The fitness is estimated by 
the equation:  

 (1) 
                        

where f1,f2,….fn  are the food sources. 
4.1.3. Employed bee phase: 

Employed bee is entrusted with the task of hunting for the food source and conveying the valuable data to the 
onlooker bee. In this phase, every employed bee possesses its own unique solution and adapts it to turn out the fresh 
solution.  
4.1.4. Onlooker bee phase: 

When the employed bee completes its duty of local investigation, it conveys the nectar information of the food 
source to the onlooker bee, which proceeds to choose a fresh food source in the accepted way. When the possibility 
of the chosen constraint is determined, number of onlooker bees is calculated.  Thereafter, fresh solutions ( jiV ,  ) are 
engendered for the onlooker bees from the solutions ( jix , ) in accordance with the probability value ( jP

). 
Subsequently, the fitness function is determined for the fresh solution. Then the greedy choice task is performed with 
a view to choose the best parameter.   

The adaptation is performed as per the following equation:  
                          (2) 

 
Where, k and j  are arbitrary chosen indexes,  arbitrarily generated number in the range   [-1, 1] and jiV ,  ,  the 

fresh value of the 
thj  location. Thereafter the fitness value is estimated for each freshly created population 

constraints of food sources. From the determined fitness value of the population, best population parameter is 
chosen.  
4.1.5. Comparison of employed and onlooker bee: 

At this point, the values of the employed and onlooker bee are contrasted with each other and the best value is 
saved in the “best value”. Thereafter the “best value” is compared with the threshold value and if the “best value” 
does not exceed the threshold value then the scout bee is generated. If it exceeds the threshold value, then the task is 
replicated from the generation of fresh solutions. 
4.1.6. Scout bee phase:  

In the ABC algorithm, if the quality of the solution does not get better than the threshold value limit, then the 
food source is treated as excess and the relative employed bee turns into a scout bee. Then the discarded restraints 
for the scout bees are estimated. If any such discarded restraints still persist, then they are substituted with fresh 
constraints located by scouts and the fitness value is estimated by means of the fitness equation. Thereafter 
memorize the best constraints generated till now are committed to memory. Subsequently, the iteration is 
incremented and the task is repeated till the stopping standard is attained. At last, the decreased make span of the 
processing period is found out.  

 
4.2. Genetic Algorithm 
The workability of genetic algorithms (GAs) is based on Darwinian’s theory of survival of the fittest. Genetic 
algorithms (GAs) may contain a chromosome, a gene, set of population, fitness, fitness function, breeding, mutation 
and selection. The genetic algorithms performance is largely influenced by crossover and mutation operators. The 
block diagram representation of genetic algorithms (GAs) is shown in Fig.1.The GA is a stochastic investigation 
technique which boosts the natural choice procedure. The GA takes into account a population of solutions, which are 
known as chromosomes. Each and every solution is symbolized with an encoding method which enables deciphering 
a solution into a series of genes forming part of a chromosome.  
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Fig 2: flow chart of Genetic algorithm 

 
Each iteration of GA comprises many operators.  From among them, reproduction, crossover and mutation are the 

most widespread ones. The reproduction operator chooses the finest fit chromosomes to the following generation. 
Crossover enables solutions to communicate data from two discretely selected parents so as to create one or more 
offspring which houses certain amalgamation of genes from the parents. The mutation operator discretely adapts 
certain genes available in a chromosome. In our task, we make use of the immigration operator in place of the 
mutation operator. The immigration operator generates a minimal number of fresh solutions with the aid of the 
process employed to build the preliminary population.Genetic algorithms (GAs) begin with a set of solutions 
represented by chromosomes, called population. Solutions from one population are taken and used to form a new 
population, which is motivated by the possibility that the new population will be better than the old one. Further, 
solutions are selected according to their fitness to form new solutions, that is, offsprings. The above process is 
repeated until some condition is satisfied.  

5. Result and discussion 

Here, we proceed to assess the outcome of our projected technique, by investigating the outcome in MATLAB 
software. This part focuses on the solitary machine which performs 5 tasks and every task having 8 processes each. 
An identical task can be accomplished on multiple machines. In our novel method we have carried out the testing 
with 5 machines. The overall time of every task for solitary machine is furnished below. 
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Table 1: Time allocation for job process in single machine 

   process 
job 

1 2 3 4 5 6 7 8 

1 9.1012 4.1187 0.7445 5.8405 0.2548 8.7072 1.7847 6.9213 
2 4.9044 2.7368 8.5438 0.8122 1.7514 8.7637 2.7263 2.8699 
3 0.1177 5.6355 5.1467 2.7246 2.4305 2.4627 5.6133 5.9735 
4 8.7275 8.5019 8.6386 7.5224 6.614 7.603 7.2683 1.9597 
5 5.7145 9.8054 0.3585 9.5567 4.5662 4.9609 4.9428 4.436 
 
Table 2: ABC and GA output with different parameters in single machine 
Parameters GA output ABC output  
Total processing time for 5 jobs 201.8623 201.8623 
Processing time for 5 jobs by algorithm 150.5225 55.5293 
Total time saved 51.3398 146.333 
Number of process saved 13 27 
Efficiency 32.5 67.5 
 
The table shown above illustrates the output part of ABC algorithm and GA algorithm for 6 diverse constraints. 

At first, the total processing time for the entire five jobs are determined physically and it is allocated as identical for 
both the algorithms. Table 2 makes it obvious that there is reduced processing interval in the case of computing by 
ABC algorithm in relation to GA, for the entire 5 jobs. Therefore the total time saved tends to be higher during the 
estimation by ABC procedure and hence the number of tasks saved also increases.  The captioned table depicts the 
output for solitary machine efficiency. 

Table 3: ABC and GA output with different parameters in 5 machines 
Parameters GA output ABC output 
Total processing time for 5 machines 1009.3115 1009.3115 
Processing time for 5 machines by algorithm 725.6125 277.6465 
Total time saved 256.699 731.665 
Number of process saved 65 135 
 
If the total number of machine is 5 then the completion of job by ABC algorithm can be done completed by 2 

machines and the last single process is done in the 3rd machine.  
 
If the total number of machine is 5 then the completion of job by GA algorithm can be done completed by 3 

machines and the last seven processes are done in the 4th machine.  This represents GUI for MATLAB output and it 
furnishes the input and output of our innovative technique. At first, the input furnished as the overall processing 
interval for the entire 5 processes is 201.8623sec determined by summing up the individual run times.  The output 
part delineates 4 various constraints for both ABC and GA technique. In the case of ABC output, the total processing 
time (TPT) is taken as 55.5293sec, time saved (TS) is 146.33sec, total process saved (TPS) is 27 and efficiency (E) 
is 67.5.  Taking all these constraints, the output of GA is estimated whose value is observed to be as follows: TPT, 
150.5225sec, TS, 51.3398, TPS, 13 and E, 32.5. An analysis of GUI output makes it crystal clear that the ABC 
achieves superior efficiency turning out a superior performance in relation to that of GA. 

 



1753 A. Muthiah and R. Rajkumar  /  Procedia Engineering   97  ( 2014 )  1745 – 1754 

 
Fig 3: MATLAB output for ABC and GA 

 
 

This graph associates fitness with various iterations for ABC and GA.  It is evident from graph that the fitness 
value for GA does not change disregarding any perceptible alteration in the iteration. However, in the case of ABC,  

as the iteration goes up, it leads to the decrease in the fitness value and at last the solution related to the lower fitness 
is achieved in the distinct iteration. Therefore, the lesser fitness value is taken into account and the analogous 
solution is considered for the task.  

Fig 4: Output performance of ABC and GA 



1754   A. Muthiah and R. Rajkumar  /  Procedia Engineering   97  ( 2014 )  1745 – 1754 

6. Conclusion 

In our research work, we have effectively employed ABC algorithm to reduce the make span of the job 
scheduling task to the minimum.  On analysis and contrast of the outcomes with those of GA, it is unequivocally 
established that ABC algorithm is competent to achieve amazing outcomes. We have also analyzed and contrasted 
the run time of the two processes according to the overall processing interval of the CPU for finishing the aggregate 
number of iteration.  In this connection, we have made use of 5 machines with every machine executing 5 jobs and 
every job, in turn, performing 8 processes.  Thus, in all, there are 40 processes in a solitary machine. Hence, we are 
cheered to note that the total processing interval is decreased in ABC, prompting us to assert   that the number of 
machines employed for every process can be decreased. The upcoming research in this regard will be founded on 
defining the job wherein we intend to investigate the employment of a bigger set of constraints for our process which 
will be analyzed and contrasted  with parallel top algorithms and our aim also will focus on putting  JSSP to 
investigation in cases where ‘‘job interrupt’’ is allowed. 
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