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ABSTRACT

The paper deals with the problem of the existence multi-orthogonal bases in finite-dimensional normed
spaces over K, where K is a non-Archimedean complete valued field.

1. INTRODUCTION

Throughout this paper K will denote a non-Archimedean, non-trivially valued field
which is complete under the metric induced by the valuation |.| : K — [0, 00)
and E will denote a finite-dimensional linear space over K. Every considered
norm, defined on E, will be non-Archimedean (i.e. it satisfies ‘the strong triangle
inequality’: |lx + y|| < max{fjix|l, |y}i} for all x,y € E). Recall that for a given
norm ||.||, defined on E, a sequence (x;)7_; C E (n € N) is called orthogonal if
lA1x1 + - + Apxyll = max;=;,. n |A;x; || for any Aq,..., A, € K. Additionally, we
say that an orthogonal sequence (x;)7_, C E is a base of E if [x,...,x,] = E.
Then, for every x € E there is a unique (A;)7_; € K" such that x = Z?:l Aix;.
A linear subspace D of E is said to be orthocomplemented in E if there is a linear
subspace Dy of E suchthat D+ Dy = E and D | Dy (i.e. ||x +y|| = max{}jx|}, | y|l}

for all x € D, y € Dy). Let ||.||1,...,|l.|lx be norms defined on E. We say that
a sequence (x;);_; C E (n € N) is multi-orthogonal in E if it is orthogonal
with respect to all ||.||1,..., |.|lx and we say that a linear subspace D of E is
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multi-orthocomplemented if there exists a linear subspace Dy of E which satisfies
D+ Dy =E and D L Dy with respect to all ||.||1, ..., .|l

The problem of the existence of multi-orthogonal bases in finite-dimensional
normed spaces was presented by A. van Rooij and W. Schikhof in 1992 (see
Problem 3 of [3]). They noted that if ||.||1, ||.||2 are norms, defined on E, such that
(E, II.lln) and (E, ||.]l2) both have orthogonal bases, then there exists a base of E,
so called a multi-orthogonal base, which is orthogonal to both ||.||; and |.||2. In [3]
A. van Rooij and W. Schikhof ask if the similar result is true for three or finitely
many norms.

In this paper we solve this problem. In Theorem 5 we give a negative answer
for this question, proving that there exist three norms defined on two-dimensional
linear space for which there is no multi-orthogonal base, although for every defined
norm there exists an orthogonal base. In Theorem 9 we present some equivalent
conditions for existence of multi-orthogonal bases in finite-dimensional normed
space. Example 6 contains the construction of the linear space, where three norms
are defined, with a multi-orthogonal base and a linear subspace without such base.

For more background of the theory of non-Archimedean normed spaces we refer
the reader to [1] and [2].

2. RESULTS

To obtain the main result (Theorem 5), the construction of three norms defined
on two-dimensional E in such way that there is no base which is orthogonal with
respect to all three norms, although E possesses an orthogonal base for every
defined norm, we need some preparation.

Lemmal. LetdimE =2 andlet||.|| be a norm on E with orthogonal base {e|, e},
where |le||| > |lez2ll. Take nonzero u = cie; + cyes € E (c1,c2 € K) such that u L
(e1 +e2). Then, |c{| < |ca.

Proof. Assume that |c1| > |c2], then |ul| = max{||cie;|l, [lc2e21l} = llciei]|. But, we
obtain

lu—ci(er +e) |l = ll(cre1 + cre2) — (cre1 4+ c1€2) || = ||c262 — C1€2]|
< max{|czezll, [erez I} = max{|cal, |1} - [lezl

= llcrezll < llerenll = full,

a contradiction with u 1 (e7 +e3). O

Lemma 2. Let dimE =2 and |.||1, ||.Il2 be norms defined on E. Assume that

{e1, 2} is a multi-orthogonal base (i.e. orthogonal with respect to ||.|| and |.||2) on
E such that
(1) leills > llezlli  and |letll2 < llezl2.

Then, 7 1= e1 + e3 € E possesses no nonzero multi-orthogonal element in E.
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Proof. Assume that there exists u = cje; + cze2 (c1, 2 € K), an element of E
which is multi-orthogonal to z. Then, applying Lemma 1 to |.||; and the base
{e1, e2}, we imply |c1| < |c2|. On the other hand, using Lemma 1 to ||.||2 and the
base {e>, ¢}, we obtain |c;| > |cz], a contradiction. O

We note that norms defined on two-dimensional E, which satisfies the condi-
tion (1), really exist.

Example 3. Let E=K?and let » € K, |A| < 1. Define two norms on E by

I(x1, x2) 11 := max{|x|, |Ax2]},
|(x1, x2)ll2 == max{|Axy], |x2[}.

Then, it is easy to check that {e, e;} (the standard base of K 2)isan orthogonal base
of E with respect to ||.||; and ||.||2, which satisfies the condition (1).

Lemma 4. LetdimE =2 and let e1, e; be nonzero, linearly independent elements
ofE. Take A € K, such that |\| > 1. Then,
-1+ —-1
c c
! A 2

1
<1 + ﬁ)q -

is a norm on E for which |le1|lz = |lealls =1, lle1 +e2]l3 = % < 1 and {e1 + ez, 2}
is an orthogonal base of (E, ||.||3).

[}

) llcrer + czez|l3 := max{

(c1,¢c20€K)

Proof. It is easy to verify that ||.||3 is a norm and |le; ||z = |lez2|l3 =1, |le1 + e2ll3 =
% < 1. Now, we prove that {e; + e2, e;} is an orthogonal base of (E, |.||3). Taking

ac€ K, we get
1+——1 - 1~|——1 14a
)»2) ( | ( k>( )

1 1
+ lal
A

ller1 +e2 +aezls =max{

1+ +a
—+a+ —|{ =max
A A

=max{|le; + ez2|l3, llaezll3}. O

PER y

3

= max{

Now, we are ready to prove

Theorem 5. Let dim E = 2. Then, there exist |.|l1, ||.l|2, |.113, three norms defined
on E, such that (E, ||.||;) has an orthogonal base for every i € {1,2, 3}, but there is
no base on E which is orthogonal with respect to all ||.||1, ||.ll2, Il.1l5.

Proof. First, we observe that using Example 3 we can define |).}}1, ||.|l2 on E in such
a way that there exists {e], e,}, a multi-orthogonal base (i.e. orthogonal with respect

to |I.ll; and |l.||l2) on E, which satisfies condition (1). Next, we define |.||3, as the
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norm introduced in (2), applying Lemma 4 to the base {e;, 2}, mentioned above.
In this way, we equip E in three norms ||.| |, ||.||2 and ||.[|3, such that for every one
there exists an orthogonal base.

Now, suppose that there exists {u, w}, a base of E which is orthogonal with
respect to all three norms. Let u :=aje; + azes, w := by ey + bre;. We may assume
that a; = 1 (by linear independence either a; # 0 or by # 0; by symmetry we may
suppose that a; # 0). Since by assumption, u = aje; + e, possesses an orthogonal
element in E with respect to ||.||; and J|.]|2; hence, applying Lemma 2 to the base

aje1, ez}, we conclude that |a; || < 120 < { or |qy| > leal2 - 1,
el Ile 2

Consider the case where by = 0 (then, obviously by # 0). If ja;| > W:%%Il then

aj
u——w

=|lez]z =1.
by lle2ll3

a)
= |laje) +e2 — —bye
by

3

But ||u||3 = laje1 + e2ll3 = a1} > 1, by assumption; hence, ||u — Z—leII:; < |ulls, a

SR

contradiction. If |a;| < ”?”‘ < 1, then

1
lluells =maXH(1 + ﬁ)al -1,

1
u+b—1w

and
=|lajer1 +ex+eq|3

=max{ (1+%)(a1 + 1) -1},

{ 1
= max

3

wer-(ee)]

ML = ful
a+—=+—=llag— =} <1={uls.
1 A.z )»2 1 Y 3

This contradicts to u L w with respect to ||. ||3.

Let by # 0. Without loss of generality we can assume that b, = 1. Since, we
suppose that w = bje| + e2 possesses an orthogonal element in E with respect to
[l.l1 and ||.]l2 and {e, e2} satisfies condition (1), we imply that |b; || # 1.

Suppose that |a; | > '}e ” > 1. Then ||u|l3 = |laie1 +ezll3 = |a1]. Let [by] > 1. We
obtain

ai
u——w

a
= |la1e1 +e3; —aje; — b—ez
1

3 3

aj
= ‘1 — —\lle2lls < la1| = llulis,
by

a contradiction. Taking |b;| < 1, we get

e +aiwls = llaier + e2 + arbrer +aezlls
< max{||lai(er + e2)l3, llez + aibier (|3} < lar] = [lu|l3,

since |le; + e2]|3 < 1, a contradiction.
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Let |a;| < ”‘HH < 1.If |by| < 1, we obtain
lu—wils =llarer + ez ~brer —exllz =lar — b1l - lletlls < llerlls = 1.

For |by| > 1 we get

1
w+ —w a1€1+ez+z‘(blel+€2)
1

by

3 3

1
(a1 + Deg + <1 + ~)e2
by

3

1 1
(1+'):2‘)(01+1)-<1+b—1>y

1- 1+1 1+i> 1
at ( X>( b }<

but ||u]|3 =1, a contradiction. O

Gruson’s theorem (Theorem 5.9 of [2]) says that every closed linear subspace of a
Banach space with an orthogonal base has an orthogonal base, either. The following
example shows that the counterpart for multi-orthogonal bases is not true.

= max{

Example 6. Let E := K> and let A € K, |A| > 1. We define three norms on E by

1(x1, %2, x3) |11 := max{xq|, |x2[, |x3]},

X2
l(x1, x2, x3) |2 := max{ |Axy], | 5 |» [Ax3] §,
)\2
x1| |x2
||(x11x29x3)u3 = max[ F ) F ) |x3|}'

Then, E has a multi-orthogonal base (i.e. orthogonal with respect to all three norms
I, -2, [1-113), but the subspace [u, w], where u := Aey +es +e3, w = e, + A2 +
e3, has no multi-orthogonal base ({1, ¢, €3} denotes a standard base of K3).

Proof. It is easy to check that the standard base {e;, ez, e3} is orthogonal with
respect to all three norms |i.||1, |I.]l2, I|.]l3. First, we prove that u, w are orthogonal
with respect to ||.||; and |.||2. Let Ao € K. Then

llu + howlls = max{|x + Aol, |1+ AoA%|, |1+ Aol} > Al = llully

and

1
lu + Aowll2 = maxim A+ Rols |53 + 2o

AL 11 +)»o|} > [A2] = flull.

Observe that u, w are not orthogonal with respect to . ||s:

A—1
A3

1—22
3 A‘S

||u—w||3=max{ ,|1—1[}<1=||u||3.
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Take pyu + pow € [u, w] (uy, w2 € K) and assume that pu + pow has a multi-
orthogonal element in [u, w].

Consider the case where w1 # 0; without loss of generality we can assume that
w1 = 1. It follows from Lemma 2 that u + wow has an orthogonal element in [u, w]
with respect to |||, [|./]2 only if

e _ 1

lwowlly < lluly, = w2l <
3) fwli  IAl

llull2
luwowllz 2 llullz2 = |u2l2 =2l
lwli2

’

Now, assume that 81u + Brw (81, B2 € K) is a multi-orthogonal element to u + pow
in [u, w]. Note that by Lemma 2, since the base {w, u} satisfies condition (1), it is
necessary to have |81] # |B2]. Take Ao = —1/(B1 + B2). If |ua| < ﬁ < 1, we obtain
llu + pow + Ao(Bru + Baw) |3
_ ”k+u2+)»o(ﬂ1)»+ﬂ2)
= max

} 14 u2r2 4+ 20 (B1 + B2r?)

A3 A3
|1+M2+)»0(ﬂ1+/32)|}
< [1 1 | I} |
S maxy ——, /., H2 <1,
12217 1A
a contradiction to the assumption, since
At pa] |14 par?
Ilu+uzwlls=maXI 3 \ 3| sl =1

If |uz2| > |A| then, taking Ao = —u2/(B1 + B2), we get

lu + pow + Ao(Bru + faw)|l3
”)» + w2 + o(Bi1A + B2)
= max

‘ 1+ par? 4 ro(B1 + Bar?)

A3 A3 ’
|1+M2+Xo(ﬂ1+ﬁ2)l}
< x['ﬂ—' lia] 1}<|u2|
~ |}\,3|’ |A,l il £l
but
At pa| |1+ pad?
Ilu+M2w|l3=maX{ 3 l 5| 1wl p = lnal,

a contradiction.
Now, let ;1 = 0. We can assume that x4 = 1 and that there exists Biu + fw €
[#,w] (B1, B2 € K), a multi-orthogonal element to u. Since u# and w are not
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orthogonal with respect to ||.||3; hence B; # 0, without loss of generality we can
assume that 8y = 1. Using Lemma 2, we imply that there exists an orthogonal
element to u + B, w with respect to |[. |1, ||.]l2 only if | 82| < ﬁ or [B2] = |A|. Suppose
that | ;| > |A|. Then, taking A9 = —1/8, we get

B2

u
H———w

llu + Ao + Bow) 3 =
B

} < [lull3,

< max{llu —wllz,

3 3

L

L choosing A9 = —1, we obtain

a contradiction. Considering the case where |8;| <

1
llu + 2o(u + Bow) I3 = | f2wll3 < mlllﬂ"a < [luli3

and finishing the proof. O
Observe the following fact:

Proposition 7. Let ||.||1, ||.|l2 be norms on E and let xo € E (xo # 0) be such that
[xo] is multi-orthocomplemented in E. If D C E is a multi-orthocomplement of [xo]
in E then there exists Ly € K or there exists x4 € D such that

ixll2 lxall2 Ixll2 llxoll2

max .
xeEx#0 || xll1  [lxqlh xeEx#0 lx|ly  llxol

Proof. Take y € E, y # 0, where y = xg +d, A € K, d € D, such that % =

X
MAaXyeF, x40 ”xnl . Then

Iyl _ |Axo +dll2 _ max{||Axoll2, 4|2}
Iyllr  HAxo+dili  max{][Axoll1, ldll1}

If |Axoll2 > lId]l2, then

Il _ Waxo+dl _ Whxols  _ lAxollz _ Jxolla
Iyl ~ Ihxo+dl  max{iAxolls, 41} Taxoll  I%oll

On the other hand, if ||Axg||2 < ||d}j2 then

Iiylla _ NlAxp +dll2 _ lidll2 ldll2 llx1l2
= = < < max ——.
Ivllh lAxo+dlin max{llAxolli, Idll1} ~ lldlli ~ xeDx#0 |lx|ly

We can easily conclude the corollary:

Corollary 8. Let |.||1, |- Il2 be norms on E and let {e1,...,e,} be a multi-
orthogonal base in E. Then, there exist indices i, j € {1, ..., n} such that
lxll2  lleili lxile  llejlls
max -—- = —_—= .
xeEx#0 [lxlly el xeEx#0 |l xllz  llejll2
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Next theorem gives some conditions of the existence of a multi-orthogonal base
in finite-dimensional normed space for given three norms.

Theorem 9. Let |.|I1, |I.ll2 be norms on E and {e1, ..., ey} be a multi-orthogonal
base (orthogonal with respect to ||.||1 and ||.||2) on E. Then, the following conditions
are equivalent:

flealls _ llenlh _ ..
D e = = el = P

) 'm}; = p for every nonzero x € E;

(3) for every norm |.|3 on E, every two-dimensional linear subspace of E
possesses a base, orthogonal with respect to ||.||1, ||.1l2 and ||.||3;

(4) for every norm |.|3 on E, E possesses a base, orthogonal with respect to

-1, 11112 and 1113

Proof. (1) = (2). Assume that |l¢;||{ = p - |lei|l]2 foreachi € {l,...,n}. Letx € E
(x # 0). Then, there exist aj, ...,a, € K such that x =Y _;_, a;e; and we get

E a;e;

i=1

lxll = =, max_ {lail - lleill} = max {lail - p - lleill2}

.........

1

=p- max {laeil2}= =p-lxl2.

yreny

e

The implication (2) = (1) is obvious.

(2) = (3). Let ||.|I5 be a norm defined on E and let F be a two-dimensional linear
subspace of E. It follows from the assumption that every orthogonal base of F with
respect to ||.||; is also orthogonal with respect to ||.||l>. Since, by Theorem 1.11
of [1], there exists a base {z1, z} in F which is orthogonal with respect to ||.|}; and
[.Il3, {z1, 22} is also orthogonal with respect to |}.|}2.

(3) = (2). Assume the contrary and suppose that there exist nonzero z1,22 € E
such that 121 5 I2li From Corollary 8, we get that there exists a base {x1, x2}

llz1 2 flz2ll2
of [z1,z2], which is orthogonal with respect to ||.[j; and |.[|2, such that ﬂ% >
Izl Thep Wxilt 5 Ix1l2 Define a norm ||.||3 on E which satisfies the following
IIX2I12 2l = Tl
properties:

o lxy —[x20ll3 < lixtll3,

legly o xills o >l
lx2lle = llx2lls ~— lx2llz”

Now, assume that there exist a,b € K such that ax; + bx; has an element in
[z1, 221, say c1x1 + c2x2 (c1, ¢2 € K), orthogonal with respect to ||.[|1, I|.]l2 and .13

Assuming that |lax;li3s = ||bx2((3 (then a # 0 and b # 0) we get Il — 16l apq

fx2ll3 = fal
S - R .51 3
||)‘2||l ial "12“2 Next, we get ”bxlul > |lx2/l1 and ”bx1“2 < [Ix2ll2. Using

Lemma 2, we conclude that ax; + bx; has no orthogonal element in [z;, z2] with
respect to |[.11, [|.1l2.
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Hence, |laxili3z # lbx2ll3 (and [lcixills # licoxz2ll3). Suppose that |lax;lls >
lbx2li3. If lerx1ll3 > llcaxzll3, then [lxilj3 > || %x2||3 and taking A := — - we get

lax) + bxz + Acix1 + cax2)|3 =

2
bxy —a—x;
C] 3
< laxill3 = llaxy + bxz|l3,

a contradiction. If ||c1 x5 < ||cax2}i3, since by assumption there exists u € K with
lx1 — pxalls < {213, taking A := —<£ we get

laxi + bxz + A(c1x1 + c2x2)ll3 =

a
a(xy — puxz) +bxy — —ﬁcm
c2 3

< |laxi |3 = llax1 + bxa |3,

since

ap
—c1x1
1)

<
3

= |lauxz|3 = laxi 3.

ap
— X2
[9%) 3
For the case |lax1l|3 < ||bx2||3, by symmetry, we obtain the same conclusion.

Finally, assume that @ = 0 or b = 0. Then, it is easy to verify, that in this case we
have |lc1x1l]3 = ||c2x2]|3. But, as we observe above, such element c;x1 + c2x; has
no orthogonal element with respect to ||.||1, ||.[|2 in [z1, z2], a contradiction.

(2) = (4). Let ||.||3 be a norm defined on E. It follows from the assumption that
every orthogonal base with respect to ||.||; is also orthogonal with respect to ||.|».
Applying the same argumentation as in (2) = (3), by Theorem 1.11 of [1], there
exists a base {z;,...,z,} in E which is orthogonal with respect to |.||; and ||.||3;
thus, orthogonal with respect to ||. 2.

(4) = (1). Assume the contrary and suppose that for every ||.||3, a norm defined
on E, E possesses a base orthogonal with respect to ||.||1, ||.|l2 and ||.||3. Suppose
that

lleillr _ llealls llexlit lleitht  llexlls
) > > >

ledllz~ lleallz =~ 7 llenll2 lletllz  Henli2
Choose 1 € K such that

llexll2 llex i1
(5) e [ e

lletll2 el

and p € K, |p| < 1. Next, we define the norm on E by

lxll3 := max{|(1 + p?)x1 — x| - lletllz, Ix1 — w(1 4 p)xal - llen 2,

Ix2eall2, - .., 1Xa—1€a-1ll2},

where x € E is givenby x =)/ _, x;e;.
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lxlhy

Tl 18 attained for

First, we prove that max,cg

1
(6) u0=)»(61+;)»2€n +a2e2+---+a,,_1e,,_1>

ifl=1+¢ (e, 2 ek, el <|pl, A #0) and max;—>_»—1 llaie;l2 < [pl - lle1l2.
Indeed, then

max{
lazes + -+ an—1en—1ll2 = max laieill < Ipl - Heil2
1= n—

s

(1+p )—u; 1—/«0(1+P);)»2

=max{|p® —¢l, |p+ &+ pel} =1pl,

and

1
luoli  max{llerlli, (1 + &)enllr, llazezllt, ..., lan—1en-1l1}

olls Ipl - lletil2
et

Ipl-lleill2’

since || (1 +&)ealli = | enlli < lle1lls by (5) and

e a; é; - l|le
I 1||2< llaie;ll2 < Ipl-llexll2
leillt ~ llaieills llaiei |1

(7 = laielli <Ipl- el
ifie{2,...,n—1}and a; #0.
Next, we prove that for nonzero (assuming thatay =1 ora; =0, a; € K)

1
u =)»(611€1 + ;)Qen + aze +"‘+an—len—l> (A€ K),

where there exists j € {2,...,n — 1} such that |la;e;ll> = max;—;,. n—1laieil2 >
Ipl-lletllz or A2 = 1 +¢ for |e] > | p| (¢ € K), we obtain {4l < et
Let j € {2,...,n — 1} with |laje;ll2 = max;=> .. n—1 llaieill2 > |pl - lleill2 and

assume that |¢] < |p|. For a; = 1, applying (5), we get

lee] max{lle1[|1, 131 (1 +&)enll1, lazeallr, ..., lan-1en-1l1}
lulls — max{|(1+ p2) — (1 + &) llerll2, |1 — (1 4+ p)(A +&)| - lletll2, llaje;ll2}
max{fler]l1, (1 +&)erllr, llazealiv, - -, lan—1€n—ill1}
= max{|p> — |- lletll2, |p+ & + pel - lleill2. llaje;ll2}
max({[le|l1, llaze2lit, - .., lan—1€n-111}
llaje;l2 '

Then, using (4), we get
lells { llexlls IIakekHl] llexlls
ax <

~ £
lleell3 lajejll2” Hakekll2 Ipl-lleillz
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where k € {2,...,n — 1} and |lagerll; = maxj—s _n_1 laie;|l1 (without loss of
generality we can assume that a; # 0).
Now, suppose only that |¢| > |p|. Then, assuming that a; # 0 (if not, with slight

modifications we can also get the same final evaluation) we obtain

.....

llully  max{fjei|l1, (1 + &)erll1, lazezll1, ..., lan—ien—1ll1}

~
lluells max{|el - [le1]l2, lazezll2, . .., lan—1€n-1ll2}
{ lleillt  llewlls laxex | lledlls
AN k] £l < .
lel-Hetll2” llerll2” Naxexll2 ip!- lletll2

Considering the case if a; =0, we see that

ulli max{llﬁ(l +8enllt, lazezllt, - .., llan—1€a—1l1}
lulls — max{|(1+ &)l [erlla, (1 + p)(A + &) - lerlla, laje;li2}
max{||(1 + &)erll1, lazezll, - .., lan—1€n—1ll1}

= max{|(1 + &) - letll2, [(1+ p)A+6)| - ller ]2, llaje;ll2}
< [Ilellll IIakeklll} el
& max <

leillz” llakexll2 tpl-llella”

By Corollary 8, in every base of E, orthogonal with respect to .||, |.1l3 and |.||3,
there is an element uq given by (6). Without loss of generality, we can assume that
A = 1. Hence, for such u¢ we can find an (n — 1)-dimensional linear subspace D of
E such that E = [uo] ® D ([u] and D are orthogonal with respect to ||.|I1, ||.||l2 and
Il.113). Now, we can write e, = cug + dp for some ¢ € K, dy € D. Note that

1
lluoll i =maX[II€1|I1, “;(1 +&)en| , llazeally, ..., Han—len—lull =|le1lh

1

and

’

2

, max |aje; ||2} = H_en

2!— ..... n

lwoll2 = max llerl|2, | —en

since

1
H;(l +een| <letll llazez +---+an-1eqa—ill2 < |pl-llerll2
1

and [letl2 < gllenll2 by (5), laieills < 1pl- lleslly by (7).
Applying multi-orthogonality uo and dy we get lle,ll1 = max{||cuolly, lIidoli1};
hence, [[cuglli = lIce1ll1 < llenlls. Using (5) again, we imply

lleall1

le| <
llevlis

< |ul.

Then |cugllr = %Hé’nﬂz < |leq|l2. Taking do = e, — cug, noting that ||dpl» =

max{||cuoll2, lenll2} = llexll2, we obtain
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U
—up—dp| =
a0 T

2

ﬁel +e, + —li(azez 4+ ap_1ep-1) — en + clip
Ay A

< max{||uell2, ln(azez + -+ + an—1ex-1) 12, llcuoll2}
< llenl2,

2

a contradiction with orthogonality [#o] and D with respectto ||.[2. O
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