On multi-orthogonal bases in finite-dimensional non-Archimedean normed spaces

by Albert Kubzdela

Institute of Civil Engineering, Poznań University of Technology, Ul. Piotrowo 5, 61-138 Poznań, Poland

Communicated by Prof. T.A. Springer at the meeting of March 27, 2006

ABSTRACT
The paper deals with the problem of the existence multi-orthogonal bases in finite-dimensional normed spaces over K, where K is a non-Archimedean complete valued field.

1. INTRODUCTION

Throughout this paper K will denote a non-Archimedean, non-trivially valued field which is complete under the metric induced by the valuation $||:. K \rightarrow[0, \infty)$ and E will denote a finite-dimensional linear space over K. Every considered norm, defined on E, will be non-Archimedean (i.e. it satisfies 'the strong triangle inequality': $\|x+y\| \leqslant \max \{\|x\|,\|y\|\}$ for all $x, y \in E)$. Recall that for a given norm $\|\cdot\|$, defined on E, a sequence $\left(x_{i}\right)_{i=1}^{n} \subset E(n \in N)$ is called orthogonal if $\left\|\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}\right\|=\max _{i=1, \ldots, n}\left\|\lambda_{i} x_{i}\right\|$ for any $\lambda_{1}, \ldots, \lambda_{n} \in K$. Additionally, we say that an orthogonal sequence $\left(x_{i}\right)_{i=1}^{n} \subset E$ is a base of E if $\left[x_{1}, \ldots, x_{n}\right]=E$. Then, for every $x \in E$ there is a unique $\left(\lambda_{i}\right)_{i=1}^{n} \in K^{n}$ such that $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$. A linear subspace D of E is said to be orthocomplemented in E if there is a linear subspace D_{0} of E such that $D+D_{0}=E$ and $D \perp D_{0}$ (i.e. $\|x+y\|=\max \{\|x\|,\|y\|\}$ for all $x \in D, y \in D_{0}$). Let $\|\cdot\|_{1}, \ldots,\|\cdot\|_{k}$ be norms defined on E. We say that a sequence $\left(x_{i}\right)_{i=1}^{n} \subset E(n \in N)$ is multi-orthogonal in E if it is orthogonal with respect to all $\|\cdot\|_{1}, \ldots,\|\cdot\|_{k}$ and we say that a linear subspace D of E is

MSC: 46S10

Key words and phrases: non-Archimedean finite-dimensional normed spaces, orthogonal bases
E-mail: kubzdela@put.poznan.pl (A. Kubzdela).
multi-orthocomplemented if there exists a linear subspace D_{0} of E which satisfies $D+D_{0}=E$ and $D \perp D_{0}$ with respect to all $\|\cdot\|_{1}, \ldots,\|\cdot\|_{k}$.

The problem of the existence of multi-orthogonal bases in finite-dimensional normed spaces was presented by A. van Rooij and W. Schikhof in 1992 (see Problem 3 of [3]). They noted that if $\|\cdot\|_{1},\|.\|_{2}$ are norms, defined on E, such that $\left(E,\|\cdot\|_{1}\right)$ and $\left(E,\|\cdot\|_{2}\right)$ both have orthogonal bases, then there exists a base of E, so called a multi-orthogonal base, which is orthogonal to both $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. In [3] A. van Rooij and W. Schikhof ask if the similar result is true for three or finitely many norms.

In this paper we solve this problem. In Theorem 5 we give a negative answer for this question, proving that there exist three norms defined on two-dimensional linear space for which there is no multi-orthogonal base, although for every defined norm there exists an orthogonal base. In Theorem 9 we present some equivalent conditions for existence of multi-orthogonal bases in finite-dimensional normed space. Example 6 contains the construction of the linear space, where three norms are defined, with a multi-orthogonal base and a linear subspace without such base.
For more background of the theory of non-Archimedean normed spaces we refer the reader to [1] and [2].

2. RESULTS

To obtain the main result (Theorem 5), the construction of three norms defined on two-dimensional E in such way that there is no base which is orthogonal with respect to all three norms, although E possesses an orthogonal base for every defined norm, we need some preparation.

Lemma 1. Let $\operatorname{dim} E=2$ and let $\|$.$\| be a norm on E$ with orthogonal base $\left\{e_{1}, e_{2}\right\}$, where $\left\|e_{1}\right\|>\left\|e_{2}\right\|$. Take nonzero $u=c_{1} e_{1}+c_{2} e_{2} \in E\left(c_{1}, c_{2} \in K\right)$ such that $u \perp$ ($e_{1}+e_{2}$). Then, $\left|c_{1}\right|<\left|c_{2}\right|$.

Proof. Assume that $\left|c_{1}\right| \geqslant\left|c_{2}\right|$, then $\|u\|=\max \left\{\left\|c_{1} e_{1}\right\|,\left\|c_{2} e_{2}\right\|\right\}=\left\|c_{1} e_{1}\right\|$. But, we obtain

$$
\begin{aligned}
\left\|u-c_{1}\left(e_{1}+e_{2}\right)\right\| & =\left\|\left(c_{1} e_{1}+c_{2} e_{2}\right)-\left(c_{1} e_{1}+c_{1} e_{2}\right)\right\|=\left\|c_{2} e_{2}-c_{1} e_{2}\right\| \\
& \leqslant \max \left\{\left\|c_{2} e_{2}\right\|,\left\|c_{1} e_{2}\right\|\right\}=\max \left\{\left|c_{2}\right|,\left|c_{1}\right|\right\} \cdot\left\|e_{2}\right\| \\
& =\left\|c_{1} e_{2}\right\|<\left\|c_{1} e_{1}\right\|=\|u\|,
\end{aligned}
$$

a contradiction with $u \perp\left(e_{1}+e_{2}\right)$.
Lemma 2. Let $\operatorname{dim} E=2$ and $\|\cdot\|_{1},\|\cdot\|_{2}$ be norms defined on E. Assume that $\left\{e_{1}, e_{2}\right\}$ is a multi-orthogonal base (i.e. orthogonal with respect to $\|.\|_{1}$ and $\|\cdot\|_{2}$) on E such that

$$
\begin{equation*}
\left\|e_{1}\right\|_{1}>\left\|e_{2}\right\|_{1} \quad \text { and } \quad\left\|e_{1}\right\|_{2}<\left\|e_{2}\right\|_{2} . \tag{1}
\end{equation*}
$$

Then, $z:=e_{1}+e_{2} \in E$ possesses no nonzero multi-orthogonal element in E.

Proof. Assume that there exists $u=c_{1} e_{1}+c_{2} e_{2}\left(c_{1}, c_{2} \in K\right)$, an element of E which is multi-orthogonal to z. Then, applying Lemma 1 to $\|\cdot\|_{1}$ and the base $\left\{e_{1}, e_{2}\right\}$, we imply $\left|c_{1}\right|<\left|c_{2}\right|$. On the other hand, using Lemma 1 to $\|\cdot\|_{2}$ and the base $\left\{e_{2}, e_{1}\right\}$, we obtain $\left|c_{1}\right|>\left|c_{2}\right|$, a contradiction.

We note that norms defined on two-dimensional E, which satisfies the condition (1), really exist.

Example 3. Let $E=K^{2}$ and let $\lambda \in K,|\lambda|<1$. Define two norms on E by

$$
\begin{aligned}
& \left\|\left(x_{1}, x_{2}\right)\right\|_{1}:=\max \left\{\left|x_{1}\right|,\left|\lambda x_{2}\right|\right\}, \\
& \left\|\left(x_{1}, x_{2}\right)\right\|_{2}:=\max \left\{\left|\lambda x_{1}\right|,\left|x_{2}\right|\right\} .
\end{aligned}
$$

Then, it is easy to check that $\left\{e_{1}, e_{2}\right\}$ (the standard base of K^{2}) is an orthogonal base of E with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, which satisfies the condition (1).

Lemma 4. Let $\operatorname{dim} E=2$ and let e_{1}, e_{2} be nonzero, linearly independent elements of E. Take $\lambda \in K$, such that $|\lambda|>1$. Then,

$$
\begin{align*}
& \left\|c_{1} e_{1}+c_{2} e_{2}\right\|_{3}:=\max \left\{\left|\left(1+\frac{1}{\lambda^{2}}\right) c_{1}-c_{2}\right|,\left|c_{1}-\left(1+\frac{1}{\lambda}\right) c_{2}\right|\right\} \tag{2}\\
& \quad\left(c_{1}, c_{2} \in K\right)
\end{align*}
$$

is a norm on E for which $\left\|e_{1}\right\|_{3}=\left\|e_{2}\right\|_{3}=1,\left\|e_{1}+e_{2}\right\|_{3}=\frac{1}{\lambda}<1$ and $\left\{e_{1}+e_{2}, e_{2}\right\}$ is an orthogonal base of $\left(E,\|\cdot\|_{3}\right)$.

Proof. It is easy to verify that $\|\cdot\|_{3}$ is a norm and $\left\|e_{1}\right\|_{3}=\left\|e_{2}\right\|_{3}=1,\left\|e_{1}+e_{2}\right\|_{3}=$ $\frac{1}{\lambda}<1$. Now, we prove that $\left\{e_{1}+e_{2}, e_{2}\right\}$ is an orthogonal base of $\left(E,\|\cdot\|_{3}\right)$. Taking $a \in K$, we get

$$
\begin{aligned}
\left\|e_{1}+e_{2}+a e_{2}\right\|_{3} & =\max \left\{\left|\left(1+\frac{1}{\lambda^{2}}\right)-(1+a)\right|,\left|1-\left(1+\frac{1}{\lambda}\right)(1+a)\right|\right\} \\
& =\max \left\{\left|\frac{1}{\lambda^{2}}-a\right|,\left|\frac{1}{\lambda}+a+\frac{a}{\lambda}\right|\right\}=\max \left\{\left|\frac{1}{\lambda}\right|,|a|\right\} \\
& =\max \left\{\left\|e_{1}+e_{2}\right\|_{3},\left\|a e_{2}\right\|_{3}\right\} .
\end{aligned}
$$

Now, we are ready to prove
Theorem 5. Let $\operatorname{dim} E=2$. Then, there exist $\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{3}$, three norms defined on E, such that $\left(E,\|\cdot\|_{i}\right)$ has an orthogonal base for every $i \in\{1,2,3\}$, but there is no base on E which is orthogonal with respect to all $\|\cdot\|_{1},\|\cdot\|_{2},\|.\|_{3}$.

Proof. First, we observe that using Example 3 we can define $\|\cdot\|_{1},\|\cdot\|_{2}$ on E in such a way that there exists $\left\{e_{1}, e_{2}\right\}$, a multi-orthogonal base (i.e. orthogonal with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$) on E, which satisfies condition (1). Next, we define $\|\cdot\|_{3}$, as the
norm introduced in (2), applying Lemma 4 to the base $\left\{e_{1}, e_{2}\right\}$, mentioned above. In this way, we equip E in three norms $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{3}$, such that for every one there exists an orthogonal base.

Now, suppose that there exists $\{u, w\}$, a base of E which is orthogonal with respect to all three norms. Let $u:=a_{1} e_{1}+a_{2} e_{2}, w:=b_{1} e_{1}+b_{2} e_{2}$. We may assume that $a_{2}=1$ (by linear independence either $a_{2} \neq 0$ or $b_{2} \neq 0$; by symmetry we may suppose that $a_{2} \neq 0$). Since by assumption, $u=a_{1} e_{1}+e_{2}$ possesses an orthogonal element in E with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$; hence, applying Lemma 2 to the base $\left\{a_{1} e_{1}, e_{2}\right\}$, we conclude that $\mid a_{1} \| \leqslant \frac{\left\|e_{2}\right\|_{1}}{\left\|e_{1}\right\|_{1}}<1$ or $\left|a_{1}\right| \geqslant \frac{\left\|e_{2}\right\|_{2}}{\left\|e_{1}\right\|_{2}}>1$.

Consider the case where $b_{2}=0$ (then, obviously $b_{1} \neq 0$). If $\left|a_{1}\right| \geqslant \frac{\left\|e_{2}\right\|_{2}}{\left\|e_{1}\right\|_{2}}$ then

$$
\left\|u-\frac{a_{1}}{b_{1}} w\right\|_{3}=\left\|a_{1} e_{1}+e_{2}-\frac{a_{1}}{b_{1}} b_{1} e_{1}\right\|_{3}=\left\|e_{2}\right\|_{3}=1 .
$$

But $\|u\|_{3}=\left\|a_{1} e_{1}+e_{2}\right\|_{3}=\left|a_{1}\right|>1$, by assumption; hence, $\left\|u-\frac{a_{1}}{b_{1}} w\right\|_{3}<\|u\|_{3}$, a contradiction. If $\left|a_{1}\right| \leqslant \frac{\left\|e_{2}\right\|_{1}}{\left\|e_{1}\right\|_{1}}<1$, then

$$
\|u\|_{3}=\max \left\{\left|\left(1+\frac{1}{\lambda^{2}}\right) a_{1}-1\right|,\left|a_{1}-\left(1+\frac{1}{\lambda}\right)\right|\right\}=1
$$

and

$$
\begin{aligned}
\left\|u+\frac{1}{b_{1}} w\right\|_{3} & =\left\|a_{1} e_{1}+e_{2}+e_{1}\right\|_{3} \\
& =\max \left\{\left|\left(1+\frac{1}{\lambda^{2}}\right)\left(a_{1}+1\right)-1\right|,\left|a_{1}+1-\left(1+\frac{1}{\lambda}\right)\right|\right\} \\
& =\max \left\{\left|a_{1}+\frac{1}{\lambda^{2}}+\frac{a_{1}}{\lambda^{2}}\right|,\left|a_{1}-\frac{1}{\lambda}\right|\right\}<1=\|u\|_{3} .
\end{aligned}
$$

This contradicts to $u \perp w$ with respect to $\|\cdot\|_{3}$.
Let $b_{2} \neq 0$. Without loss of generality we can assume that $b_{2}=1$. Since, we suppose that $w=b_{1} e_{1}+e_{2}$ possesses an orthogonal element in E with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ and $\left\{e_{1}, e_{2}\right\}$ satisfies condition (1), we imply that $\mid b_{1} \| \neq 1$.

Suppose that $\left|a_{1}\right| \geqslant \frac{\left\|e_{2}\right\|_{2}}{\left\|e_{1}\right\|_{2}}>1$. Then $\|u\|_{3}=\left\|a_{1} e_{1}+e_{2}\right\|_{3}=\left|a_{1}\right|$. Let $\left|b_{1}\right|>1$. We obtain

$$
\begin{aligned}
\left\|u-\frac{a_{1}}{b_{1}} w\right\|_{3} & =\left\|a_{1} e_{1}+e_{2}-a_{1} e_{1}-\frac{a_{1}}{b_{1}} e_{2}\right\|_{3} \\
& =\left|1-\frac{a_{1}}{b_{1}}\right|\left\|e_{2}\right\|_{3}<\left|a_{1}\right|=\|u\|_{3},
\end{aligned}
$$

a contradiction. Taking $\left|b_{1}\right|<1$, we get

$$
\begin{aligned}
\left\|u+a_{1} w\right\|_{3} & =\left\|a_{1} e_{1}+e_{2}+a_{1} b_{1} e_{1}+a_{1} e_{2}\right\|_{3} \\
& \leqslant \max \left\{\left\|a_{1}\left(e_{1}+e_{2}\right)\right\|_{3},\left\|e_{2}+a_{1} b_{1} e_{1}\right\|_{3}\right\}<\left|a_{1}\right|=\|u\|_{3},
\end{aligned}
$$

since $\left\|e_{1}+e_{2}\right\|_{3}<1$, a contradiction.

Let $\left|a_{1}\right| \leqslant \frac{\left\|e_{2}\right\|_{1}}{\left\|e_{1}\right\|_{1}}<1$. If $\left|b_{1}\right|<1$, we obtain

$$
\|u-w\|_{3}=\left\|a_{1} e_{1}+e_{2}-b_{1} e_{1}-e_{2}\right\|_{3}=\left|a_{1}-b_{1}\right| \cdot\left\|e_{1}\right\|_{3}<\left\|e_{1}\right\|_{3}=1 .
$$

For $\left|b_{1}\right|>1$ we get

$$
\begin{aligned}
\left\|u+\frac{1}{b_{1}} w\right\|_{3} & =\left\|a_{1} e_{1}+e_{2}+\frac{1}{b_{1}}\left(b_{1} e_{1}+e_{2}\right)\right\|_{3} \\
& =\left\|\left(a_{1}+1\right) e_{1}+\left(1+\frac{1}{b_{1}}\right) e_{2}\right\|_{3} \\
& =\max \left\{\left|\left(1+\frac{1}{\lambda^{2}}\right)\left(a_{1}+1\right)-\left(1+\frac{1}{b_{1}}\right)\right|,\right. \\
& \left.\left|a_{1}+1-\left(1+\frac{1}{\lambda}\right)\left(1+\frac{1}{b_{1}}\right)\right|\right\}<1
\end{aligned}
$$

but $\|u\|_{3}=1$, a contradiction.
Gruson's theorem (Theorem 5.9 of [2]) says that every closed linear subspace of a Banach space with an orthogonal base has an orthogonal base, either. The following example shows that the counterpart for multi-orthogonal bases is not true.

Example 6. Let $E:=K^{3}$ and let $\lambda \in K,|\lambda|>1$. We define three norms on E by

$$
\begin{aligned}
& \left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{1}:=\max \left\{x_{1}\left|,\left|x_{2}\right|,\left|x_{3}\right|\right\},\right. \\
& \left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{2}:=\max \left\{\left|\lambda x_{1}\right|,\left|\frac{x_{2}}{\lambda^{2}}\right|,\left|\lambda x_{3}\right|\right\}, \\
& \left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{3}:=\max \left\{\left|\frac{x_{1}}{\lambda^{3}}\right|,\left|\frac{x_{2}}{\lambda^{3}}\right|,\left|x_{3}\right|\right\} .
\end{aligned}
$$

Then, E has a multi-orthogonal base (i.e. orthogonal with respect to all three norms $\left.\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{3}\right)$, but the subspace $[u, w]$, where $u:=\lambda e_{1}+e_{2}+e_{3}, w:=e_{1}+\lambda^{2} e_{2}+$ e_{3}, has no multi-orthogonal base ($\left\{e_{1}, e_{2}, e_{3}\right\}$ denotes a standard base of K^{3}).

Proof. It is easy to check that the standard base $\left\{e_{1}, e_{2}, e_{3}\right\}$ is orthogonal with respect to all three norms $\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{3}$. First, we prove that u, w are orthogonal with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. Let $\lambda_{0} \in K$. Then

$$
\left\|u+\lambda_{0} w\right\|_{1}=\max \left\{\left|\lambda+\lambda_{0}\right|,\left|1+\lambda_{0} \lambda^{2}\right|,\left|1+\lambda_{0}\right|\right\} \geqslant|\lambda|=\|u\|_{1}
$$

and

$$
\left\|u+\lambda_{0} w\right\|_{2}=\max \left\{|\lambda| \cdot\left|\lambda+\lambda_{0}\right|,\left|\frac{1}{\lambda^{2}}+\lambda_{0}\right|,|\lambda| \cdot\left|1+\lambda_{0}\right|\right\} \geqslant\left|\lambda^{2}\right|=\|u\|_{2} .
$$

Observe that u, w are not orthogonal with respect to $\|\cdot\|_{3}$:

$$
\|u-w\|_{3}=\max \left\{\left|\frac{\lambda-1}{\lambda^{3}}\right|,\left|\frac{1-\lambda^{2}}{\lambda^{3}}\right|,|1-1|\right\}<1=\|u\|_{3} .
$$

Take $\mu_{1} u+\mu_{2} w \in[u, w]\left(\mu_{1}, \mu_{2} \in K\right)$ and assume that $\mu_{1} u+\mu_{2} w$ has a multiorthogonal element in $[u, w]$.

Consider the case where $\mu_{1} \neq 0$; without loss of generality we can assume that $\mu_{1}=1$. It follows from Lemma 2 that $u+\mu_{2} w$ has an orthogonal element in $[u, w]$ with respect to $\|\cdot\|_{1},\|\cdot\|_{2}$ only if

$$
\begin{align*}
& \left\|\mu_{2} w\right\|_{1} \leqslant\|u\|_{1} \quad \Longrightarrow \quad\left|\mu_{2}\right| \leqslant \frac{\|u\|_{1}}{\|w\|_{1}}=\frac{1}{|\lambda|}, \quad \text { or } \\
& \left\|\mu_{2} w\right\|_{2} \geqslant\|u\|_{2} \quad \Longrightarrow \quad\left|\mu_{2}\right| \geqslant \frac{\|u\|_{2}}{\|w\|_{2}}=|\lambda| . \tag{3}
\end{align*}
$$

Now, assume that $\beta_{1} u+\beta_{2} w\left(\beta_{1}, \beta_{2} \in K\right)$ is a multi-orthogonal element to $u+\mu_{2} w$ in $[u, w]$. Note that by Lemma 2, since the base $\{w, u\}$ satisfies condition (1), it is necessary to have $\left|\beta_{1}\right| \neq\left|\beta_{2}\right|$. Take $\lambda_{0}=-1 /\left(\beta_{1}+\beta_{2}\right)$. If $\left|\mu_{2}\right| \leqslant \frac{1}{|\lambda|}<1$, we obtain

$$
\begin{aligned}
\| u & +\mu_{2} w+\lambda_{0}\left(\beta_{1} u+\beta_{2} w\right) \|_{3} \\
& =\max \left\{\left|\frac{\lambda+\mu_{2}+\lambda_{0}\left(\beta_{1} \lambda+\beta_{2}\right)}{\lambda^{3}}\right|,\left|\frac{1+\mu_{2} \lambda^{2}+\lambda_{0}\left(\beta_{1}+\beta_{2} \lambda^{2}\right)}{\lambda^{3}}\right|,\right. \\
& \left.\left.\leqslant \max \left\{\frac{1}{\left|\lambda^{2}\right|}, \frac{1}{|\lambda|},\left|\mu_{2}\right|\right\}<\lambda_{0}\left(\beta_{1}+\beta_{2}\right) \right\rvert\,\right\}
\end{aligned}
$$

a contradiction to the assumption, since

$$
\left\|u+\mu_{2} w\right\|_{3}=\max \left\{\left|\frac{\lambda+\mu_{2}}{\lambda^{3}}\right|,\left|\frac{1+\mu_{2} \lambda^{2}}{\lambda^{3}}\right|,\left|1+\mu_{2}\right|\right\}=1 .
$$

If $\left|\mu_{2}\right| \geqslant|\lambda|$ then, taking $\lambda_{0}=-\mu_{2} /\left(\beta_{1}+\beta_{2}\right)$, we get

$$
\begin{aligned}
\| u & +\mu_{2} w+\lambda_{0}\left(\beta_{1} u+\beta_{2} w\right) \|_{3} \\
& =\max \left\{\left|\frac{\lambda+\mu_{2}+\lambda_{0}\left(\beta_{1} \lambda+\beta_{2}\right)}{\lambda^{3}}\right|,\left|\frac{1+\mu_{2} \lambda^{2}+\lambda_{0}\left(\beta_{1}+\beta_{2} \lambda^{2}\right)}{\lambda^{3}}\right|,\right. \\
& \leqslant \max \left\{\frac{\left|\mu_{2}\right|}{\left|\lambda^{3}\right|}, \frac{\left.\left|\mu_{2}+\lambda_{0}\left(\beta_{1}+\beta_{2}\right)\right|\right\}}{|\lambda|}, 1\right\}<\left|\mu_{2}\right|,
\end{aligned}
$$

but

$$
\left\|u+\mu_{2} w\right\|_{3}=\max \left\{\left|\frac{\lambda+\mu_{2}}{\lambda^{3}}\right|,\left|\frac{1+\mu_{2} \lambda^{2}}{\lambda^{3}}\right|,\left|1+\mu_{2}\right|\right\}=\left|\mu_{2}\right|
$$

a contradiction.
Now, let $\mu_{1}=0$. We can assume that $\mu_{2}=1$ and that there exists $\beta_{1} u+\beta_{2} w \in$ $[u, w]\left(\beta_{1}, \beta_{2} \in K\right)$, a multi-orthogonal element to u. Since u and w are not
orthogonal with respect to $\|\cdot\|_{3}$; hence $\beta_{1} \neq 0$, without loss of generality we can assume that $\beta_{1}=1$. Using Lemma 2, we imply that there exists an orthogonal element to $u+\beta_{2} w$ with respect to $\|\cdot\|_{1},\|\cdot\|_{2}$ only if $\left|\beta_{2}\right| \leqslant \frac{1}{|\lambda|}$ or $\left|\beta_{2}\right| \geqslant|\lambda|$. Suppose that $\left|\beta_{2}\right| \geqslant|\lambda|$. Then, taking $\lambda_{0}=-1 / \beta_{2}$ we get

$$
\left\|u+\lambda_{0}\left(u+\beta_{2} w\right)\right\|_{3}=\left\|u-\frac{u}{\beta_{2}}-w\right\|_{3} \leqslant \max \left\{\|u-w\|_{3},\left\|\frac{u}{\beta_{2}}\right\|_{3}\right\}<\|u\|_{3},
$$

a contradiction. Considering the case where $\left|\beta_{2}\right| \leqslant \frac{1}{|\lambda|}$, choosing $\lambda_{0}=-1$, we obtain

$$
\left\|u+\lambda_{0}\left(u+\beta_{2} w\right)\right\|_{3}=\left\|\beta_{2} w\right\|_{3} \leqslant \frac{1}{|\lambda|}\|w\|_{3}<\|u\|_{3}
$$

and finishing the proof.

Observe the following fact:

Proposition 7. Let $\|\cdot\|_{1},\|\cdot\|_{2}$ be norms on E and let $x_{0} \in E\left(x_{0} \neq 0\right)$ be such that [x_{0}] is multi-orthocomplemented in E. If $D \subset E$ is a multi-orthocomplement of $\left[x_{0}\right]$ in E then there exists $\lambda_{0} \in K$ or there exists $x_{d} \in D$ such that

$$
\max _{x \in E, x \neq 0} \frac{\|x\|_{2}}{\|x\|_{1}}=\frac{\left\|x_{d}\right\|_{2}}{\left\|x_{d}\right\|_{1}} \quad \text { or } \quad \max _{x \in E, x \neq 0} \frac{\|x\|_{2}}{\|x\|_{1}}=\frac{\left\|x_{0}\right\|_{2}}{\left\|x_{0}\right\|_{1}} .
$$

Proof. Take $y \in E, y \neq 0$, where $y=\lambda x_{0}+d, \lambda \in K, d \in D$, such that $\frac{\|y\|_{2}}{\|y\|_{1}}=$ $\max _{x \in E, x \neq 0} \frac{\|x\|_{2}}{\|x\|_{1}}$. Then

$$
\frac{\|y\|_{2}}{\|y\|_{1}}=\frac{\left\|\lambda x_{0}+d\right\|_{2}}{\left\|\lambda x_{0}+d\right\|_{1}}=\frac{\max \left\{\left\|\lambda x_{0}\right\|_{2},\|d\|_{2}\right\}}{\max \left\{\left\|\lambda x_{0}\right\|_{1},\|d\|_{1}\right\}} .
$$

If $\left\|\lambda x_{0}\right\|_{2} \geqslant\|d\|_{2}$, then

$$
\frac{\|y\|_{2}}{\|y\|_{1}}=\frac{\left\|\lambda x_{0}+d\right\|_{2}}{\left\|\lambda x_{0}+d\right\|_{1}}=\frac{\left\|\lambda x_{0}\right\|_{2}}{\max \left\{\left\|\lambda x_{0}\right\|_{1},\|d\|_{1}\right\}} \leqslant \frac{\left\|\lambda x_{0}\right\|_{2}}{\left\|\lambda x_{0}\right\|_{1}}=\frac{\left\|x_{0}\right\|_{2}}{\left\|x_{0}\right\|_{1}} .
$$

On the other hand, if $\left\|\lambda x_{0}\right\|_{2}<\|d\|_{2}$ then

$$
\frac{\|y\|_{2}}{\|y\|_{1}}=\frac{\left\|\lambda x_{0}+d\right\|_{2}}{\left\|\lambda x_{0}+d\right\|_{1}}=\frac{\|d\|_{2}}{\max \left\{\left\|\lambda x_{0}\right\|_{1},\|d\|_{1}\right\}} \leqslant \frac{\|d\|_{2}}{\|d\|_{1}} \leqslant \max _{x \in D, x \neq 0} \frac{\|x\|_{2}}{\|x\|_{1}} .
$$

We can easily conclude the corollary:
Corollary 8. Let $\|\cdot\|_{1},\|.\|_{2}$ be norms on E and let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a multiorthogonal base in E. Then, there exist indices $i, j \in\{1, \ldots, n\}$ such that

$$
\max _{x \in E, x \neq 0} \frac{\|x\|_{2}}{\|x\|_{1}}=\frac{\left\|e_{i}\right\|_{2}}{\left\|e_{i}\right\|_{1}} \quad \text { and } \quad \max _{x \in E, x \neq 0} \frac{\|x\|_{1}}{\|x\|_{2}}=\frac{\left\|e_{j}\right\|_{1}}{\left\|e_{j}\right\|_{2}} .
$$

Next theorem gives some conditions of the existence of a multi-orthogonal base in finite-dimensional normed space for given three norms.

Theorem 9. Let $\|.\|_{1},\|.\|_{2}$ be norms on E and $\left\{e_{1}, \ldots, e_{n}\right\}$ be a multi-orthogonal base (orthogonal with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$) on E. Then, the following conditions are equivalent:
(1) $\frac{\left\|e_{1}\right\|_{1}}{\left\|e_{1}\right\|_{2}}=\cdots=\frac{\left\|e_{n}\right\|_{1}}{\left\|e_{n}\right\|_{2}}=p$;
(2) $\frac{\|x\|_{1}}{\|x\|_{2}}=p$ for every nonzero $x \in E$;
(3) for every norm $\|\cdot\|_{3}$ on E, every two-dimensional linear subspace of E possesses a base, orthogonal with respect to $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{3}$;
(4) for every norm $\|\cdot\|_{3}$ on E, E possesses a base, orthogonal with respect to $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{3}$.

Proof. (1) \Rightarrow (2). Assume that $\left\|e_{i}\right\|_{1}=p \cdot\left\|e_{i}\right\|_{2}$ for each $i \in\{1, \ldots, n\}$. Let $x \in E$ $(x \neq 0)$. Then, there exist $a_{1}, \ldots, a_{n} \in K$ such that $x=\sum_{i=1}^{n} a_{i} e_{i}$ and we get

$$
\begin{aligned}
\|x\|_{1}=\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\|_{1} & =\max _{i=1, \ldots, n}\left\{\left|a_{i}\right| \cdot\left\|e_{i}\right\|_{1}\right\}=\max _{i=1, \ldots, n}\left\{\left|a_{i}\right| \cdot p \cdot\left\|e_{i}\right\|_{2}\right\} \\
& =p \cdot \max _{i=1, \ldots, n}\left\{\left\|a_{i} e_{i}\right\|_{2}\right\}=p \cdot\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\|_{2}=p \cdot\|x\|_{2} .
\end{aligned}
$$

The implication $(2) \Rightarrow(1)$ is obvious.
(2) \Rightarrow (3). Let $\|\cdot\|_{3}$ be a norm defined on E and let F be a two-dimensional linear subspace of E. It follows from the assumption that every orthogonal base of F with respect to $\|\cdot\|_{1}$ is also orthogonal with respect to $\|.\|_{2}$. Since, by Theorem 1.11 of [1], there exists a base $\left\{z_{1}, z_{2}\right\}$ in F which is orthogonal with respect to $\left\|_{\cdot}\right\|_{1}$ and $\|\cdot\|_{3},\left\{z_{1}, z_{2}\right\}$ is also orthogonal with respect to $\|\cdot\|_{2}$.
(3) \Rightarrow (2). Assume the contrary and suppose that there exist nonzero $z_{1}, z_{2} \in E$ such that $\frac{\left\|z_{1}\right\|_{1}}{\left\|z_{1}\right\|_{2}}>\frac{\left\|z_{2}\right\|_{1}}{\left\|z_{2}\right\|_{2}}$. From Corollary 8 , we get that there exists a base $\left\{x_{1}, x_{2}\right\}$ of $\left[z_{1}, z_{2}\right]$, which is orthogonal with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, such that $\frac{\left\|x_{1}\right\|_{1}}{\left\|x_{1}\right\|_{2}}>$ $\frac{\left\|x_{2}\right\|_{1}}{\left\|x_{2}\right\|_{2}}$. Then $\frac{\left\|x_{1}\right\|_{1}}{\left\|x_{2}\right\|_{1}}>\frac{\left\|x_{1}\right\|_{2}}{\left\|x_{2}\right\|_{2}}$. Define a norm $\|\cdot\|_{3}$ on E which satisfies the following properties:

- $\left\|x_{1}-\left[x_{2}\right]\right\|_{3}<\left\|x_{1}\right\|_{3}$,
- $\frac{\left\|x_{1}\right\|_{1}}{\left\|x_{2}\right\|_{1}}>\frac{\left\|x_{1}\right\|_{3}}{\left\|x_{2}\right\|_{3}}>\frac{\left\|x_{1}\right\|_{2}}{\left\|x_{2}\right\|_{2}}$.

Now, assume that there exist $a, b \in K$ such that $a x_{1}+b x_{2}$ has an element in $\left[z_{1}, z_{2}\right]$, say $c_{1} x_{1}+c_{2} x_{2}\left(c_{1}, c_{2} \in K\right)$, orthogonal with respect to $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{3}$.

Assuming that $\left\|a x_{1}\right\|_{3}=\left\|b x_{2}\right\|_{3}$ (then $a \neq 0$ and $b \neq 0$) we get $\frac{\left\|x_{1}\right\|_{3}}{\left\|x_{2}\right\|_{3}}=\frac{|b|}{|a|}$ and $\frac{\left\|x_{1}\right\|_{1}}{\left\|x_{2}\right\|_{1}}>\frac{|b|}{|a|}>\frac{\left\|x_{1}\right\|_{2}}{\left\|x_{2}\right\|_{2}}$. Next, we get $\left\|\frac{a}{b} x_{1}\right\|_{1}>\left\|x_{2}\right\|_{1}$ and $\left\|\frac{a}{b} x_{1}\right\|_{2}<\left\|x_{2}\right\|_{2}$. Using Lemma 2, we conclude that $a x_{1}+b x_{2}$ has no orthogonal element in $\left[z_{1}, z_{2}\right]$ with respect to $\|.\|_{1},\|.\|_{2}$.

Hence, $\left\|a x_{1}\right\|_{3} \neq\left\|b x_{2}\right\|_{3}$ (and $\left\|c_{1} x_{1}\right\|_{3} \neq\left\|c_{2} x_{2}\right\|_{3}$). Suppose that $\left\|a x_{1}\right\|_{3}>$ $\left\|b x_{2}\right\|_{3}$. If $\left\|c_{1} x_{1}\right\|_{3}>\left\|c_{2} x_{2}\right\|_{3}$, then $\left\|x_{1}\right\|_{3}>\| \|_{c_{1}} x_{2} \|_{3}$ and taking $\lambda:=-\frac{a}{c_{1}}$ we get

$$
\begin{aligned}
\left\|a x_{1}+b x_{2}+\lambda\left(c_{1} x_{1}+c_{2} x_{2}\right)\right\|_{3} & =\left\|b x_{2}-a \frac{c_{2}}{c_{1}} x_{2}\right\|_{3} \\
& <\left\|a x_{1}\right\|_{3}=\left\|a x_{1}+b x_{2}\right\|_{3},
\end{aligned}
$$

a contradiction. If $\left\|c_{1} x_{1}\right\|_{3}<\left\|c_{2} x_{2}\right\|_{3}$, since by assumption there exists $\mu \in K$ with $\left\|x_{1}-\mu x_{2}\right\|_{3}<\left\|x_{1}\right\|_{3}$, taking $\lambda:=-\frac{a \mu}{c_{2}}$ we get

$$
\begin{aligned}
\left\|a x_{1}+b x_{2}+\lambda\left(c_{1} x_{1}+c_{2} x_{2}\right)\right\|_{3} & =\left\|a\left(x_{1}-\mu x_{2}\right)+b x_{2}-\frac{a \mu}{c_{2}} c_{1} x_{1}\right\|_{3} \\
& <\left\|a x_{1}\right\|_{3}=\left\|a x_{1}+b x_{2}\right\|_{3},
\end{aligned}
$$

since

$$
\left\|\frac{a \mu}{c_{2}} c_{1} x_{1}\right\|_{3}<\left\|\frac{a \mu}{c_{2}} c_{2} x_{2}\right\|_{3}=\left\|a \mu x_{2}\right\|_{3}=\left\|a x_{1}\right\|_{3} .
$$

For the case $\left\|a x_{1}\right\|_{3}<\left\|b x_{2}\right\|_{3}$, by symmetry, we obtain the same conclusion.
Finally, assume that $a=0$ or $b=0$. Then, it is easy to verify, that in this case we have $\left\|c_{1} x_{1}\right\|_{3}=\left\|c_{2} x_{2}\right\|_{3}$. But, as we observe above, such element $c_{1} x_{1}+c_{2} x_{2}$ has no orthogonal element with respect to $\|.\|_{1},\|.\| \|_{2}$ in $\left[z_{1}, z_{2}\right]$, a contradiction.
(2) \Rightarrow (4). Let $\|.\|_{3}$ be a norm defined on E. It follows from the assumption that every orthogonal base with respect to $\|\cdot\|_{1}$ is also orthogonal with respect to $\|\cdot\|_{2}$. Applying the same argumentation as in (2) $\Rightarrow(3)$, by Theorem 1.11 of [1], there exists a base $\left\{z_{1}, \ldots, z_{n}\right\}$ in E which is orthogonal with respect to $\|.\|_{1}$ and $\|.\|_{3}$; thus, orthogonal with respect to $\|\cdot\|_{2}$.
(4) \Rightarrow (1). Assume the contrary and suppose that for every $\|\cdot\|_{3}$, a norm defined on E, E possesses a base orthogonal with respect to $\|.\|_{1},\|.\|_{2}$ and $\|.\|_{3}$. Suppose that

$$
\begin{equation*}
\frac{\left\|e_{1}\right\|_{1}}{\left\|e_{1}\right\|_{2}} \geqslant \frac{\left\|e_{2}\right\|_{1}}{\left\|e_{2}\right\|_{2}} \geqslant \cdots \geqslant \frac{\left\|e_{n}\right\|_{1}}{\left\|e_{n}\right\|_{2}} \text { and } \frac{\left\|e_{1}\right\|_{1}}{\left\|e_{1}\right\|_{2}}>\frac{\left\|e_{n}\right\|_{1}}{\left\|e_{n}\right\|_{2}} . \tag{4}
\end{equation*}
$$

Choose $\mu \in K$ such that
(5) $\frac{\left\|e_{n}\right\|_{2}}{\left\|e_{1}\right\|_{2}}>\|\mu\|>\frac{\left\|e_{n}\right\|_{1}}{\left\|e_{1}\right\|_{1}}$
and $p \in K,|p|<1$. Next, we define the norm on E by

$$
\begin{gathered}
\|x\|_{3}:=\max \left\{\left|\left(1+p^{2}\right) x_{1}-\mu x_{n}\right| \cdot\left\|e_{1}\right\|_{2},\left|x_{1}-\mu(1+p) x_{n}\right| \cdot\left\|e_{1}\right\|_{2},\right. \\
\left.\left\|x_{2} e_{2}\right\|_{2}, \ldots,\left\|x_{n-1} e_{n-1}\right\|_{2}\right\},
\end{gathered}
$$

where $x \in E$ is given by $x=\sum_{i=1}^{n} x_{i} e_{i}$.

First, we prove that $\max _{x \in E} \frac{\|x\|_{1}}{\|x\|_{3}}$ is attained for

$$
\begin{equation*}
u_{0}=\lambda\left(e_{1}+\frac{1}{\mu} \lambda_{2} e_{n}+a_{2} e_{2}+\cdots+a_{n-1} e_{n-1}\right) \tag{6}
\end{equation*}
$$

if $\lambda_{2}=1+\varepsilon(\varepsilon, \lambda \in K,\|\varepsilon\| \leqslant|p|, \lambda \neq 0)$ and $\max _{i=2, \ldots, n-1}\left\|a_{i} e_{i}\right\|_{2} \leqslant|p| \cdot\left\|e_{1}\right\|_{2}$. Indeed, then

$$
\begin{aligned}
& \max \left\{\left|\left(1+p^{2}\right)-\mu \frac{\lambda_{2}}{\mu}\right|,\left|1-\mu(1+p) \frac{1}{\mu} \lambda_{2}\right|\right\} \\
& \quad=\max \left\{\left|p^{2}-\varepsilon\right|,|p+\varepsilon+p \varepsilon|\right\}=|p|, \\
& \left\|a_{2} e_{2}+\cdots+a_{n-1} e_{n-1}\right\|_{2}=\max _{i=2, \ldots, n-1}\left\|a_{i} e_{i}\right\|_{2} \leqslant|p| \cdot\left\|e_{1}\right\|_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\left\|u_{0}\right\|_{1}}{\left\|u_{0}\right\|_{3}} & =\frac{\max \left\{\left\|e_{1}\right\|_{1},\left\|\frac{1}{\mu}(1+\varepsilon) e_{n}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}}{|p| \cdot\left\|e_{1}\right\|_{2}} \\
& =\frac{\left\|e_{1}\right\|_{1}}{|p| \cdot\left\|e_{1}\right\|_{2}},
\end{aligned}
$$

since $\left\|\frac{1}{\mu}(1+\varepsilon) e_{n}\right\|_{1}=\left\|\frac{1}{\mu} e_{n}\right\|_{1}<\left\|e_{1}\right\|_{1}$ by (5) and

$$
\begin{equation*}
\frac{\left\|e_{1}\right\|_{2}}{\left\|e_{1}\right\|_{1}} \leqslant \frac{\left\|a_{i} e_{i}\right\|_{2}}{\left\|a_{i} e_{i}\right\|_{1}} \leqslant \frac{|p| \cdot\left\|e_{1}\right\|_{2}}{\left\|a_{i} e_{i}\right\|_{1}} \quad \Longrightarrow \quad\left\|a_{i} e_{i}\right\|_{1} \leqslant|p| \cdot\left\|e_{1}\right\|_{1} \tag{7}
\end{equation*}
$$

if $i \in\{2, \ldots, n-1\}$ and $a_{i} \neq 0$.
Next, we prove that for nonzero (assuming that $a_{1}=1$ or $a_{1}=0, a_{1} \in K$)

$$
u=\lambda\left(a_{1} e_{1}+\frac{1}{\mu} \lambda_{2} e_{n}+a_{2} e_{2}+\cdots+a_{n-1} e_{n-1}\right) \quad(\lambda \in K),
$$

where there exists $j \in\{2, \ldots, n-1\}$ such that $\left\|a_{j} e_{j}\right\|_{2}=\max _{i=2, \ldots, n-1}\left\|a_{i} e_{i}\right\|_{2}>$ $|p| \cdot\left\|e_{1}\right\|_{2}$ or $\lambda_{2}=1+\varepsilon$ for $|\varepsilon|>|p|(\varepsilon \in K)$, we obtain $\frac{\|u\|_{1}}{\|u\|_{3}}<\frac{\left\|e_{1}\right\|_{1}}{|p| \cdot\left\|e_{1}\right\|_{2}}$.

Let $j \in\{2, \ldots, n-1\}$ with $\left\|a_{j} e_{j}\right\|_{2}=\max _{i=2, \ldots, n-1}\left\|a_{i} e_{i}\right\|_{2}>|p| \cdot\left\|e_{1}\right\|_{2}$ and assume that $|\varepsilon| \leqslant|p|$. For $a_{1}=1$, applying (5), we get

$$
\begin{aligned}
\frac{\|u\|_{1}}{\|u\|_{3}} & =\frac{\max \left\{\left\|e_{1}\right\|_{1},\left\|\frac{1}{\mu}(1+\varepsilon) e_{n}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}}{\max \left\{\left|\left(1+p^{2}\right)-(1+\varepsilon)\right| \cdot\left\|e_{1}\right\|_{2},|1-(1+p)(1+\varepsilon)| \cdot\left\|e_{1}\right\|_{2},\left\|a_{j} e_{j}\right\|_{2}\right\}} \\
& \leqslant \frac{\max \left\{\left\|e_{1}\right\|_{1},\left\|(1+\varepsilon) e_{1}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}}{\left.\max \left\{\left|p^{2}-\varepsilon\right| \cdot\left\|e_{1}\right\|_{2}, \mid p+\varepsilon+p \varepsilon\right\} \cdot\left\|e_{1}\right\|_{2},\left\|a_{j} e_{j}\right\|_{2}\right\}} \\
& =\frac{\max \left\{\left\|e_{1}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}}{\left\|a_{j} e_{j}\right\|_{2}} .
\end{aligned}
$$

Then, using (4), we get

$$
\frac{\|u\|_{1}}{\|u\|_{3}} \leqslant \max \left\{\frac{\left\|e_{1}\right\|_{1}}{\left\|a_{j} e_{j}\right\|_{2}}, \frac{\left\|a_{k} e_{k}\right\|_{1}}{\left\|a_{k} e_{k}\right\|_{2}}\right\}<\frac{\left\|e_{1}\right\|_{1}}{|p| \cdot\left\|e_{1}\right\|_{2}}
$$

where $k \in\{2, \ldots, n-1\}$ and $\left\|a_{k} e_{k}\right\|_{1}=\max _{i=2, \ldots, n-1}\left\|a_{i} e_{i}\right\|_{1}$ (without loss of generality we can assume that $a_{k} \neq 0$).

Now, suppose only that $|\varepsilon|>|p|$. Then, assuming that $a_{k} \neq 0$ (if not, with slight modifications we can also get the same final evaluation) we obtain

$$
\begin{aligned}
\frac{\|u\|_{1}}{\|u\|_{3}} & \leqslant \frac{\max \left\{\left\|e_{1}\right\|_{1},\left\|(1+\varepsilon) e_{1}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}}{\max \left\{|\varepsilon| \cdot\left\|e_{1}\right\|_{2},\left\|a_{2} e_{2}\right\|_{2}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{2}\right\}} \\
& \leqslant \max \left\{\frac{\left\|e_{1}\right\|_{1}}{|\varepsilon| \cdot\left\|e_{1}\right\|_{2}}, \frac{\left\|e_{1}\right\|_{1}}{\left\|e_{1}\right\|_{2}}, \frac{\left\|a_{k} e_{k}\right\|_{1}}{\left\|a_{k} e_{k}\right\|_{2}}\right\}<\frac{\left\|e_{1}\right\|_{1}}{|p| \cdot\left\|e_{1}\right\|_{2}} .
\end{aligned}
$$

Considering the case if $a_{1}=0$, we see that

$$
\begin{aligned}
\frac{\|u\|_{1}}{\|u\|_{3}} & =\frac{\max \left\{\left\|\frac{1}{\mu}(1+\varepsilon) e_{n}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}}{\max \left\{|(1+\varepsilon)| \cdot\left\|e_{1}\right\|_{2},|(1+p)(1+\varepsilon)| \cdot\left\|e_{1}\right\|_{2},\left\|a_{j} e_{j}\right\|_{2}\right\}} \\
& \leqslant \frac{\max \left\{\left\|(1+\varepsilon) e_{1}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}}{\max \left\{|(1+\varepsilon)| \cdot\left\|e_{1}\right\|_{2},|(1+p)(1+\varepsilon)| \cdot\left\|e_{1}\right\|_{2},\left\|a_{j} e_{j}\right\|_{2}\right\}} \\
& \leqslant \max \left\{\frac{\left\|e_{1}\right\|_{1}}{\left\|e_{1}\right\|_{2}}, \frac{\left\|a_{k} e_{k}\right\|_{1}}{\left\|a_{k} e_{k}\right\|_{2}}\right\}<\frac{\left\|e_{1}\right\|_{1}}{|p| \cdot\left\|e_{1}\right\|_{2}} .
\end{aligned}
$$

By Corollary 8 , in every base of E, orthogonal with respect to $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{3}$, there is an element u_{0} given by (6). Without loss of generality, we can assume that $\lambda=1$. Hence, for such u_{0} we can find an $(n-1)$-dimensional linear subspace D of E such that $E=\left[u_{0}\right] \oplus D\left([u]\right.$ and D are orthogonal with respect to $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{3}$). Now, we can write $e_{n}=c u_{0}+d_{0}$ for some $c \in K, d_{0} \in D$. Note that

$$
\left\|u_{0}\right\|_{1}=\max \left\{\left\|e_{1}\right\|_{1},\left\|\frac{1}{\mu}(1+\varepsilon) e_{n}\right\|_{1},\left\|a_{2} e_{2}\right\|_{1}, \ldots,\left\|a_{n-1} e_{n-1}\right\|_{1}\right\}=\left\|e_{1}\right\|_{1}
$$

and

$$
\left\|u_{0}\right\|_{2}=\max \left\{\left\|e_{1}\right\|_{2},\left\|\frac{1}{\mu} e_{n}\right\|_{2}, \max _{i=2, \ldots, n-1}\left\|a_{i} e_{i}\right\|_{2}\right\}=\left\|\frac{1}{\mu} e_{n}\right\|_{2},
$$

since

$$
\left\|\frac{1}{\mu}(1+\varepsilon) e_{n}\right\|_{1}<\left\|e_{1}\right\|_{1},\left\|a_{2} e_{2}+\cdots+a_{n-1} e_{n-1}\right\|_{2} \leqslant|p| \cdot\left\|e_{1}\right\|_{2}
$$

and $\left\|e_{1}\right\|_{2}<\frac{1}{|\mu|}\left\|e_{n}\right\|_{2}$ by (5), $\left\|a_{i} e_{i}\right\|_{1} \leqslant|p| \cdot\left\|e_{1}\right\|_{1}$ by (7).
Applying multi-orthogonality u_{0} and d_{0} we get $\left\|e_{n}\right\|_{1}=\max \left\{\left\|c u_{0}\right\|_{1},\left\|d_{0}\right\|_{1}\right\}$; hence, $\left\|c u_{0}\right\|_{1}=\left\|c e_{1}\right\|_{1} \leqslant\left\|e_{n}\right\|_{1}$. Using (5) again, we imply

$$
|c| \leqslant \frac{\left\|e_{n}\right\|_{1}}{\left\|e_{1}\right\|_{1}}<|\mu| .
$$

Then $\left\|c u_{0}\right\|_{2}=\frac{|c|}{|\mu|}\left\|e_{n}\right\|_{2}<\left\|e_{n}\right\|_{2}$. Taking $d_{0}=e_{n}-c u_{0}$, noting that $\left\|d_{0}\right\|_{2}=$ $\max \left\{\left\|c u_{0}\right\|_{2},\left\|e_{n}\right\|_{2}\right\}=\left\|e_{n}\right\|_{2}$, we obtain

$$
\begin{aligned}
\left\|\frac{\mu}{\lambda_{2}} u_{0}-d_{0}\right\|_{2} & =\left\|\frac{\mu}{\lambda_{2}} e_{1}+e_{n}+\frac{\mu}{\lambda_{2}}\left(a_{2} e_{2}+\cdots+a_{n-1} e_{n-1}\right)-e_{n}+c u_{0}\right\|_{2} \\
& \leqslant \max \left\{\left\|\mu e_{1}\right\|_{2},\left\|\mu\left(a_{2} e_{2}+\cdots+a_{n-1} e_{n-1}\right)\right\|_{2},\left\|c u_{0}\right\|_{2}\right\} \\
& <\left\|e_{n}\right\|_{2}
\end{aligned}
$$

a contradiction with orthogonality $\left[u_{0}\right]$ and D with respect to $\|\cdot\|_{2}$.

ACKNOWLEDGEMENT

The author wishes to thank the referee for making several suggestions which improved this paper.

REFERENCES

[1] van Rooij A. - Notes on p-adic Banach spaces, Katholieke Universiteit Nijmegen, Report 7633 (1976).
[2] van Rooij A. - Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.
[3] van Rooij A., Schikhof W.H. - Open problems, in: Boyod J.M., et al. (Eds.), p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics, vol. 137, Marcel Dekker, New York, 1992, pp. 209-219.

(Received November 2005)

