On multi-orthogonal bases in finite-dimensional non-Archimedean normed spaces

by Albert Kubzdela

Institute of Civil Engineering, Poznań University of Technology, Ul. Piotrowo 5, 61-138 Poznań, Poland

Communicated by Prof. T.A. Springer at the meeting of March 27, 2006

ABSTRACT

The paper deals with the problem of the existence multi-orthogonal bases in finite-dimensional normed spaces over K, where K is a non-Archimedean complete valued field.

1. INTRODUCTION

Throughout this paper K will denote a non-Archimedean, non-trivially valued field which is complete under the metric induced by the valuation $|.|: K \to [0, \infty)$ and E will denote a finite-dimensional linear space over K. Every considered norm, defined on E, will be *non-Archimedean* (i.e. it satisfies 'the strong triangle inequality': $||x + y|| \le \max\{||x||, ||y||\}$ for all $x, y \in E$). Recall that for a given norm ||.||, defined on E, a sequence $(x_i)_{i=1}^n \subset E$ $(n \in N)$ is called *orthogonal* if $||\lambda_1 x_1 + \cdots + \lambda_n x_n|| = \max_{i=1,\dots,n} ||\lambda_i x_i||$ for any $\lambda_1, \dots, \lambda_n \in K$. Additionally, we say that an orthogonal sequence $(x_i)_{i=1}^n \subset E$ is a base of E if $[x_1, \dots, x_n] = E$. Then, for every $x \in E$ there is a unique $(\lambda_i)_{i=1}^n \in K^n$ such that $x = \sum_{i=1}^n \lambda_i x_i$. A linear subspace D of E is said to be *orthocomplemented in* E if there is a linear subspace D_0 of E such that $D + D_0 = E$ and $D \perp D_0$ (i.e. $||x + y|| = \max\{||x||, ||y||\}$ for all $x \in D$, $y \in D_0$). Let $||.||_1, \dots, ||.||_k$ be norms defined on E. We say that a sequence $(x_i)_{i=1}^n \subset E$ $(n \in N)$ is *multi-orthogonal* in E if it is orthogonal with respect to all $||.||_1, \dots, ||.||_k$ and we say that a linear subspace D of E is

MSC: 46S10

Key words and phrases: non-Archimedean finite-dimensional normed spaces, orthogonal bases E-mail: kubzdela@put.poznan.pl (A. Kubzdela).

multi-orthocomplemented if there exists a linear subspace D_0 of E which satisfies $D + D_0 = E$ and $D \perp D_0$ with respect to all $\|.\|_1, \ldots, \|.\|_k$.

The problem of the existence of multi-orthogonal bases in finite-dimensional normed spaces was presented by A. van Rooij and W. Schikhof in 1992 (see Problem 3 of [3]). They noted that if $\|.\|_1$, $\|.\|_2$ are norms, defined on *E*, such that $(E, \|.\|_1)$ and $(E, \|.\|_2)$ both have orthogonal bases, then there exists a base of *E*, so called a *multi-orthogonal base*, which is orthogonal to both $\|.\|_1$ and $\|.\|_2$. In [3] A. van Rooij and W. Schikhof ask if the similar result is true for three or finitely many norms.

In this paper we solve this problem. In Theorem 5 we give a negative answer for this question, proving that there exist three norms defined on two-dimensional linear space for which there is no multi-orthogonal base, although for every defined norm there exists an orthogonal base. In Theorem 9 we present some equivalent conditions for existence of multi-orthogonal bases in finite-dimensional normed space. Example 6 contains the construction of the linear space, where three norms are defined, with a multi-orthogonal base and a linear subspace without such base.

For more background of the theory of non-Archimedean normed spaces we refer the reader to [1] and [2].

2. RESULTS

To obtain the main result (Theorem 5), the construction of three norms defined on two-dimensional E in such way that there is no base which is orthogonal with respect to all three norms, although E possesses an orthogonal base for every defined norm, we need some preparation.

Lemma 1. Let dim E = 2 and let ||.|| be a norm on E with orthogonal base $\{e_1, e_2\}$, where $||e_1|| > ||e_2||$. Take nonzero $u = c_1e_1 + c_2e_2 \in E$ $(c_1, c_2 \in K)$ such that $u \perp (e_1 + e_2)$. Then, $|c_1| < |c_2|$.

Proof. Assume that $|c_1| \ge |c_2|$, then $||u|| = \max\{||c_1e_1||, ||c_2e_2||\} = ||c_1e_1||$. But, we obtain

$$\|u - c_1(e_1 + e_2)\| = \|(c_1e_1 + c_2e_2) - (c_1e_1 + c_1e_2)\| = \|c_2e_2 - c_1e_2\|$$

$$\leq \max\{\|c_2e_2\|, \|c_1e_2\|\} = \max\{|c_2|, |c_1|\} \cdot \|e_2\|$$

$$= \|c_1e_2\| < \|c_1e_1\| = \|u\|,$$

a contradiction with $u \perp (e_1 + e_2)$. \Box

Lemma 2. Let dim E = 2 and $\|.\|_1, \|.\|_2$ be norms defined on E. Assume that $\{e_1, e_2\}$ is a multi-orthogonal base (i.e. orthogonal with respect to $\|.\|_1$ and $\|.\|_2$) on E such that

(1) $||e_1||_1 > ||e_2||_1$ and $||e_1||_2 < ||e_2||_2$.

Then, $z := e_1 + e_2 \in E$ possesses no nonzero multi-orthogonal element in E.

Proof. Assume that there exists $u = c_1e_1 + c_2e_2$ $(c_1, c_2 \in K)$, an element of E which is multi-orthogonal to z. Then, applying Lemma 1 to $\|.\|_1$ and the base $\{e_1, e_2\}$, we imply $|c_1| < |c_2|$. On the other hand, using Lemma 1 to $\|.\|_2$ and the base $\{e_2, e_1\}$, we obtain $|c_1| > |c_2|$, a contradiction. \Box

We note that norms defined on two-dimensional E, which satisfies the condition (1), really exist.

Example 3. Let $E = K^2$ and let $\lambda \in K$, $|\lambda| < 1$. Define two norms on E by

 $\|(x_1, x_2)\|_1 := \max\{|x_1|, |\lambda x_2|\}, \\ \|(x_1, x_2)\|_2 := \max\{|\lambda x_1|, |x_2|\}.$

Then, it is easy to check that $\{e_1, e_2\}$ (the standard base of K^2) is an orthogonal base of *E* with respect to $\|.\|_1$ and $\|.\|_2$, which satisfies the condition (1).

Lemma 4. Let dim E = 2 and let e_1, e_2 be nonzero, linearly independent elements of E. Take $\lambda \in K$, such that $|\lambda| > 1$. Then,

(2)
$$||c_1e_1 + c_2e_2||_3 := \max\left\{ \left| \left(1 + \frac{1}{\lambda^2}\right)c_1 - c_2 \right|, \left| c_1 - \left(1 + \frac{1}{\lambda}\right)c_2 \right| \right\}$$

 $(c_1, c_2 \in K)$

is a norm on E for which $||e_1||_3 = ||e_2||_3 = 1$, $||e_1 + e_2||_3 = \frac{1}{\lambda} < 1$ and $\{e_1 + e_2, e_2\}$ is an orthogonal base of $(E, ||.||_3)$.

Proof. It is easy to verify that $\|.\|_3$ is a norm and $\|e_1\|_3 = \|e_2\|_3 = 1$, $\|e_1 + e_2\|_3 = \frac{1}{\lambda} < 1$. Now, we prove that $\{e_1 + e_2, e_2\}$ is an orthogonal base of $(E, \|.\|_3)$. Taking $a \in K$, we get

$$\|e_{1} + e_{2} + ae_{2}\|_{3} = \max\left\{ \left| \left(1 + \frac{1}{\lambda^{2}}\right) - (1 + a) \right|, \left|1 - \left(1 + \frac{1}{\lambda}\right)(1 + a)\right| \right\}$$
$$= \max\left\{ \left|\frac{1}{\lambda^{2}} - a\right|, \left|\frac{1}{\lambda} + a + \frac{a}{\lambda}\right| \right\} = \max\left\{ \left|\frac{1}{\lambda}\right|, |a| \right\}$$
$$= \max\{\|e_{1} + e_{2}\|_{3}, \|ae_{2}\|_{3}\}. \Box$$

Now, we are ready to prove

Theorem 5. Let dim E = 2. Then, there exist $\|.\|_1, \|.\|_2, \|.\|_3$, three norms defined on E, such that $(E, \|.\|_i)$ has an orthogonal base for every $i \in \{1, 2, 3\}$, but there is no base on E which is orthogonal with respect to all $\|.\|_1, \|.\|_2, \|.\|_3$.

Proof. First, we observe that using Example 3 we can define $\|.\|_1$, $\|.\|_2$ on *E* in such a way that there exists $\{e_1, e_2\}$, a multi-orthogonal base (i.e. orthogonal with respect to $\|.\|_1$ and $\|.\|_2$) on *E*, which satisfies condition (1). Next, we define $\|.\|_3$, as the

norm introduced in (2), applying Lemma 4 to the base $\{e_1, e_2\}$, mentioned above. In this way, we equip E in three norms $\|.\|_1, \|.\|_2$ and $\|.\|_3$, such that for every one there exists an orthogonal base.

Now, suppose that there exists $\{u, w\}$, a base of E which is orthogonal with respect to all three norms. Let $u := a_1e_1 + a_2e_2$, $w := b_1e_1 + b_2e_2$. We may assume that $a_2 = 1$ (by linear independence either $a_2 \neq 0$ or $b_2 \neq 0$; by symmetry we may suppose that $a_2 \neq 0$). Since by assumption, $u = a_1e_1 + e_2$ possesses an orthogonal element in E with respect to $\|.\|_1$ and $\|.\|_2$; hence, applying Lemma 2 to the base $\{a_1e_1, e_2\}$, we conclude that $|a_1\| \leq \frac{\|e_2\|_1}{\|e_1\|_1} < 1$ or $|a_1| \geq \frac{\|e_2\|_2}{\|e_1\|_2} > 1$.

Consider the case where $b_2 = 0$ (then, obviously $b_1 \neq 0$). If $|a_1| \ge \frac{\|e_2\|_2}{\|e_1\|_2}$ then

$$\left\|u - \frac{a_1}{b_1}w\right\|_3 = \left\|a_1e_1 + e_2 - \frac{a_1}{b_1}b_1e_1\right\|_3 = \|e_2\|_3 = 1.$$

But $||u||_3 = ||a_1e_1 + e_2||_3 = |a_1| > 1$, by assumption; hence, $||u - \frac{a_1}{b_1}w||_3 < ||u||_3$, a contradiction. If $|a_1| \leq \frac{||e_2||_1}{||e_1||_1} < 1$, then

$$\|u\|_{3} = \max\left\{\left|\left(1+\frac{1}{\lambda^{2}}\right)a_{1}-1\right|, \left|a_{1}-\left(1+\frac{1}{\lambda}\right)\right|\right\} = 1$$

and

$$\left\| u + \frac{1}{b_1} w \right\|_3 = \|a_1 e_1 + e_2 + e_1\|_3$$

$$= \max\left\{ \left| \left(1 + \frac{1}{\lambda^2} \right) (a_1 + 1) - 1 \right|, \left| a_1 + 1 - \left(1 + \frac{1}{\lambda} \right) \right| \right\}$$

$$= \max\left\{ \left| a_1 + \frac{1}{\lambda^2} + \frac{a_1}{\lambda^2} \right|, \left| a_1 - \frac{1}{\lambda} \right| \right\} < 1 = \|u\|_3.$$

This contradicts to $u \perp w$ with respect to $\|.\|_3$.

Let $b_2 \neq 0$. Without loss of generality we can assume that $b_2 = 1$. Since, we suppose that $w = b_1e_1 + e_2$ possesses an orthogonal element in *E* with respect to $\|.\|_1$ and $\|.\|_2$ and $\{e_1, e_2\}$ satisfies condition (1), we imply that $|b_1|| \neq 1$.

Suppose that $|a_1| \ge \frac{\|e_2\|_2}{\|e_1\|_2} > 1$. Then $\|u\|_3 = \|a_1e_1 + e_2\|_3 = |a_1|$. Let $|b_1| > 1$. We obtain

$$\left\| u - \frac{a_1}{b_1} w \right\|_3 = \left\| a_1 e_1 + e_2 - a_1 e_1 - \frac{a_1}{b_1} e_2 \right\|_3$$
$$= \left| 1 - \frac{a_1}{b_1} \right| \|e_2\|_3 < |a_1| = \|u\|_3,$$

a contradiction. Taking $|b_1| < 1$, we get

$$\|u + a_1 w\|_3 = \|a_1 e_1 + e_2 + a_1 b_1 e_1 + a_1 e_2\|_3$$

$$\leq \max\{\|a_1 (e_1 + e_2)\|_3, \|e_2 + a_1 b_1 e_1\|_3\} < |a_1| = \|u\|_3,$$

since $||e_1 + e_2||_3 < 1$, a contradiction.

Let
$$|a_1| \leq \frac{\|e_2\|_1}{\|e_1\|_1} < 1$$
. If $|b_1| < 1$, we obtain
 $\|u - w\|_3 = \|a_1e_1 + e_2 - b_1e_1 - e_2\|_3 = |a_1 - b_1| \cdot \|e_1\|_3 < \|e_1\|_3 = 1$.

For $|b_1| > 1$ we get

$$\begin{aligned} \left\| u + \frac{1}{b_1} w \right\|_3 &= \left\| a_1 e_1 + e_2 + \frac{1}{b_1} (b_1 e_1 + e_2) \right\|_3 \\ &= \left\| (a_1 + 1) e_1 + \left(1 + \frac{1}{b_1} \right) e_2 \right\|_3 \\ &= \max \left\{ \left| \left(1 + \frac{1}{\lambda^2} \right) (a_1 + 1) - \left(1 + \frac{1}{b_1} \right) \right|, \\ &\left| a_1 + 1 - \left(1 + \frac{1}{\lambda} \right) \left(1 + \frac{1}{b_1} \right) \right| \right\} < 1 \end{aligned}$$

but $||u||_3 = 1$, a contradiction. \Box

Gruson's theorem (Theorem 5.9 of [2]) says that every closed linear subspace of a Banach space with an orthogonal base has an orthogonal base, either. The following example shows that the counterpart for multi-orthogonal bases is not true.

Example 6. Let $E := K^3$ and let $\lambda \in K$, $|\lambda| > 1$. We define three norms on E by

$$\|(x_1, x_2, x_3)\|_1 := \max\{x_1|, |x_2|, |x_3|\},\\\|(x_1, x_2, x_3)\|_2 := \max\{|\lambda x_1|, \left|\frac{x_2}{\lambda^2}\right|, |\lambda x_3|\},\\\|(x_1, x_2, x_3)\|_3 := \max\{\left|\frac{x_1}{\lambda^3}\right|, \left|\frac{x_2}{\lambda^3}\right|, |x_3|\}.$$

Then, *E* has a multi-orthogonal base (i.e. orthogonal with respect to all three norms $\|.\|_1, \|.\|_2, \|.\|_3$), but the subspace [u, w], where $u := \lambda e_1 + e_2 + e_3$, $w := e_1 + \lambda^2 e_2 + e_3$, has no multi-orthogonal base ($\{e_1, e_2, e_3\}$ denotes a standard base of K^3).

Proof. It is easy to check that the standard base $\{e_1, e_2, e_3\}$ is orthogonal with respect to all three norms $\|.\|_1, \|.\|_2, \|.\|_3$. First, we prove that u, w are orthogonal with respect to $\|.\|_1$ and $\|.\|_2$. Let $\lambda_0 \in K$. Then

$$||u + \lambda_0 w||_1 = \max\{|\lambda + \lambda_0|, |1 + \lambda_0 \lambda^2|, |1 + \lambda_0|\} \ge |\lambda| = ||u||_1$$

and

$$\|\boldsymbol{u} + \lambda_0 \boldsymbol{w}\|_2 = \max\left\{|\lambda| \cdot |\lambda + \lambda_0|, \left|\frac{1}{\lambda^2} + \lambda_0\right|, |\lambda| \cdot |1 + \lambda_0|\right\} \ge |\lambda^2| = \|\boldsymbol{u}\|_2.$$

Observe that u, w are not orthogonal with respect to $\|.\|_3$:

$$\|u - w\|_3 = \max\left\{ \left| \frac{\lambda - 1}{\lambda^3} \right|, \left| \frac{1 - \lambda^2}{\lambda^3} \right|, |1 - 1| \right\} < 1 = \|u\|_3.$$

439

Take $\mu_1 u + \mu_2 w \in [u, w]$ $(\mu_1, \mu_2 \in K)$ and assume that $\mu_1 u + \mu_2 w$ has a multiorthogonal element in [u, w].

Consider the case where $\mu_1 \neq 0$; without loss of generality we can assume that $\mu_1 = 1$. It follows from Lemma 2 that $u + \mu_2 w$ has an orthogonal element in [u, w] with respect to $\|.\|_1, \|.\|_2$ only if

(3)
$$\|\mu_2 w\|_1 \leqslant \|u\|_1 \implies |\mu_2| \leqslant \frac{\|u\|_1}{\|w\|_1} = \frac{1}{|\lambda|}, \text{ or} \\ \|\mu_2 w\|_2 \geqslant \|u\|_2 \implies |\mu_2| \geqslant \frac{\|u\|_2}{\|w\|_2} = |\lambda|.$$

Now, assume that $\beta_1 u + \beta_2 w$ ($\beta_1, \beta_2 \in K$) is a multi-orthogonal element to $u + \mu_2 w$ in [u, w]. Note that by Lemma 2, since the base $\{w, u\}$ satisfies condition (1), it is necessary to have $|\beta_1| \neq |\beta_2|$. Take $\lambda_0 = -1/(\beta_1 + \beta_2)$. If $|\mu_2| \leq \frac{1}{|\lambda|} < 1$, we obtain

$$\begin{aligned} \|u + \mu_2 w + \lambda_0 (\beta_1 u + \beta_2 w)\|_3 \\ &= \max\left\{ \left| \frac{\lambda + \mu_2 + \lambda_0 (\beta_1 \lambda + \beta_2)}{\lambda^3} \right|, \left| \frac{1 + \mu_2 \lambda^2 + \lambda_0 (\beta_1 + \beta_2 \lambda^2)}{\lambda^3} \right|, \\ &\quad |1 + \mu_2 + \lambda_0 (\beta_1 + \beta_2)| \right\} \\ &\leq \max\left\{ \frac{1}{|\lambda^2|}, \frac{1}{|\lambda|}, |\mu_2| \right\} < 1, \end{aligned}$$

a contradiction to the assumption, since

$$||u + \mu_2 w||_3 = \max\left\{ \left| \frac{\lambda + \mu_2}{\lambda^3} \right|, \left| \frac{1 + \mu_2 \lambda^2}{\lambda^3} \right|, |1 + \mu_2| \right\} = 1.$$

If $|\mu_2| \ge |\lambda|$ then, taking $\lambda_0 = -\mu_2/(\beta_1 + \beta_2)$, we get

$$\|u + \mu_2 w + \lambda_0(\beta_1 u + \beta_2 w)\|_3$$

= $\max\left\{ \left| \frac{\lambda + \mu_2 + \lambda_0(\beta_1 \lambda + \beta_2)}{\lambda^3} \right|, \left| \frac{1 + \mu_2 \lambda^2 + \lambda_0(\beta_1 + \beta_2 \lambda^2)}{\lambda^3} \right|, |1 + \mu_2 + \lambda_0(\beta_1 + \beta_2)| \right\}$
 $\leq \max\left\{ \frac{|\mu_2|}{|\lambda^3|}, \frac{|\mu_2|}{|\lambda|}, 1 \right\} < |\mu_2|,$

but

$$\|u + \mu_2 w\|_3 = \max\left\{ \left| \frac{\lambda + \mu_2}{\lambda^3} \right|, \left| \frac{1 + \mu_2 \lambda^2}{\lambda^3} \right|, |1 + \mu_2| \right\} = |\mu_2|,$$

a contradiction.

Now, let $\mu_1 = 0$. We can assume that $\mu_2 = 1$ and that there exists $\beta_1 u + \beta_2 w \in [u, w]$ $(\beta_1, \beta_2 \in K)$, a multi-orthogonal element to u. Since u and w are not

orthogonal with respect to $\|.\|_3$; hence $\beta_1 \neq 0$, without loss of generality we can assume that $\beta_1 = 1$. Using Lemma 2, we imply that there exists an orthogonal element to $u + \beta_2 w$ with respect to $\|.\|_1$, $\|.\|_2$ only if $|\beta_2| \leq \frac{1}{|\lambda|}$ or $|\beta_2| \geq |\lambda|$. Suppose that $|\beta_2| \geq |\lambda|$. Then, taking $\lambda_0 = -1/\beta_2$ we get

$$\|u + \lambda_0(u + \beta_2 w)\|_3 = \left\|u - \frac{u}{\beta_2} - w\right\|_3 \le \max\left\{\|u - w\|_3, \left\|\frac{u}{\beta_2}\right\|_3\right\} < \|u\|_3,$$

a contradiction. Considering the case where $|\beta_2| \leq \frac{1}{|\lambda|}$, choosing $\lambda_0 = -1$, we obtain

$$\|u + \lambda_0(u + \beta_2 w)\|_3 = \|\beta_2 w\|_3 \leq \frac{1}{|\lambda|} \|w\|_3 < \|u\|_3$$

and finishing the proof. \Box

Observe the following fact:

Proposition 7. Let $\|.\|_1$, $\|.\|_2$ be norms on E and let $x_0 \in E$ ($x_0 \neq 0$) be such that $[x_0]$ is multi-orthocomplemented in E. If $D \subset E$ is a multi-orthocomplement of $[x_0]$ in E then there exists $\lambda_0 \in K$ or there exists $x_d \in D$ such that

$$\max_{x \in E, x \neq 0} \frac{\|x\|_2}{\|x\|_1} = \frac{\|x_d\|_2}{\|x_d\|_1} \quad or \quad \max_{x \in E, x \neq 0} \frac{\|x\|_2}{\|x\|_1} = \frac{\|x_0\|_2}{\|x_0\|_1}.$$

Proof. Take $y \in E$, $y \neq 0$, where $y = \lambda x_0 + d$, $\lambda \in K$, $d \in D$, such that $\frac{\|y\|_2}{\|y\|_1} = \max_{x \in E, x \neq 0} \frac{\|x\|_2}{\|x\|_1}$. Then

$$\frac{\|y\|_2}{\|y\|_1} = \frac{\|\lambda x_0 + d\|_2}{\|\lambda x_0 + d\|_1} = \frac{\max\{\|\lambda x_0\|_2, \|d\|_2\}}{\max\{\|\lambda x_0\|_1, \|d\|_1\}}$$

If $\|\lambda x_0\|_2 \ge \|d\|_2$, then

$$\frac{\|y\|_2}{\|y\|_1} = \frac{\|\lambda x_0 + d\|_2}{\|\lambda x_0 + d\|_1} = \frac{\|\lambda x_0\|_2}{\max\{\|\lambda x_0\|_1, \|d\|_1\}} \le \frac{\|\lambda x_0\|_2}{\|\lambda x_0\|_1} = \frac{\|x_0\|_2}{\|x_0\|_1}.$$

On the other hand, if $\|\lambda x_0\|_2 < \|d\|_2$ then

$$\frac{\|y\|_2}{\|y\|_1} = \frac{\|\lambda x_0 + d\|_2}{\|\lambda x_0 + d\|_1} = \frac{\|d\|_2}{\max\{\|\lambda x_0\|_1, \|d\|_1\}} \le \frac{\|d\|_2}{\|d\|_1} \le \max_{x \in D, x \neq 0} \frac{\|x\|_2}{\|x\|_1}. \quad \Box$$

We can easily conclude the corollary:

Corollary 8. Let $\|.\|_1, \|.\|_2$ be norms on E and let $\{e_1, \ldots, e_n\}$ be a multiorthogonal base in E. Then, there exist indices $i, j \in \{1, \ldots, n\}$ such that

$$\max_{x \in E, x \neq 0} \frac{\|x\|_2}{\|x\|_1} = \frac{\|e_i\|_2}{\|e_i\|_1} \quad and \quad \max_{x \in E, x \neq 0} \frac{\|x\|_1}{\|x\|_2} = \frac{\|e_j\|_1}{\|e_j\|_2}.$$

Next theorem gives some conditions of the existence of a multi-orthogonal base in finite-dimensional normed space for given three norms.

Theorem 9. Let $\|.\|_1, \|.\|_2$ be norms on E and $\{e_1, \ldots, e_n\}$ be a multi-orthogonal base (orthogonal with respect to $\|.\|_1$ and $\|.\|_2$) on E. Then, the following conditions are equivalent:

- (1) $\frac{\|e_1\|_1}{\|e_1\|_2} = \cdots = \frac{\|e_n\|_1}{\|e_n\|_2} = p;$
- (2) $\frac{\|x\|_1}{\|x\|_2} = p$ for every nonzero $x \in E$;
- (3) for every norm $\|.\|_3$ on E, every two-dimensional linear subspace of E possesses a base, orthogonal with respect to $\|.\|_1, \|.\|_2$ and $\|.\|_3$;
- (4) for every norm $\|.\|_3$ on E, E possesses a base, orthogonal with respect to $\|.\|_1, \|.\|_2$ and $\|.\|_3$.

Proof. (1) \Rightarrow (2). Assume that $||e_i||_1 = p \cdot ||e_i||_2$ for each $i \in \{1, \dots, n\}$. Let $x \in E$ $(x \neq 0)$. Then, there exist $a_1, \ldots, a_n \in K$ such that $x = \sum_{i=1}^n a_i e_i$ and we get

$$\|x\|_{1} = \left\|\sum_{i=1}^{n} a_{i}e_{i}\right\|_{1} = \max_{i=1,\dots,n} \{|a_{i}| \cdot \|e_{i}\|_{1}\} = \max_{i=1,\dots,n} \{|a_{i}| \cdot p \cdot \|e_{i}\|_{2}\}$$
$$= p \cdot \max_{i=1,\dots,n} \{\|a_{i}e_{i}\|_{2}\} = p \cdot \left\|\sum_{i=1}^{n} a_{i}e_{i}\right\|_{2} = p \cdot \|x\|_{2}.$$

The implication $(2) \Rightarrow (1)$ is obvious.

(2) \Rightarrow (3). Let $\|.\|_3$ be a norm defined on E and let F be a two-dimensional linear subspace of E. It follows from the assumption that every orthogonal base of F with respect to $\|.\|_1$ is also orthogonal with respect to $\|.\|_2$. Since, by Theorem 1.11 of [1], there exists a base $\{z_1, z_2\}$ in F which is orthogonal with respect to $\|.\|_1$ and $\|.\|_3, \{z_1, z_2\}$ is also orthogonal with respect to $\|.\|_2$.

(3) \Rightarrow (2). Assume the contrary and suppose that there exist nonzero $z_1, z_2 \in E$ such that $\frac{\|z_1\|_1}{\|z_1\|_2} > \frac{\|z_2\|_1}{\|z_2\|_2}$. From Corollary 8, we get that there exists a base $\{x_1, x_2\}$ of $[z_1, z_2]$, which is orthogonal with respect to $\|.\|_1$ and $\|.\|_2$, such that $\frac{\|x_1\|_1}{\|x_1\|_2} >$ $\frac{\|x_2\|_1}{\|x_2\|_2}$. Then $\frac{\|x_1\|_1}{\|x_2\|_1} > \frac{\|x_1\|_2}{\|x_2\|_2}$. Define a norm $\|.\|_3$ on *E* which satisfies the following properties:

- $||x_1 [x_2]||_3 < ||x_1||_3,$ $\frac{||x_1||_1}{||x_2||_1} > \frac{||x_1||_3}{||x_2||_3} > \frac{||x_1||_2}{||x_2||_2}.$

Now, assume that there exist $a, b \in K$ such that $ax_1 + bx_2$ has an element in $[z_1, z_2]$, say $c_1x_1 + c_2x_2$ ($c_1, c_2 \in K$), orthogonal with respect to $\|.\|_1, \|.\|_2$ and $\|.\|_3$.

Assuming that $||ax_1||_3 = ||bx_2||_3$ (then $a \neq 0$ and $b \neq 0$) we get $\frac{||x_1||_3}{||x_2||_3} = \frac{|b|}{|a|}$ and $\frac{\|x_1\|_1}{\|x_2\|_1} > \frac{\|b\|}{|a|} > \frac{\|x_1\|_2}{\|x_2\|_2}.$ Next, we get $\|\frac{a}{b}x_1\|_1 > \|x_2\|_1$ and $\|\frac{a}{b}x_1\|_2 < \|x_2\|_2.$ Using Lemma 2, we conclude that $ax_1 + bx_2$ has no orthogonal element in $[z_1, z_2]$ with respect to $\|.\|_1, \|.\|_2$.

Hence, $||ax_1||_3 \neq ||bx_2||_3$ (and $||c_1x_1||_3 \neq ||c_2x_2||_3$). Suppose that $||ax_1||_3 > ||bx_2||_3$. If $||c_1x_1||_3 > ||c_2x_2||_3$, then $||x_1||_3 > ||\frac{c_2}{c_1}x_2||_3$ and taking $\lambda := -\frac{a}{c_1}$ we get

$$\|ax_1 + bx_2 + \lambda(c_1x_1 + c_2x_2)\|_3 = \left\|bx_2 - a\frac{c_2}{c_1}x_2\right\|_3$$

< $\|ax_1\|_3 = \|ax_1 + bx_2\|_3$

a contradiction. If $||c_1x_1||_3 < ||c_2x_2||_3$, since by assumption there exists $\mu \in K$ with $||x_1 - \mu x_2||_3 < ||x_1||_3$, taking $\lambda := -\frac{a\mu}{c_2}$ we get

$$\|ax_1 + bx_2 + \lambda(c_1x_1 + c_2x_2)\|_3 = \left\|a(x_1 - \mu x_2) + bx_2 - \frac{a\mu}{c_2}c_1x_1\right\|_3$$

< $\|ax_1\|_3 = \|ax_1 + bx_2\|_3$,

since

$$\left\|\frac{a\mu}{c_2}c_1x_1\right\|_3 < \left\|\frac{a\mu}{c_2}c_2x_2\right\|_3 = \|a\mu x_2\|_3 = \|ax_1\|_3.$$

For the case $||ax_1||_3 < ||bx_2||_3$, by symmetry, we obtain the same conclusion.

Finally, assume that a = 0 or b = 0. Then, it is easy to verify, that in this case we have $||c_1x_1||_3 = ||c_2x_2||_3$. But, as we observe above, such element $c_1x_1 + c_2x_2$ has no orthogonal element with respect to $||.||_1$, $||.||_2$ in $[z_1, z_2]$, a contradiction.

 $(2) \Rightarrow (4)$. Let $\|.\|_3$ be a norm defined on *E*. It follows from the assumption that every orthogonal base with respect to $\|.\|_1$ is also orthogonal with respect to $\|.\|_2$. Applying the same argumentation as in $(2) \Rightarrow (3)$, by Theorem 1.11 of [1], there exists a base $\{z_1, \ldots, z_n\}$ in *E* which is orthogonal with respect to $\|.\|_1$ and $\|.\|_3$; thus, orthogonal with respect to $\|.\|_2$.

(4) \Rightarrow (1). Assume the contrary and suppose that for every $\|.\|_3$, a norm defined on *E*, *E* possesses a base orthogonal with respect to $\|.\|_1$, $\|.\|_2$ and $\|.\|_3$. Suppose that

(4)
$$\frac{\|e_1\|_1}{\|e_1\|_2} \ge \frac{\|e_2\|_1}{\|e_2\|_2} \ge \dots \ge \frac{\|e_n\|_1}{\|e_n\|_2}$$
 and $\frac{\|e_1\|_1}{\|e_1\|_2} > \frac{\|e_n\|_1}{\|e_n\|_2}$.

Choose $\mu \in K$ such that

(5)
$$\frac{\|e_n\|_2}{\|e_1\|_2} > \|\mu\| > \frac{\|e_n\|_1}{\|e_1\|_1}$$

and $p \in K$, |p| < 1. Next, we define the norm on E by

$$\|x\|_{3} := \max\{ \left| (1+p^{2})x_{1} - \mu x_{n} \right| \cdot \|e_{1}\|_{2}, |x_{1} - \mu(1+p)x_{n}| \cdot \|e_{1}\|_{2}, \\ \|x_{2}e_{2}\|_{2}, \dots, \|x_{n-1}e_{n-1}\|_{2} \},$$

where $x \in E$ is given by $x = \sum_{i=1}^{n} x_i e_i$.

First, we prove that $\max_{x \in E} \frac{\|x\|_1}{\|x\|_3}$ is attained for

(6)
$$u_0 = \lambda \left(e_1 + \frac{1}{\mu} \lambda_2 e_n + a_2 e_2 + \dots + a_{n-1} e_{n-1} \right)$$

if $\lambda_2 = 1 + \varepsilon$ ($\varepsilon, \lambda \in K$, $\|\varepsilon\| \leq |p|, \lambda \neq 0$) and $\max_{i=2,\dots,n-1} \|a_i e_i\|_2 \leq |p| \cdot \|e_1\|_2$. Indeed, then

$$\max\left\{ \left| (1+p^2) - \mu \frac{\lambda_2}{\mu} \right|, \left| 1 - \mu (1+p) \frac{1}{\mu} \lambda_2 \right| \right\}$$

= max{ $|p^2 - \varepsilon|, |p + \varepsilon + p\varepsilon|$ } = $|p|,$
 $||a_2e_2 + \dots + a_{n-1}e_{n-1}||_2 = \max_{i=2,\dots,n-1} ||a_ie_i||_2 \le |p| \cdot ||e_1||_2$

and

$$\frac{\|u_0\|_1}{\|u_0\|_3} = \frac{\max\{\|e_1\|_1, \|\frac{1}{\mu}(1+\varepsilon)e_n\|_1, \|a_2e_2\|_1, \dots, \|a_{n-1}e_{n-1}\|_1\}}{\|p| \cdot \|e_1\|_2}$$
$$= \frac{\|e_1\|_1}{\|p| \cdot \|e_1\|_2},$$

since $\|\frac{1}{\mu}(1+\varepsilon)e_n\|_1 = \|\frac{1}{\mu}e_n\|_1 < \|e_1\|_1$ by (5) and

(7)
$$\frac{\|e_1\|_2}{\|e_1\|_1} \leqslant \frac{\|a_ie_i\|_2}{\|a_ie_i\|_1} \leqslant \frac{|p| \cdot \|e_1\|_2}{\|a_ie_i\|_1} \implies \|a_ie_i\|_1 \leqslant |p| \cdot \|e_1\|_1$$

if $i \in \{2, ..., n-1\}$ and $a_i \neq 0$.

Next, we prove that for nonzero (assuming that $a_1 = 1$ or $a_1 = 0, a_1 \in K$)

$$u = \lambda \left(a_1 e_1 + \frac{1}{\mu} \lambda_2 e_n + a_2 e_2 + \dots + a_{n-1} e_{n-1} \right) \quad (\lambda \in K),$$

where there exists $j \in \{2, ..., n-1\}$ such that $||a_j e_j||_2 = \max_{i=2,...,n-1} ||a_i e_i||_2 > |p| \cdot ||e_1||_2$ or $\lambda_2 = 1 + \varepsilon$ for $|\varepsilon| > |p|$ ($\varepsilon \in K$), we obtain $\frac{||u||_1}{||u||_3} < \frac{||e_1||_1}{||p| \cdot ||e_1||_2}$. Let $j \in \{2, ..., n-1\}$ with $||a_j e_j||_2 = \max_{i=2,...,n-1} ||a_i e_i||_2 > |p| \cdot ||e_1||_2$ and

assume that $|\varepsilon| \leq |p|$. For $a_1 = 1$, applying (5), we get

$$\frac{\|u\|_{1}}{\|u\|_{3}} = \frac{\max\{\|e_{1}\|_{1}, \|\frac{1}{\mu}(1+\varepsilon)e_{n}\|_{1}, \|a_{2}e_{2}\|_{1}, \dots, \|a_{n-1}e_{n-1}\|_{1}\}}{\max\{|(1+p^{2}) - (1+\varepsilon)| \cdot \|e_{1}\|_{2}, \|1-(1+p)(1+\varepsilon)| \cdot \|e_{1}\|_{2}, \|a_{j}e_{j}\|_{2}\}} \\ \leqslant \frac{\max\{\|e_{1}\|_{1}, \|(1+\varepsilon)e_{1}\|_{1}, \|a_{2}e_{2}\|_{1}, \dots, \|a_{n-1}e_{n-1}\|_{1}\}}{\max\{|p^{2}-\varepsilon| \cdot \|e_{1}\|_{2}, |p+\varepsilon+p\varepsilon| \cdot \|e_{1}\|_{2}, \|a_{j}e_{j}\|_{2}\}} \\ = \frac{\max\{\|e_{1}\|_{1}, \|a_{2}e_{2}\|_{1}, \dots, \|a_{n-1}e_{n-1}\|_{1}\}}{\|a_{j}e_{j}\|_{2}}.$$

Then, using (4), we get

$$\frac{\|u\|_1}{\|u\|_3} \leq \max\left\{\frac{\|e_1\|_1}{\|a_je_j\|_2}, \frac{\|a_ke_k\|_1}{\|a_ke_k\|_2}\right\} < \frac{\|e_1\|_1}{|p| \cdot \|e_1\|_2},$$

444

where $k \in \{2, ..., n-1\}$ and $||a_k e_k||_1 = \max_{i=2,...,n-1} ||a_i e_i||_1$ (without loss of generality we can assume that $a_k \neq 0$).

Now, suppose only that $|\varepsilon| > |p|$. Then, assuming that $a_k \neq 0$ (if not, with slight modifications we can also get the same final evaluation) we obtain

$$\frac{\|u\|_{1}}{\|u\|_{3}} \leqslant \frac{\max\{\|e_{1}\|_{1}, \|(1+\varepsilon)e_{1}\|_{1}, \|a_{2}e_{2}\|_{1}, \dots, \|a_{n-1}e_{n-1}\|_{1}\}}{\max\{|\varepsilon| \cdot \|e_{1}\|_{2}, \|a_{2}e_{2}\|_{2}, \dots, \|a_{n-1}e_{n-1}\|_{2}\}} \\ \leqslant \max\{\frac{\|e_{1}\|_{1}}{|\varepsilon| \cdot \|e_{1}\|_{2}, \frac{\|e_{1}\|_{1}}{\|e_{1}\|_{2}}, \frac{\|a_{k}e_{k}\|_{1}}{\|a_{k}e_{k}\|_{2}}\} < \frac{\|e_{1}\|_{1}}{|p| \cdot \|e_{1}\|_{2}}.$$

Considering the case if $a_1 = 0$, we see that

$$\frac{\|u\|_{1}}{\|u\|_{3}} = \frac{\max\{\|\frac{1}{\mu}(1+\varepsilon)e_{n}\|_{1}, \|a_{2}e_{2}\|_{1}, \dots, \|a_{n-1}e_{n-1}\|_{1}\}}{\max\{|(1+\varepsilon)| \cdot \|e_{1}\|_{2}, |(1+p)(1+\varepsilon)| \cdot \|e_{1}\|_{2}, \|a_{j}e_{j}\|_{2}\}}$$

$$\leq \frac{\max\{\|(1+\varepsilon)e_{1}\|_{1}, \|a_{2}e_{2}\|_{1}, \dots, \|a_{n-1}e_{n-1}\|_{1}\}}{\max\{|(1+\varepsilon)| \cdot \|e_{1}\|_{2}, |(1+p)(1+\varepsilon)| \cdot \|e_{1}\|_{2}, \|a_{j}e_{j}\|_{2}\}}$$

$$\leq \max\left\{\frac{\|e_{1}\|_{1}}{\|e_{1}\|_{2}}, \frac{\|a_{k}e_{k}\|_{1}}{\|a_{k}e_{k}\|_{2}}\right\} < \frac{\|e_{1}\|_{1}}{|p| \cdot \|e_{1}\|_{2}}.$$

By Corollary 8, in every base of E, orthogonal with respect to $\|.\|_1, \|.\|_2$ and $\|.\|_3$, there is an element u_0 given by (6). Without loss of generality, we can assume that $\lambda = 1$. Hence, for such u_0 we can find an (n - 1)-dimensional linear subspace D of E such that $E = [u_0] \oplus D$ ([u] and D are orthogonal with respect to $\|.\|_1, \|.\|_2$ and $\|.\|_3$). Now, we can write $e_n = cu_0 + d_0$ for some $c \in K$, $d_0 \in D$. Note that

$$||u_0||_1 = \max\left\{||e_1||_1, \left\|\frac{1}{\mu}(1+\varepsilon)e_n\right\|_1, ||a_2e_2||_1, \dots, ||a_{n-1}e_{n-1}||_1\right\} = ||e_1||_1$$

and

$$||u_0||_2 = \max\left\{||e_1||_2, \left\|\frac{1}{\mu}e_n\right\|_2, \max_{i=2,\dots,n-1}||a_ie_i||_2\right\} = \left\|\frac{1}{\mu}e_n\right\|_2,$$

since

$$\left\|\frac{1}{\mu}(1+\varepsilon)e_n\right\|_1 < \|e_1\|_1, \|a_2e_2 + \dots + a_{n-1}e_{n-1}\|_2 \le \|p\| \cdot \|e_1\|_2$$

and $||e_1||_2 < \frac{1}{|\mu|} ||e_n||_2$ by (5), $||a_ie_i||_1 \le |p| \cdot ||e_1||_1$ by (7). Applying multi-orthogonality u_0 and d_0 we get $||e_n||_1 = \max\{||cu_0||_1, ||d_0||_1\};$ hence, $||cu_0||_1 = ||ce_1||_1 \le ||e_n||_1$. Using (5) again, we imply

$$|c| \leq \frac{\|e_n\|_1}{\|e_1\|_1} < |\mu|.$$

Then $||cu_0||_2 = \frac{|c|}{|\mu|} ||e_n||_2 < ||e_n||_2$. Taking $d_0 = e_n - cu_0$, noting that $||d_0||_2 = \max\{||cu_0||_2, ||e_n||_2\} = ||e_n||_2$, we obtain

$$\left\|\frac{\mu}{\lambda_{2}}u_{0}-d_{0}\right\|_{2} = \left\|\frac{\mu}{\lambda_{2}}e_{1}+e_{n}+\frac{\mu}{\lambda_{2}}(a_{2}e_{2}+\cdots+a_{n-1}e_{n-1})-e_{n}+cu_{0}\right\|_{2}$$

$$\leq \max\{\|\mu e_{1}\|_{2},\|\mu(a_{2}e_{2}+\cdots+a_{n-1}e_{n-1})\|_{2},\|cu_{0}\|_{2}\}$$

$$<\|e_{n}\|_{2},$$

a contradiction with orthogonality $[u_0]$ and D with respect to $\|.\|_2$. \Box

ACKNOWLEDGEMENT

The author wishes to thank the referee for making several suggestions which improved this paper.

REFERENCES

- van Rooij A. Notes on p-adic Banach spaces, Katholieke Universiteit Nijmegen, Report 7633 (1976).
- [2] van Rooij A. Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.
- [3] van Rooij A., Schikhof W.H. Open problems, in: Boyod J.M., et al. (Eds.), p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics, vol. 137, Marcel Dekker, New York, 1992, pp. 209–219.

(Received November 2005)