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Abstract 

Small-signal oscillations is one of the important problems in power system operation that caused by insufficient natural damping 
in the system. This paper uses the Quantitative Feedback Theory (QFT) to design a new robust PSS for multi-machine power 
systems able to provide acceptable damping over a wide range of operating points.  In the design procedure the main purpose is 
to reject the load fluctuations and, therefore, a particular transfer function is used as the nominal plant.  The parametric 
uncertainty in power system is readily handled using QFT.  The decentralized design with a simple structure is easily applied to 
multi-machine power systems. The nonlinear time-domain simulations are carried out to validate the effectiveness of the 
proposed controller.  Results clearly show the benefits of the proposed controller for stability enhancement of power systems . 

© 2013 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the Faculty of Information Science and Technology, Universiti Kebangsaan 
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1. Introduction 

Power system utilities use power system stabilizers (PSS) to enhance damping of low frequency oscillation. It is 
performed by providing supplementary stabilizing feedback signal in the excitation systems [1-3]. 

* Corresponding author. Tel.:+98-912-445-1689. 
E-mail address: payam.ghaebi@yahoo.com 

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of the Faculty of Information Science & Technology, Universiti Kebangsaan 
Malaysia.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82621476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


76   M.R. Esmaili et al.  /  Procedia Technology   11  ( 2013 )  75 – 85 

The commonly used PSS is a fixed parameter device designed by using the classical linear theory and a linear 
model of the power system at a specific operating point.  However, the inherent non-linearity and multiple operating 
points of a power system may degrade the performance of such a fixed gain PSS [4].   

Application of the adaptive control theory can take into consideration the non-linear and stochastic 
characteristics of the power system [4-7].  Parameters of the adaptive stabilizers are adjusted on-line according to 
the operating condition.  These methods, however, require either information on the system states or an efficient on-
line identifier.  Model reference adaptive techniques also require of satisfying the perfect model-following 
conditions and the complete system state information.  Since the order of the power system is large, the model 
reference approach may be difficult to apply.   

More recently artificial neural networks (ANN) and fuzzy set theoretic approaches have been proposed for 
power system stabilization problems [8-11].  Both techniques have their own advantages and disadvantages.  
Training of an ANN is a major exercise, because it depends on various factors [12] such as the availability of 
sufficient and accurate training data, suitable training algorithm, number of neurons in the ANN, number of ANN 
layers.  The generalized neuron (GN) predictor is used to cope with this problem of complexity [13].  However, to 
be able to have a robust controller adaptive techniques are usually utilized with ANN and fuzzy techniques.    

This paper presents a new robust explicit lead-lag controller in which QFT is applied to take care of the plant 
parameters variation. There have been a few previous reported applications of quantitative design methods in power 
systems.  Jacobson et al. [14] have used QFT-like loop shaping to satisfy frequency response bounds derived using 
dissipative theory.  Boje et al. [15] have applied QFT for PSS design in a single-machine-infinite-bus (SMIB) 
system.  The method given in [15] uses only a part of QFT theory and the design procedure will be then different 
from what given in this paper.  The QFT has been addressed in [16,17] for a multi-machine power system.  The 
design procedure here is not only different, it has got a much simpler structure than the methodology given in [16] 
and it can be easily applied to a multi-machine power system.  The method in [17] also uses a complicated multi-
input-multi-output (MIMO) transfer function for decentralized design.  However, in this paper a simple single-input-
single-output (SISO) transfer function has been derived for one machine in a multi-machine power system with also 
considering the effect of other generators. 

The proposed method is mainly based on the technique given in [18].  Simulation results imply that a desirable 
performance can be achieved when the proposed PSS is used in a multi-machine power system. 

2. Modelling 

     The 3-order transfer function of one generator has been shown in Equation (1). 
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     Where, ζ refers to uncertainty of parameter.  The parameters E1, E2, F1, F2, F3 including "k" coefficients are given 
in Appendix. 

2.1. Multi-machine Power System 

Although the design of any supplementary controller on a one-machine system is logically the best place to 
begin an evaluation of the controller, a more thorough investigation has to be done with a multi-machine model. For 
a multi-machine case the linearized block diagram which is an extension of Figure 1 with also considering the effect 
of tie-line power is shown in Figure 2 [19-21]. 
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Fig. 1. Block diagram of the power system used for low frequency oscillation studies[19]  

 

Fig. 2.  Block diagram of ith machine in a multi-machine power system  

 

     Equation (1) will be also used here as the main transfer function of ith machine in a multi-machine system to 
design a decentralized power system stabilizer with also considering the effect of other generators in this machine.  
This will be explained in the next section. 

3. State space representation 

The state equation of an interconnected power system with n synchronous generators can be written in the vector-
matrix differential equation form 
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      )()()( tFdtButxAx                                                                                                                       (2) 
                  
     where x(t) is the state vector (Δω, Δδ, ΔE'q), u(t) is the PSS output signals, d(t) is the input vector represented 
here by ΔTmi and A, B and F are constant matrices.  For n-machine system the Equation (2) can be given as 
follows: 
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In Equation (3)A11, A22, … and Ann are the local system matrices of the individual machines; and the off-diagonal 

matrices represent the paths of dynamic interactions between machines. 
In this step of the design the control signals (u(t)) will be considered zero.  This implies that the Equation (3) will 

be 
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The following three methods may be then considered to design the PSS parameters using QFT for each machine.  

1- The power system stabilizers are designed for each generator simultaneously for the entire system. 
2- Completely ignoring the dynamic interaction between machines, controllers are designed separately from local 
system dynamics (see Equation (5)). 
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dFxAxdFxAx ,...,, 112222111111                                                                                               (5) 

 

3- Both x1 ,…, xn-1 and d1,…,dn-1 are omitted from Equation (4) and a decentralized design is applied for 
.

nx with 
also considering the effect of other state variations (x1,…,xn-1) of the entire system as shown in Equation (6). 
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The first method gives best result but makes the design procedure be complicated and time consuming.  The 

second one does not work in harmony, leading only to system instability, which is rather as excepted [19].  
Therefore, the best choice is the third method because it has much simpler structure for control design and is almost 
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as equally effective as the first one [19]. 
Now the following algorithm is given to obtain the nominal plant of the nth machine Pn(s) =(Δωn/ΔTmn). After 

considering Equation (6), Equations (7) and (8) can be derived as follows: 
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From Equation (8) the state variations of x1, …, xn-1 are obtained as multiple of xn and shown in Equation (9). 
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Matrices A'1, …, A'n-1 can be easily obtained by solving Equation (8). Combining Equations (7), (8) and (9) leads 

to have 
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4. QFT-based design 

4.1. Fundamental 

Quantitative Feedback Theory is a robust control method developed during the last two decades by Horowitz and 
others [22, 23].  It deals with the effects of uncertainty systematically.  It has been successfully applied to the design 
of both SISO and MIMO systems.  It has been also extended to the nonlinear and the time-varying cases.  

In comparison with other optimization-based robust control methods, QFT offers a number of advantages.  These 
include: (1) the ability to assess quantitatively the 'cost of feedback' [22], (2) the ability to take into account phase 
information in the design process, and (3) the ability to provide 'design transparency', that is, clear tradeoff criteria 
between controller complexity and feasibility of the design objectives.  The third advantage in practice implies that 
QFT leads to have a simple controller which is very easy to implement. 

 

 
Fig. 3. Block diagram of the system with the controller in QFT design 
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  For the purposes of QFT, the feedback system is normally described by two degrees-of-freedom structure shown in Fig. 3. 

 
In QFT the closed loop transfer function should satisfy certain performance requirements for a set of discrete 

frequencies.  These requirements are specified in terms of tolerance bounds within which the magnitude response of 
the closed-loop transfer function should be limited.  The uncertainties in the plant are transformed onto the Nichols 
chart resulting in bounds on the open loop transfer function of the system (P(s)).  A compensator (G(s)) is then 
chosen by manually shaping the loop transmission so that it satisfies the bounds at each of the frequency points.  A 
pre-filter (F(s)) is then used to ensure that the closed-loop transfer function lies within the specified bounds. 

In Figure 3 P(s, ζ) represent the nominal power system plant given in section II.  D2(s) will be equal to zero and 
D1(s) represents the torque changes, ΔTm.  As mentioned before the purpose of this design procedure is to reject load 
fluctuations and, therefore, R(s) representing ΔVref (see Figure 1) will be zero [25].  After designing the controller 
G(s) using QFT, it will be put in the feedback path as shown in Figure 4.  In fact, its output stabilizing signal will be 
inserted into the summing junction where the AVR system is connected. The transfer function P1(s) =(Δω/ΔVref) 
shown in Figure 4 is different from P(s) but has the same denominator of P(s).  It should be noted that since a 
washout [19] will be used in cascade with G(s), it does not affect on the steady state performance of the system.  The 
controller G(s) will be then the new designed PSS.  Block diagram of PSS is given in Figure 5. 

 

 
Fig. 4. Block diagram of the system with the designed controller  

 
Fig. 5. Block diagram of the PSS  

4.2. QFT-based design 

In QFT design there are two primary control objectives. The first is stability with reasonable margins of 
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A continuous-time uncertain transfer function model can have parametric, non-parametric or mixed parametric 

and non-parametric structures. Parametric uncertainty which is the case in this study implies the knowledge of 
variations in "K" parameters (e.g., see Appendix for SMIB and multi-machine systems).   

One of the most important factors in control design is to use an accurate description for the plant dynamics.  
Because QFT involves frequency-domain arithmetic, its design procedure requires us to define plant dynamics only 
in terms of its frequency response. The term template is then used to denote the collection of an uncertain plant's 
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frequency responses at a given frequency.  The frequency range must be chosen based on the performance 
bandwidth and shape of the templates.  Margin bounds should be computed up to the frequency where the shape of 
the plant template becomes invariant to frequency.  The plant templates at several frequencies for a SMIB system 
example given in Appendix are shown. 

4.3. Multi-machine power system 

A three-machine power system taken from [24] is shown in Figure 6 and the system data is given in Appendix. 
The electromechanical modes of the system are shown in Table I.  The system is unstable and the need for 

stabilizers to damp out rotor oscillations is evident. 
 

 

 

Fig. 6. Single line diagram of three-machine power system 

 
A stabilizer is first designed for machine #3 in which the electromechanical mode 0.275±j4.08 oscillates. The 

state equation of this system is given by 
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Assuming that 0
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Then by using the procedure given in Section III the Equation (13) is obtained as follows; 
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The transfer function P3(s) =(Δω3/ΔTm3) can be then obtained from Equation (13).  This has been shown for 

power system example given in Figure 6 as follows;  
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The range of frequency [4-8 rad/s] is chosen for QFT design (see Table I).  Figures 7 shows the robust input 
disturbance rejection bound for generator 3 respectively.  Intersection of all bounds (robust stability & disturbance 
rejection bounds) is shown in Figure 8. 
 

 
Fig. 7. Disturbance rejection bounds of machine 3 

 

Table1: Electromechanical Modes of Three-Machine Power System Without PSS 
Electromechanical Modes 

-0.065+j7.39 
0.099±j7.82 

0.275±j4.08 

 

 
Fig. 8. Intersection of all bounds in machine 3 
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The last stage of controller design is loop shaping of open loop transfer function in machine 3 and shown in 
Figure 9.   

Finally the controller is obtained from QFT method as follows; 
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Fig. 9. Loop shaping for machine 3 

 
For machine 1 and machine 2 the design procedure is performed accordingly and G1(s) and G2(s) are given in 

appendix. 

5. Simulation Result  

The nonlinear simulations are also carried out for the system given in section IV.C.  The speed rotor variation of 
machines 1 following a small change (1%) in the load of machine 1 are shown in Figure 10.  

 

 

Fig. 10. Speed rotor variation of G1 following a small change in load G1 (1%) 

     The speed rotor variations of machine1 is shown in Figure 11 when a small change in load (1%) in machine 1 at 
initial time, in generator 2 at second 10 and in generator 3 at second 20 occurs.  In this test all parameters of the 
system also change by 20%.  As can be seen the QFT-based PSS depicts more desirable performance than the 
conventional one. 

Table 2 also shows eigen values of the system. As can be seen from this table electromechanical modes of the 
system are better damped when QFT-based PSS is used.  
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Fig. 11. Speed rotor variation of G1 following small change in load of machines when all of parameters in system change (20%) 

 

Table 2: Eigen values of Three-Machine Power System 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

6. conclusion 

In this paper, a quantitative design approach for tuning stabilizers in multi-machine power systems has been 
presented.  A new decentralized technique is used to design a robust PSS for each generator.  QFT-based PSS like 
the conventional lead-lag compensator can be easily implemented for real-time applications.  Simulation results 
confirm the robustness and desirable performance of the proposed PSS when compared with the conventional one, 
especially where the parameters of the system change. 

Appendix 

1-Parameters of P(s) in 3-order Transfer Function 
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-0.065±j7.39 -3.83±j7.23 -3.13±j6.54 
0.099±j7.82 -5.26±j5.65 -4±j6.8 
0.275±j4.08 -1.8±j4.66 -1.58±j2.98 
-1.52 -1.38 -1.47 
-3.43 -5.2 -3.42 
-5.92 19.13 -8.9 
-15.18 -10.2 -31.99 
-17.05 -2.1±j3.9 -6.21±j7.09 
-18.87 -4.48±j9.55 -6.59±j13.82 

 -7.45±j8.41 -8.86±j16.34 

 -10.45±j6.12 -37.27±j1.22 
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2-Data of 3-machine power system 
G1 :  Xd=1.68 , Xq=1.66 , X'd=0.32 , Tdo=4 , H=2.31 , KA=40 , TA=0.05 , P=26 MW , Q=37 MVAR  
Base Quantities: 360 MVA, 13.8 KV 
G2 :Xd=0.88 , Xq=0.53 , X'd=0.33 , Tdo=8 , H=3.4 , KA=45 , TA=0.05  , P=518 MW , Q=-31.5 MVAR 
Base Quantities: 503 MVA, 13.8 KV 
G3 : Xd=1.02 , Xq=0.57 , X'd=0.2 , Tdo=7.76 , H=4.63 , KA=50 ,TA=0.05, P=1582 MW , Q=-69.9MVAR 
Base Quantities: 1673 MVA, 13.8 KV 
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