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We study the SU(3) gauge theory with N f = 12 flavors in the fundamental representation by use of lattice
simulations with staggered fermions. With a non-improved action we observe a chiral zero-temperature
(bulk) transition separating a region at weak coupling, where chiral symmetry is realized, from a region
at strong coupling where chiral symmetry is broken. With improved actions, a more complicated pattern
emerges, and in particular two first order transitions in the chiral limit appear. We observe that at
sufficiently strong coupling the next-to-nearest neighbor terms of the improved lattice action are no
longer irrelevant and can indeed modify the pattern observed without improvement. Baryon number
conservation can be realized in an unusual way, allowing for an otherwise prohibited oscillating term
in the pseudoscalar channel. We discuss the phenomenon by means of explicit examples borrowed
from statistical mechanics. Finally, these observations can also be useful when simulating other strongly
coupled systems on the lattice, such as graphene.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

In recent years attention has been drawn to the study of con-
formal symmetry restoration in non-abelian gauge theories. On the
one hand, there is theoretical interest in uncovering their phase
diagram. On the other hand, the start of LHC activities creates
the possibility of putting under scrutiny candidate scenarios for
electroweak symmetry breaking, among others the possibility that
strongly coupled dynamics govern the physics beyond the Stan-
dard Model. Some of these models live in a quasi-conformal region
of the parameter space at the TeV scale, such as walking techni-
color or generalizations to composite Higgs models, or conformal
symmetry might be thought to play a role at much higher ener-
gies.

The main interest of these studies is of course the theory in the
continuum limit. However, in recent years a growing amount of
work has been devoted to the analysis of the so-called bulk transi-
tion emerging in the lattice phase diagram at strong bare gauge
coupling, see Fig. 1. Early studies based on the strong coupling
expansion of QCD predict that chiral symmetry is always broken
in the strong coupling limit, regardless of the number of flavors.
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Support for this claim was offered by Damgaard et al. [1], who un-
covered a bulk transition for sixteen fundamental fermions. Later
on, we have found [6] that QCD with eight fundamental fermions
is still in the QCD phase, hence for N f = 8 the chirally restoring
transition has a genuine thermal – as opposed to bulk – nature.
These findings have been further confirmed by [7]. A true bulk
transition appears instead in QCD with twelve flavors, and the
careful scrutiny of the region at its weak coupling side seemed
consistent with exact chiral symmetry [8,4]. The presence of a zero
temperature (bulk) transition between a chirally symmetric phase
at weaker coupling and a chirally broken phase at stronger cou-
pling is indicative of a theory being in the conformal window [8].
An analysis of the thermal transition in the preconformal region
is again consistent with a critical number of flavors Nc

f � 12 [9].
A review of current investigations of the N f = 12 theory, as well
as a discussion of signatures and strategies can be found e.g. in
[10–13].

Interestingly, and amusingly, a second bulk transition was un-
covered by us [3,4], between the first observed bulk transition and
the weak coupling region, where chiral symmetry studies were
carried out. It is important to observe that, as all our analysis
was done at the weak coupling side of such second transition,
all our conclusions on the nature of the N f = 12 theory remain
unaffected. Still, this was an interesting and unexpected observa-
tion calling for further analysis. The existence of a second transi-
tion was confirmed by the work in [5,14], where it was observed
that the shift symmetry of staggered fermions was broken in the
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Fig. 1. The bulk transition line in the N f –g2 plane of the phase diagram for SU(3) gauge theories with (unimproved) staggered fermions. The bulk transition separates a
QED-like, chirally symmetric, region (S, right side) from a chirally broken phase (AS, left side). The data points are all for a bare lattice fermion mass of 0.025 and should
ideally be extrapolated to the chiral limit. Data for N f = 16 (work in progress) agree with Ref. [1] after mass rescaling, the point at g2 = ∞ and N f � 50 is from Ref. [2] and
the point for N f = 12 is from the present work. The end point of the bulk line is unknown. Refs. [3–5] reported a further bulk transition in the chirally symmetric phase. In
this Letter we argue that next-to-nearest neighbor interactions in the improved fermion action are necessary for the second transition to occur.
intermediate phase. Finally, a recent interesting development re-
examined the early strong coupling studies: contrary to previous
conclusions, it was observed that, with unimproved fermions, the
line of bulk transitions ends for N f � 51. No second transition was
observed in this case [2].

A more general line of work involving quantum – or bulk –
transitions in a particle physics environment dates back to early
studies of QED at strong coupling. The transition in this context
has been for a long time investigated in the hope of finding an in-
teracting, non-asymptotically free theory in four dimensions. Such
a theory requires a second order transition with non-trivial ex-
ponents. Indeed, the bulk transition for QCD with a large num-
ber of flavors has close similarities with the QED transition and
in this spirit, inspired by the work in [15], we have proposed
[3] to search for an interacting UVFP at the bulk transition it-
self. One of us has also explored this possibility in the context of
AdS/CFT [16]. QED-like lattice systems are also being used for the
simulation of strongly coupled graphene. Using an effective field
theory description, the system can be modeled by QED in 2 + 1 di-
mensions, whose bulk transition can be analyzed borrowing early
lattice methods and strategies [17].

In conclusion, bulk transitions are interesting for several rea-
sons ranging from a diagnostic of the conformal window to fun-
damental QFT questions and the physics of condensed matter sys-
tems, such as graphene. Lattice methods are mandatory for study-
ing these phenomena. And it is important to realize that, since we
are not taking the continuum limit, lattice actions that are equiva-
lent in the continuum might have substantially different features at
finite lattice spacing. A very well-known example is offered by lat-
tice QED in four dimensions, where the compact and non-compact
formulations produce a different order for the phase transition.
Less investigated, but for many reasons interesting, is the effect
of improvement.

This Letter is dedicated to the study of the bulk transition for
N f = 12 and the role of improvement. As we have anticipated, the
discovery of an intermediate phase at strong coupling with a pe-
culiar behavior has recently attracted some interest. In this Letter
we present our results on the nature of this phase, and we show
that it only exists when the fermion sector is improved.

2. The Actions

We simulated the SU(3) gauge theory with twelve flavors of
staggered fermions in the fundamental representation. In order to
Table 1
Actions used in this work: gauge improvement refers to tree-level Symanzik im-
provement in the gauge action, while fermion improvement refers to tree-level
Symanzik improvement of the staggered fermion action, i.e. the addition of the Naik
term [18,19].

Action Gauge improvement Fermion improvement

A No No
B Yes No
C No Yes
D Yes Yes

separate the effects of improvement for the gauge and fermion ac-
tion, we performed simulations for different cases, labeled A to D
in Table 1, with improvement present in the gauge and/or fermion
sector. Many of the comparisons presented here are for a bare lat-
tice fermion mass of 0.025 and a volume 163 × 24, as in Fig. 2,
while the spectrum discussed in Section 3.3 has been studied for
volumes 244 and 324. For some of the Actions we have explored
an extended set of parameters, although a complete presentation
of our results will appear elsewhere.

Action A is given by

S = − N f

4
Tr ln M(am, U ) + β Re

(
1 − U (P)

)
(1)

where M(am, U ) is the fermion matrix for the naive staggered ac-
tion for a single flavor with mass m, β = 6/g2 is the SU(3) lattice
coupling and U (P) is the trace of the ordered product of link
variables along the single plaquette P divided by the number of
colors.

Tree-level Symanzik improvement of the gauge action leads to
Action B,

S = − N f

4
Tr ln M(am, U ) +

∑
i=0,1

βi
(

g2) ∑
C∈Si

Re
(
1 − U (C)

)
(2)

where U (C) are the traces of the ordered product of link variables
along the closed paths C divided by the number of colors. The S0
contains all the 1×1 plaquettes (nearest neighbors), while S1 con-
tains all the 1 × 2 and 2× 1 rectangles (next-to-nearest neighbors).
The couplings are defined as β0 = (5/3)β and β1 = −(1/12)β ,
where β = 6/g2 is the SU(3) lattice coupling of the unimproved
gauge action.

Improvement of the staggered fermion action is realized ac-
cording to the Naik prescription [18,19]
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Fig. 2. The chiral condensate for the SU(3) gauge theory with N f = 12 fundamental flavors as a function of 1/g2, with g the lattice bare coupling. We show the results for
the unimproved action, Action A (leftmost, black) and for the improved gauge and fermion action, Action D (rightmost, red). Data are for am = 0.025 and volume 163 × 24.
The weaker coupling crossover of the improved action disappears in the unimproved case. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)

Fig. 3. (a) Rapid crossover of the chiral condensate (PBP) and the plaquette for N f = 12 flavors with the unimproved action (Action A) as a function of the lattice coupling
β = 6/g2 in the strong coupling region, for am = 0.025 and volume 163 × 24. (b) The connected susceptibility for the same parameters.
S F = a4
∑
x;μ

ημ(x)χ̄ (x)
1

2a

{
c1

[
Uμ(x)χ(x + μ)

− U †(x − μ)χ(x − μ)
]

+ c2
[
Uμ(x)Uμ(x + μ)Uμ(x + 2μ)χ(x + 3μ)

− U †
μ(x − μ)U †

μ(x − 2μ)U †
μ(x − 3μ)χ(x − 3μ)

]}
+ a4m

∑
x

χ̄ (x)χ(x) (3)

where the phase factor ημ(x) = (−1)(x0+x1+···+xμ−1) and the ac-
tion is written in terms of the one component staggered fermion
fields χ(x). The coefficients c1 = 1 and c2 = 0 reproduce the naive
staggered fermion action, while the Naik choice c1 = 9/8 and
c2 = −1/24 provides O (a2) accuracy at tree level. Notice that the
additional Naik term involves up to third-nearest neighbor inter-
actions. Other types of improvement may also be considered. In
Section 4, we will argue that the presence of a new phase is a
general feature of improvement at strong coupling.

3. Results

The main numerical result of this work is summarized by Fig. 2,
where the transition region for the fully improved and unim-
proved actions is shown. Two rapid crossovers are present with
the improved action, while a single chiral symmetry breaking tran-
sition is present in the unimproved case.

3.1. Action A: the unimproved case

Fig. 3(a) shows the rapid crossover for the chiral condensate
(left) superimposed on the plaquette (right), at the bare lattice
mass am = 0.025. No additional structure is observed in the chi-
ral condensate. We corroborate these observations by showing the
connected component of the chiral susceptibility χconn in Fig. 3(b);
its behavior is as expected and no sign of an intermediate phase
at weaker coupling and additional transitions is present.

Given the absence of phase transitions or indications for a
crossover, it is plausible to conclude that the weak coupling phase
of this theory is continuously connected with the asymptotically
free regime that admits a continuum limit.1 If this is true, its sym-
metry properties are the same as the ones of the improved action,
extensively investigated in our previous work. We then conclude
that the rapid crossover observed for Action A in Fig. 3 should
be interpreted as the finite mass remnant of a bulk chiral tran-
sition separating the chirally broken phase at strong coupling from

1 In other words, when no phase transition occurs at the infrared fixed point
(IRFP) of the theory, the strong coupling QED-like side of the IRFP should be con-
tinuously connected to the asymptotically free weak coupling side.
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Fig. 4. (a) Rapid crossovers in the chiral condensate (PBP) with the improved action as a function of the coupling β0 = 10/g2 in the strong coupling region for different bare
masses. (b) The mass dependence of the critical β value extracted from the central point of the strong coupling is in agreement with a linear scaling expected for a first
order transition.

Fig. 5. Mass dependence of the connected chiral susceptibility (left) and the disconnected chiral susceptibility (right).
the chirally symmetric phase, in complete analogy with the unim-
proved results of Ref. [1] for N f = 16. While all the observed
features strongly suggest a first order nature of the chiral phase
transition, an exhaustive finite size scaling study of the order pa-
rameter and its derivatives must be pursued for a conclusive state-
ment. We defer this study to a future work.

3.2. Action D: the improved gauge and fermion action

We now consider Action D, i.e. the case where both fermion
and gauge actions are tree-level Symanzik improved. For small
enough bare masses (am � 0.04), at the simulated volumes, two
rapid crossovers are observed in the value of the chiral conden-
sate: a large one at stronger coupling and a smaller one at weaker
coupling (see Fig. 2). Preliminary results were reported in [3,4].
As expected, the transition to the chirally broken phase moves
towards stronger couplings when the action is improved. Less ex-
pected is the fact that the transition appears to be realized in two
steps, leading to one intermediate region. Fig. 4(a) shows that the
crossover at stronger coupling becomes more pronounced as the
bare mass decreases. No dependence on the lattice temporal ex-
tent is observed and no perturbative scaling can be realized [3,4].
The mass dependence of the location of the strong coupling rapid
crossover in Fig. 4(b) is in agreement with a linear scaling expected
for a first order transition.

The disconnected component of the chiral susceptibility shows
a pronounced peak only in correspondence to the strong coupling
rapid crossover, as shown in Fig. 5(b). These results indicate that
the strong coupling rapid crossover is the one corresponding to
chiral symmetry breaking. Consider now the crossover in the chi-
ral condensate at weaker coupling. The hints at a jump become
weaker as we approach the chiral limit, see Fig. 4(a). On the other
hand, the behavior of the chiral condensate as a function of the
mass suggests a discontinuity in its mass derivative, which is best
studied by considering the chiral susceptibility.

The connected component of the chiral susceptibility exhibits
near discontinuities at the condensate crossovers, as shown in
Fig. 5(a). The magnitude of both discontinuities increases as the
bare mass decreases. This suggests that the jump at weaker cou-
pling also corresponds to a genuine phase transition in the chiral
limit, as suggested in [3] and confirmed in [4,5]. We conclude
that we are observing two distinct phase transitions, one associ-
ated with a change of the slope of the chiral condensate at weaker
coupling, the other with the chiral condensate itself at stronger
coupling. In the following sections, the change of the slope of the
chiral condensate at weaker coupling will be related to the spec-
trum behavior, and interpreted as one of the manifestations of the
effects of improvement at strong coupling. Again, we defer to fu-
ture work a more complete finite size scaling study of the nature
of both transitions. All data collected until now strongly favor their
first order nature.

One comment on the role of the U A(1) symmetry is in order.
In the continuum language the observed pattern of the suscepti-
bilities, and the presence of a single almost discontinuity at the
stronger coupling of the continuum order parameter shown in
Fig. 6, suggest U A(1) (effective) restoration at the strong coupling
chiral transition. However, a proper analysis of the axial anomaly
is hampered at strong coupling by the absence of a conserved local
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Fig. 6. Mass dependence of the difference of the pseudoscalar susceptibility χπ =
〈ψ̄ψ〉/m and the connected scalar susceptibility. This order parameter probes U A(1)

(effective) restoration in the continuum theory. Its behavior suggests U A(1) restora-
tion (see caveats in main text) at the chiral transition, i.e. in correspondence with
the stronger coupling rapid crossover in Fig. 4(a).

flavor singlet current, due to the emergence of genuinely new lat-
tice operators with no correspondence in the continuum limit. For
a complete understanding of the role of U A(1) in this context,
it would thus be interesting to further analyze the lattice non-
local order parameter in the intermediate region in terms of the
point-split staggered correlators, analogous to the finite tempera-
ture study in [20].

3.3. The spectrum

We recall that staggered meson correlators on a lattice with
temporal extent T and periodic boundary conditions have the gen-
eral form

C(t) =
∑

i

Ai
(
e−mit + e−mi(T −t))

+ (−1)t Ãi
(
e−m̃it + e−m̃i(T −t)). (4)

For each state, the parity partner adds a component with alter-
nating sign (−1)t . This is a property of the staggered formulation
and it is true for all correlators with the exception of the equal
mass Goldstone pseudoscalar correlator. For equal quark and anti-
quark masses, the parity partner operator for the Goldstone pion
is proportional to a charge density operator and thus its vacuum
expectation value is zero.

We give an overview of our results in Fig. 7. The most salient
feature in Fig. 7 is an oscillatory component that arises for the
pseudoscalar correlator in the intermediate region (β0 = 10/g2 =
3.025). This effect was also observed by the authors of [5]. In this
region chiral symmetry is exact and the scalar and pseudoscalar
correlators should become increasingly degenerate by moving to-
wards the chiral limit.

What we see in Fig. 7, moving from weak to strong cou-
pling (right to left), is as follows. In the chirally symmetric re-
gion, the pseudoscalar and scalar correlators are close to each
other. As expected, the staggered scalar correlator has an oscillat-
ing component while the pseudoscalar has not. The non-horizontal
shape of the ratios indicates a significant contribution from excited
states.

In the intermediate region, a new oscillating component arises
in the pseudoscalar correlator, and seems to also arise in the scalar
correlator for β0 = 3.025. This is consistent with the abrupt change
of slope in the mass dependence of the chiral condensate, given
that the chiral susceptibility 〈ψ̄ψ〉/m equals the volume integral
of the pseudoscalar correlator.

At strong coupling (β0 = 2.6) chiral symmetry is broken and
the pseudoscalar lightest state is the Goldstone boson of the bro-
ken symmetry, thus very light and largely non-degenerate with
the scalar state. We observe that the oscillating component in the
pseudoscalar correlator visibly decouples. The second observed ef-
fect is the presence of an asymmetry under t → T −t of all studied
correlators in the intermediate region, i.e. β0 = 3.025. To highlight
this asymmetry we have plotted the difference C(t) − C(T − t) for
the pseudoscalar correlator in Fig. 8. We see that

C(t) 	= C(T − t) for t odd,

C(t) ∼ C(T − t) for t even. (5)

In other words there is a violation of staggered-time reversal sym-
metry. The asymmetry is well fitted, see Fig. 8, by the functional
form

C
(
1 − (−1)t)(e−mt − e−m(T −t)) (6)

with C � 1027 and m � 0.62 consistent with the fit of the pseu-
doscalar correlator on t � T .

One caveat is in order: it is known that such an asymmetry
may typically be present when configurations are not thermalized
or statistics is too low. For this reason we have increased ther-
malization time and statistics for this point to a few times the
ones in the other two regions. The asymmetry persists and does
not vary with increasing thermalization or statistics. Hence, even if
the observed asymmetric state is a metastable state, its tunneling
probability to the opposite asymmetry seems to be extremely low,
suggesting that a seed is indeed stabilizing it.
Fig. 7. Central values of the ratios C(t)/C(t − 1) for the pseudoscalar (PS, black circles) and scalar (SC, red squares) two-point correlation functions for coupling values in
the three interesting regions. From left to right: the chirally broken phase, the intermediate phase and the weak coupling phase. The coupling in this case corresponds (left
to right) to the improved β0 = 10/g2 = 2.6,3.025,3.8. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
Letter.)
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Fig. 8. The asymmetry of the Goldstone pseudoscalar correlator in the intermediate region (β0 = 3.025), with superimposed the result of the fit to Eq. (6); the fitted
parameters are m � 0.62 and C � 1027.

Fig. 9. Two rapid crossovers are observed for the Naik improved fermion action (red), while one rapid crossover is observed for the Symanzik improved gauge action (black).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
3.3.1. Disentangling the effect of fermion and gauge improvement
In order to expose the separate effects of improvement of the

fermion action and gauge action, we have performed two addi-
tional sets of lattice simulations with one improvement at a time –
Actions B and C in Table 1. In Fig. 9 we show the results for the im-
proved fermion action, or the improved gauge action. These results
make clear that in the case under study the Naik improvement of
the staggered fermion action is mainly responsible for the appear-
ance of an intermediate region in the gauge coupling.

4. Discussion

The results presented above suggest that third-nearest neighbor
terms in the Naik improved fermion action are responsible for the
appearance of an intermediate phase.

This is perhaps not unexpected. It is well known that models
with competing interactions may give rise to non-homogeneous
structures and novel phase transitions. One prototypical example
is the axial next-to-nearest neighbor Ising model, known as the
ANNNI model [21]. These effects have not been observed at weak
coupling, where non-nearest neighbor terms concur to a faster ap-
proach to the continuum limit, but might well appear at strong
coupling when those terms become relevant. It is quite possible
that quantitative predictions for the appearance and properties of
the additional phase could be obtained in the framework of a
strong coupling expansion that takes the improvement term into
account explicitly – we do not pursue this here.

Here, we provide a plausible argument that accounts for the
appearance of such an intermediate phase and its peculiar prop-
erties: (i) the emergence of an oscillating component of the stag-
gered two-point correlation function in the pseudoscalar channel,
and (ii) the asymmetry of all two-point correlation functions under
t → T − t .

The authors of [22] have considered the exactly solvable Ising
chain (1D) of length L with next-to-nearest neighbor interactions.
This example is extremely instructive. There are two regions of
parameters. In one region the eigenvalues of the transfer matrix
are real and positive. In the other region, pairs of complex con-
jugate eigenvalues appear. Intuitively, the first region (region I) is
where the nearest neighbor interaction is dominant, while the sec-
ond region (region II) is where the next-to-nearest neighbor term
becomes dominant.

As observed in [22], the two regions will also emerge in a
Symanzik improved gauge action where the couplings β0 and β1
are fixed as a function of the inverse gauge coupling β . In other
words, it is the competition of nearest neighbor and next-to-
nearest neighbor interactions at increasingly coarse lattice spacing
that causes the system to enter the second region.
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The same argument can be repeated for the Naik improved
staggered fermion action, with up to third-nearest neighbors. In
this case, the emergence of complex eigenvalues of the transfer
matrix can be understood by looking at the free lattice fermion
propagator for a single flavor, given by

S F (p)−1 =
∑
μ

iγμ

(
9

8
sin pμ − 1

24
sin 3pμ

)
(7)

with −π/2 � p � π/2. The interacting theory at strong coupling
can in principle significantly modify the coefficient of each sine
contribution. In particular, the change of sign of the second term
will induce a pair of imaginary poles (zero tri-momentum) in the
massless dressed propagator, i.e. ghosts will appear.2 This signals
the emergence of region II, likely the intermediate phase we have
observed.

It would certainly be interesting to understand more quanti-
tatively the connection between the poles in the quark propaga-
tor – as emerging from the non-hermiticity of the transfer matrix
with Symanzik improvement [23] – and the detailed structure of
the two-point correlation functions in the intermediate phase. We
postpone this analysis hopefully to future work. Here, we offer a
qualitative explanation as to why a chirally symmetric phase with
the observed exotic features can appear in a gauge theory with
fermion improvement.

In general, the occurrence of an oscillatory secondary state in
the pseudoscalar (Goldstone) correlator with staggered fermions
is forbidden by the baryon current conservation. With improve-
ment of the action, the total fermionic current will include addi-
tional terms which in turn define a modified form of the baryon
number operator at zero chemical potential. For the Naik im-
proved free fermion action this construction has been explicitly
given by Gavai [24]. In the interacting case, a simple construction
that should suffice for our purpose starts with implementing the
Kogut–Hasenfratz–Karsch prescription [25,26] U (x) → exp(μ)U (x),
U †(x) → exp(−μ)U †(x) along the temporal direction. The total
baryon number density is then

n(μ) = d/dμ log Z(μ) = n1(μ) + n3(μ) (8)

where n1(μ) comes from local interactions and n3(μ) comes from
the third-nearest neighbor term. At vanishing chemical potential
the total density n(μ = 0) must vanish due to baryon number
conservation. This can be realized in two ways, either n1(μ =
0) = n3(μ = 0) = 0, or n1(μ = 0) = −n3(μ = 0) 	= 0. When the
vanishing baryon number is realized in the second way, a non-
zero oscillating component is allowed to appear in the (Goldstone)
pseudoscalar channel, as its coefficient is roughly speaking, pro-
portional to n1. At the same time, n1 is also a measure of the
forward–backward asymmetry. Hence, n1 	= 0 allows an oscillat-
ing term in the pseudoscalar channel and a time asymmetry in
all correlators; this is indeed what we observe for the pseu-
doscalar correlator and the other correlators in the intermediate
region.

Putting all the elements together, we would then arrive at this
simplified picture: with an improved staggered fermion action the
occurrence of imaginary poles of the quark propagator (or equiva-
lently complex eigenvalues of the transfer matrix) opens the possi-
bility of intermediate phases. In the chirally symmetric phase, and
for sufficiently weak coupling, the tendency towards degeneracy of

2 It is known that the dispersion relation for Naik improved staggered fermions
always contains complex roots at non-zero tri-momentum. All ghosts generated by
the improvement decouple in asymptotically free theories when approaching the
continuum limit.
the scalar and pseudoscalar propagators is contrasted by the re-
quirement of zero baryon number; the latter forces the amplitude
of the oscillating component in the pseudoscalar channel to vanish
(0 = n � n1), while the oscillating component in the scalar channel
starts appearing. Towards stronger coupling, third-nearest neighbor
interactions in the improved fermion action become increasingly
relevant. Now, chiral symmetry (i.e. the degeneracy between scalar
and pseudoscalar correlators) can still be preserved by allowing
n3 = −n1 	= 0. In this way the oscillating component appears in
the pseudoscalar channel and the temporal asymmetry appears in
all channels. This is the intermediate phase. When the coupling
grows even larger, chiral symmetry is finally broken, the lightest
pseudoscalar is its Goldstone boson, and scalar and pseudoscalar
correlators can depart from each other. Our observations in the
broken phase (see Fig. 7) are consistent with a situation where
the conservation of baryon number is again realized in the usual
way.

We add that the presence of such an intermediate phase should
be considered of a quite general nature, of which our case is an
example; the seed of the intermediate phase is identified with
the non-hermiticity of the transfer matrix due to improvement.
By construction, improvement accelerates the convergence to the
continuum limit for asymptotically free theories at sufficiently
small lattice spacings, while it drastically modifies the system at
coarse lattice spacings. Any improvement, Symanzik improvement
or smearing of gauge links in the fermion action (e.g. n-HYP smear-
ing), explicitly modifies quark and/or gluon interactions carrying
higher powers of the lattice spacing. We thus expect that a new
intermediate phase can always emerge at sufficiently strong cou-
pling; where it is located will depend on the details of the im-
provement procedure.

The characterization of the intermediate phase described in this
work is also consistent with the breaking of the shift symmetry
discussed in [5], where a n-HYP smeared staggered fermion ac-
tion has been used. In fact, the ‘partial baryon number operators’
n1 and n3 might well be directly related to the operators measur-
ing the breaking of the shift symmetry. In addition, the presence
of ghost poles in the quark propagator of the improved fermion
action translates into the presence of complex eigenvalues of the
improved transfer matrix, and in the case of staggered fermions
the real time transfer matrix is related to the shift operator as
T = T4 = S2

4.
Our study shows that the emergence of an exotic intermediate

phase in the chirally symmetric SU(3) gauge theory with twelve
fundamental (staggered) flavors is due to the improvement of the
fermion action, which adds next-to-nearest neighbor interactions
that compete with the local terms at strong coupling. We have
also argued that this feature is quite general and should always
be expected whenever studying SU(N) gauge theories inside the
conformal window by means of improved lattice actions at suffi-
ciently strong coupling. In all these cases, particular care should
be taken to identify those regions, outside the exotic intermediate
phase, where the signals of chiral and conformal symmetry break-
ing patterns (and confinement/deconfinement transitions) are not
affected by the lattice artifacts discussed in this work.

These observations might also be of interest to model builders,
when needing to realize exotic intermediate structures in inter-
acting gauge models with a relatively simple and controlled pro-
cedure. It is also amusing to notice that it is possible to mimic
features of a dense system and a complex action (time asymmetry)
by working with a real action, without the sign problem. Of course,
we reiterate that from the perspective of the study of the phase
diagram for SU(N) gauge theories with many flavors, the observed
features remain a peculiar form of lattice artifacts that should be
well disentangled from the underlying physics of the system.
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