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We consider system identification in the Banach space H, in the framework 
proposed by Helmicki, Jacobson, and Nett. It is shown that there is no robustly 
convergent linear algorithm for identifying exponentially stable systems in the 
presence of noise which is not tuned to prior information about the unknown 
system or noise. Various nonlinear algorithms, some closely related to one of Gu 
and Khargonekar, are analysed, and results on trigonometric interpolation used to 
provide new error bounds. An application of these techniques to approximation is 
given, and finally some numerical results are provided for illustration. ( 1992 
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1. INTR~OUCTI~N 

The H, identification of a linear system (in either discrete or continuous 
time) with transfer function G involves the determination of a set of n 
frequency response measurements, which are then used to construct an 
approximation to the original transfer function. In addition it is desirable 
that an identification algorithm be stable under small perturbations of the 
data (noise): for example, Lagrange interpolation (fitting a polynomial of 
minimal degree through the data) is known not to have this property and 
to be generally badly behaved. We therefore seek algorithms with better 
stability properties. 

Section 2 of this paper sets up the mathematical background, and in 
Section 3 we discuss the existence and non-existence of linear identification 
algorithms with the desired properties. Section 4 introduces various non- 
linear algorithms and gives error bounds establishing their approximation 
power. In Section 5 we consider applications of these techniques to model 
reduction. Finally Section 6 illustrates the theory with some examples. 

The mathematical framework in which we shall work is principally due 
to Helmicki, Jacobson, and Nett, and I am very grateful to Professor Nett 
for introducing me to the problems discussed in this paper. 
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2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We shall be considering stable, infinite-dimensional, linear time-invariant 
systems, and our results will be applicable to both discrete-time and con- 
tinuous time systems. In continuous time the transfer function G(s) is a 
bounded analytic function in the right half complex plane, i.e., an element 
of H, (C + ) which acts on H,(C + ) by multiplication; in discrete time, the 
transfer function g(z) (obtained by taking z-transforms) is analytic and 
bounded on the set of complex numbers of modulus greater than one. In 
either case we can, and will, transform the situation in a norm-preserving 
manner so as to consider functions analytic and bounded on the unit disc: 
in the first case by defining f(z) = G(&z) so that G(s) =f(As), where .&’ 
is the Mobius map &‘z = (1 - z)/( 1 + z); and in the second case by defining 
f(z) = g( l/z). 

Let f(z) be a function in the disc algebra A(D) = H, n C(U), i.e., a 
function analytic and bounded on the unit disc with continuous boundary 
values. An H, identification algorithm can be regarded as a sequence (T,) 
of (not necessarily linear) mappings from subsets S, E C” into H,, : given 
a set of possibly corrupted values of the function f on the unit circle, say 
(fi 3 ...> fn) E L obtained from evaluating f at points (z,, . . . . z,) on the 
circle, and adding in noise function v, the function T,(fi, . . . . f,) defines an 
approximation to f: The noise ye can be regarded as lying in f,(U), the 
space of bounded functions on the circle T. Thusf, =f(zl) + I, . . . . f,, = 
f(zn) + ~(2,). It is usual to evaluate the function at the roots of unity, i.e., 
z, = exp(2rrijln), for j = 1, . . . . n, but we shall not initially assume this. 

Let A be the set of functions that we wish the algorithm to identify and 
Ec I,(T) a set in which the noise q is assumed to lie; then T,, defines a 
mapping F,, from A x E into H,, by the formula 

t,c.r, VI= Tn(f(z,)+v(z,), . . ..f(zn)+d~.z)). (2.1) 

Following Helmicki, Jacobson, and Nett [6] we say that an algorithm 
is convergent over H,(D,, M), the set of functions analytic in D, = 
{z: Iz/ <p} (p > 1) with sup{ 1 f(z)l: IzI <p} d M, if 

lim sup sup lmf +rl)-f Ilz +a (2.2) 
n+x.z-0 lIVllz<E fEHZ(D,?.M) 

Moreover an algorithm is said to be robustly convergent when the above is 
true for all p > 1 and M > 0, and untuned if it does not depend on prior 
information about p, M, and E. 

It is shown that no untuned algorithm can exist which is robustly con- 
vergent and such that the maps T,, are linear in the data: this was conjected 
by Helmicki, Jacobson, and Nett [6] who provided a robustly convergent 
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untuned algorithm using nonlinear mappings, as later did Gu and 
Khargonekar [S]. More such nonlinear algorithms are discussed and error 
bounds provided guaranteeing asymptotically correct approximation of all 
f in the disc algebra; and hence, by transforming to the half-plane, of all 
G(s) E H, (UZ + ) such that G is continuous on the imaginary axis, including 
at x. 

3. LINEAR ALGORITHMS 

Helmicki, Jacobson, and Nett [7] have constructed a convergent linear 
algorithm, tuned to prior data p, M, E such that the identified function f 
lies in H,(D,, M) and the noise satisfies //VII ,% < E. Moreover they conjec- 
tured that no linear robustly convergent algorithm exists. In this section we 
establish their conjecture, and in fact prove a slightly stronger result. 

To establish notation, let us suppose that an identification map T,, uses 
values off + q at a set of points {Z ,,,, , . . . . z ,,,, 1) on the circle, and write E, 
for the evaluation map taking g E I, (U) to (g(=,,, ,), . . . . g(z,,,,)). 

THEOREM 3.1. There is no sequence of linear maps (U,): c” -+ H,, such 
that, writing E, for the evaluation map above, 

(i) llu,,E,,(rl)ll x +O as II (v(=,~. I ), . . . . r?(~,,,))ll x + 0 and n + a 
jointly; and also 

(ii) // U,, E,,( g) - gll r + 0 in norm jor every g which is a polynomial. 

The first condition implies that the zero function is identified correctly in 
the limit as the noise level tends to zero and the number of evaluation 
points tends to infinity, jointly. The second implies that in the zero-noise 
case, we obtain correct identification of polynomials in the limit. 

Proof: From condition (i) there exists a 6 > 0 and a number N such 
that if n > N and Ilv(z ,,,, ), . . . . q(:,,,,)lI 1 <6 then IIU,,E,(r])ll < 1. Now given 
any functionfc C(T), there is a constant A > 0 such that I/ f/All ~ < 6. This 
implies that )/ U,, E,,f 11 I < A for all n > N and hence the complete sequence 
(U,, E,f) is bounded in norm. 

This in turn implies, by the Banach-Steinhaus principle of uniform 
boundedness (see, e.g., [ 141) that the linear operators V, = U, E, are 
uniformly bounded in norm, considered as mappings from C(U) into H,. 
We also have that V,,f - f for any polynomial f: Because the maps are 
uniformly bounded in norm this is also true for any f in the closure of the 
polynomials, namely the disc algebra A(D) = H, n C(U). 

We therefore need to show that there is no uniformly bounded sequence 
of linear maps, (V,,) from C(U) into H,x such that V,,f- f for allfE A(D). 
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It is known that there is no continuous projection from C(U) onto A(D), 
but we are claiming something stronger here because we do not require 
convergence for f not in A(D). We adapt the proof of this weaker result as 
can be found in Hoffman [9, p. 1551. 

Givenfg C(U) and 0 d 6 d 2rc detinej, E C(T) byf,(z) =.f’(e”z). So, e.g., 
for f(z) = z”, fi,(z) = ern”zn. 

Now define S,, as bounded maps from C(U) into H, by 

where g is any function in L,(U). Initially all we can say is that S,f’ is in 
L, but in fact 

( Snzk, zm ) = J’^ ( V,,zk, 2”‘) ertk m)B dtl/2x, 
0 

which gives 0 for k#m and ( V,!zk, zk) for k =m and this last term is zero 
for k < 0 since V, maps into H Ic. 

Therefore we have uniformly continuous maps S, from C(U) into H, 
such that 

if k 30, 
if k ~0, 

where the (a,,,) are constants. Also the numbers ak,n are uniformly 
bounded and for fixed k, ak,n + 1 as n + ZG;. 

We therefore get a continuous projection S from C(U) into H, by 
defining S on trigonometric polynomials as the limit of S,, and e.rtending 
by continuity. Clearly S has to be bounded, but we see from above that 

if k 30, 
if k ~0, 

but this map is well known not to be bounded (see, e.g., [9, p. 1501). 
Hence such an algorithm cannot exist. 1 

We have actually proven a stronger assertion, namely that even if the 
noise is known to be in C(lJ), i.e., continuous on the circle, robust 
identification is still impossible with a linear, untuned algorithm. It is there- 
fore necessary to concentrate on nonlinear algorithms, which we do in the 
next section. 
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4. NONLINEAR ALGORITHMS AND ERROR BOUNDS 

A general class of robustly convergent nonlinear algorithms for iden- 
tification in H, operates as follows: 

1. Given data (,f,, . . . . ,f,,) = (,f‘(~,) + q(~,));= , form an approximation 
L,,(f + q) E L, to ,L in such a way that 

(i) in the zero-noise case, L,,(f) -,f‘ as n + ir, for ,f’ in a suitably 
large class of functions; 

(ii) the approximation is robust with respect to the data, that 
is, for any E >O there is a 6(e) >O such that, provided that 
ll(r(z, 1, . . . . r(z,,))ll z < 4 then IIL,(J’+ YI) - LU”)ll x <E for allf: 

2. If L,,(f‘+ n) is not already rational, perform a model reduction 
scheme to obtain a rational approximation R,,(f+ q) to L,,(J‘+ y) in the 
L, norm. Generally steps 1 and 2 are linear in the data. 

3. Define A,(f’+q) to be the function in H, which is closest to 
R,(f+q). This can be calculated by solving a Nehari extension problem 
(see, e.g., [ 15, 121) and it is at this stage that we lose linearity in the data. 

In the common case that R,, is a trigonometric polynomial C;I’= ~,n ckzk, 
the solution is given as follows: let f be the Hankel matrix 

and let u= (a,, . . . . u,) be a nonzero vector such that I/II/lz= l/ZJ Ilu// and 
rv = (w,, . ..) w,), say. Then the closest element of H, to R,, is 

k= -m 
(4.1) 

a rational function of degree with numerator degree at most 2m - 1 and 
denominator degree at most m - 1. 

Then, as regards error bounds, we see that 

and so 

IIALf+v)-fll, G2 II~-R,(~+v~)~I, 

G 2 II.f’- R,,(f)ll m + 2 IIMf+ VI- R,,(f)llx, (4.2) 
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and both terms will be small if n is sufficiently large and q is sufficiently 
small. Further, if R, is linear in the data, then 

ll4(f+'1)-f/lx ~2 Ilf- R,Sf)ll, +2 IlRn(v)Il,. (4.3) 

Helmicki, Jacobson, and Nett [6] performed stage 1 by means of a 
linear spline through the given data, and stage 2 by a truncated Fourier 
series approximation (for which the formulae are particularly convenient in 
this case). Gu and Khargonekar [S] combined stages 1 and 2 by taking 
discrete Fourier transforms of the data, and using Cesaro averages. We 
shall start by giving a generalization of their method, together with some 
new error bounds guaranteeing convergence. After this we shall present 
some further algorithms with rates of convergence. 

We recall, from Zygmund [ 16, Vol. 2, Chap. X], the following results on 
Jackson (trigonometric) polynomials. 

Let z = eiB, with 0 d 0 < 271, be a point of the unit circle T. The Dirichlet 
kernel is defined by 

D,,(e) = 
sin(n + l/2) 0 

2 sin 812 

=(1/2) i Zk. 
k= n 

Moreover the Fejtr Kernel is given by 

K,(e) = (l/b + 1)) i D,(d). 
k=O 

We now wish to interpolate data f(t,), . . . . f(t,,), where t, = 2nr/(2n + 1 ), 
r = 0, . . . . 2n, with a trigonometric polynomial xi= in cketkn as follows. 

Define the generalized Jackson (trigonometric) polynomials (J,,,,,), , n z 0 
by 

J,.,(f, @=(2/m) c f(2dm) K,(~-('Wm). 
r=O 

(4.4) 

This is a trigonometric polynomial of degree n, i.e., a power series from z ‘* 
to zn. Also let 

2n 

zn,k(f, 0) = (2/(2n + 1)) 1 f(t,) Dk(fr - e), 

for k = 0, 1, . . . . n. 
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Two especially interesting cases present themselves: 

(i) If m = n + 1 we obtain the Jackson polynomials J,,.,, + l = J,,; these 
interpolate the data exactly at the (n + 1 )st roots of unity and have zero 
derivative at those points. 

(ii) If m = 2n + 1 we obtain the Marcinkiewicz polynomials 

B,,, ,z = J,,. 2,, + I =(ll(n+l)) C z,,,k. (4.5) 
h=O 

These polynomials have the following properties: 

(a) J,,,,,, remains within the same bounds as,#; i.e., interpolation is a 
norm 1 map from the data (infinity norm) to the continuous functions on 
the circle. 

(b) J,,,,,(f; 0) -+ J‘ uniformly for any continuous ,f as n + cry, keeping 
m > n. 

The nonlinear algorithm of Gu and Khargonekar [S] is a close relation 
of the algorithm using (4.4) above, using an even number of interpolated 
values rather than an odd number and essentially producing the tri- 
gonometric polynomial J,1,2,1. They established robust convergence of their 
algorithm for all ,f in H, (D,, , M) for some p > 1 and A4 > 0. Results from 
[16] show that we may expect convergence over a much wider class of 
functions. 

Since for each k, 

If(H)-I,,,,(.L 011 G2 1 la,l. (4.6) 
I//>/. 

where a, are the (Fourier) coefficients of .f (see [16, Chap. X, 
Theorem 5.16]), clearly the same error bound holds for the Marcinkiewicz 
polynomials B,,.,, This gives us an effective error bound as follows. 

THEOREM 4.1. Suppose f is an analytic function in the Wiener algebra on 
the circle, that is, 

Let B,,.,, = Jr,, 2,, + I be the Marcinkiewicz trigonometric polynomial inter- 
polating the function f(e’“) + q(e’“), with q E l,(U), and let F,, he the identified 
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model in H, formed by taking the closest point in H, to B,,,,, , as in (4.1) 
above. Then 

IIF,,-fll, G4 i C la,l+2 Ilrlll, 
Hk=l l/l>k 

=t,z, (k- 1) la,1 f4 C I4 +2 lIvllr. 
k > n 

(4.7) 

Proof. This follows immediately from (4.5), (4.6), and (4.3). 1 

In the particular case that f E H,(D(,, M) we observe that lakl 6 Mp ’ 
from which one obtains very similar error bounds to those of Gu and 
Khargonekar. 

The following result is particularly important for the identification of 
continuous time delay systems G(s), where the transfer function trans- 
formed to the disc, G((l -z)/(l + z)), does not lie in any H,(D,, M). We 
shall give more explicit bounds later. We write 

D,,(f) = II f- B,m(.f)ll r . (4.8) 

THEOREM 4.2. The algorithm above using B,,,. approximates all,functions 
f in the disc algebra, with an error bound of the form 2D,(f) $- 2~, and 
D,,(f)-0 as n+ co. 

Proof This follows from (4.8) and (4.3). 1 

The algorithm using .I,,,+, seems to perform less satisfactorily, giving 
error bounds O(n -“‘) + O(e) in the case that f has a continuous derivative. 
However, it resembles the spline approximants of Helmicki, Jacobson, and 
Nett in that it starts by interpolating the data (unlike the other algorithm). 

A further algorithm of some interest may be constructed using some 
results from Natanson [ 11, Vol. III, Chap. 41. There no less than four 
procedures are given for obtaining trigonometric interpolants to data on 
the circle. Of these the first two seem to be most useful when combined 
with a Nehari extension. The first one, the “First Bernstein procedure” 
(which we denote by (Bl )) leads to the Jackson polynomials Jn,Zn+ 1 that 
we have already discussed. 

The second, the “Second Bernstein procedure” (which we denote by 
(B2)) operates as follows: let T,, be the trigonometric polynomial of degree 
n interpolating f at the (2n + 1)st roots of unity and let 
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Then this is slightly less robust (i.e., it may exaggerate noise errors by a 
constant larger than 1) but may converge more quickly for noiselessf: thus 
if one suspects that the noise is small this algorithm may be superior to 
(Bl) but will always approximate anyway. This algorithm is also easy to 
implement: the data f‘+ q is mapped to the function 

x c (.f+ rj)(Zk) Z/iM cos(7cm/(2n + I)), (4.10) 
k=O 

where zk = exp(2zik/(2n + 1)). U,, is a trigonometric polynomial of degree 
n (based on (2~ + 1) data points) and is closely related to the discrete 
Fourier transform. 

The third and fourth methods are more complicated and it is not clear 
that they lead to robust algorithms. The reader is referred to [ 1 l] for 
details. 

The theoretical error bound of (B2) is O(w( l/n)) where o is the modulus 
of continuity ofJ That is, 

II ~,(.L Q)ll r G K, II f II % and llU,(f, @)-.fll, Gmdlln) (4.11) 

for fixed constants K, and K, (whose smallest possible values Natanson 
does not attempt to determine), where 

w(d)=sup{If(e’“)-f(efm)l: IO-41 <S>. (4.12) 

Note that for a function which is continuously differentiable on the circle, 
one has 

46) 6 6 IlfHllT . (4.13) 

Thus the error in using (B2) will be 0(1/n) if ilfiad is bounded on the 
circle. As above, one can combine methods (Bl ) and (B2) with a Nehari 
extension as in (4.1), which we shall still refer to as methods (Bl ) and (B2): 
we thus deduce the following result. 

THEOREM 4.3. Using technique (B2) above produces an identification 
algorithm which approximates any f E A(D) yielding an approximation F,, 
with an error bound 

This algorithm is therefore robustly convergent over H,(D,, M) ,for anl 
p>l and M>O. 
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Proof This follows from (4.11) and (4.3) together with easy bounds on 
t for fe Hz@,, W. I 

One important application here is to the identification of the class of 
retarded delay systems. The most general SISO retarded delay system has 
the transfer function 

G(.y) = h,(s)lh,b), 

where 

)I, 
h,(s)=&,(s)e-;““, 

and 

h,(s) = C q,(s) e mIrl’, 

with 0 = y, < yi < . < y,,, , 0 6 /?,, < < b,,2, the pi being polynomials of 
degree 6;, and hi < 6, for i # 0, and the qi polynomials of degree li, < 6,, for 
each i. Such functions were analysed by Bellman and Cooke [I], who 
showed that they have only finitely many poles in any right half plane. 
They have since been considered from the viewpoint of approximation in 
numerous papers and we begin by summarising some known results about 
such systems. 

It is convenient to define the index of a stable delay system, I(G), to be 
the unique integer r 3 1 such that one may write 

G(s)=R(s)+&7,e-““,(s+ l)‘+O(s r ‘), 

with R rational, P> 1, the (a,) nonzero constants, and the (a,) positive 
coefficients. For the case G(s) = e -“‘R(S) with R rational (i.e., n, = 0), the 
index Z(G) is just the relative degree of R. 

It is then the case that the Hankel singular values ok of G(s) are bounded 
above and below by constant multiples of k ‘(G), and that the minimum 
achievable H, error in approximating G by rationals of degree k has the 
same property, whereas the minimum achievable H, error behaves as 
k p’(G’+ I’2 (see [2-41). 

Moreover, when one transforms to the disc, the Fourier coefficients 
of the transformed function G(( 1 - z)/( 1 + z)) are bounded above by a 
multiple of ,lp3t4- I(G)!2 (see [lo, 131). The transformed function will in all 
cases have an essential singularity at the point z = - 1, and hence not lie 
in H.,(L),,) for any p > 1. 
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LEMMA 4.4. Let G(s) he a stable returded delay system, und g(z) = 
G(( 1 - z)/( 1 + z)) the transformed ,function in A(D). Then the modulus of 
continuity o(6) is O(6) unless G has index I, in ichich case it is O(C~“~). 

Proof By virtue of standard techniques of expanding delay systems 
about infinity, given a significant part plus a well-behaved remainder 
term (as in [2, 3, 13]), it is sufficient to verify this assertion for functions 
of the form G,,(s) = expf -As)/(s + l)“‘, which give g,,,(z) = 
((1 +z)/2)“‘exp(%(z - l)/(z + I)). It is now straightforward to verify that 
for m 3 2, ag/%I is bounded on the circle, whereas for 0 small, 
g,(exp(i(n + 6))) behaves as 0 sin( l/O) does near zero, from which it is easy 
to estimate its modulus of continuity. 1 

THEOREM 4.5. The following error hound.s hold for the ident$icution of 
stable retarded de/a-v systems in the presence of noise sutisfymg llyll 1 < E. 

(i) Jf Z(G) = 1, then method (Bl) has an error ofO(n ’ 4, + O(E) and 
(B2) has an error qf O(n I”) + O(C). 

(ii) !f’Z(G) = 2, then method (Bl ) has an error of O(n 3,4) + O(e) and 
(B2) has an error uf O(n ‘) + O(E). 

(iii) If/(G) 3 3, then both methods have un error O(n ‘) + O(E). 

Proof The bounds for (Bl ) follow from Theorem 4.1 and the estimates 
of Fourier coefficients given above. Those for (B2) follow from Lemma 4.4 
and Theorem 4.3. 1 

5. APPLICATION TO MODEL REDUCTION 

Suppose that g(z) E A(D) and hence is uniformly approximable not only 
by trigonometric polynomials but by stable rational functions. Let 

e,(g) = inf{ 11 g(e’“) - T(e’“)l/ % : 

T a trigonometric polynomial of degree at most n 1 (5.1) 

and 

E,(g)=infj IIg(e”)- R(e’“)(l ,.: 

R a stable rational function of degree at most n }. (5.2) 

The following result is an immediate consequence of the technique 
above, cf. (4.1), (4.2), (4.3), which involve approximation followed by a 
Nehari extension. 
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PROPOSITION 5.1. Let g(z)eA(D). Then E,, I(g)<2e,(g). 

Proof. Let T be any trigonometric polynomial of degree n and R its 
closest approximant in H,%, a rational function of degree at most (2n - 1). 
Then IIT-RIIdIIT-gll so that l/g-RlI6llg-Tll+llT-RIld2llg-TII. 
Hence the result. 1 

This can be used to obtain results on distributed systems using the 
Jackson theorems [ 11, Vol. I, Chap. IV], notably the version for functions 
on the circle with p continuous derivatives: if w,(6) is the modulus of 
continuity of f’“‘(0), then 

e, d 
12” + ‘wp( l/n) 

np . 

For delay systems this gives achievable approximation rates which are 
not optimal: for example, for G(s)=e- ‘/(s+ l), G(Az)=((z+ 1)/2) 
exp((z - 1 )/(z + 1 )), one obtains an error bound of order n-“’ for E, 
where the optimal error is known to be of order n ~ ’ (see [3]). 

However, for a transfer function such as G(s) = exp( -&) occurring in 
the theory of transmission lines, where 

g(z)=G(,blz)=exp 

although, as is easily verified, g is not differentiable along the circle, one 
can still show that e,,(g) goes to zero. This is despite the fact that g is not 
in H,(l),,) for any p > 1. We expect Proposition 5.1 to be of use in other 
contexts. 

6. NUMERICAL EXAMPLES 

Two functions are considered by Gu and Khargonekar [S] for iden- 
tification, and we use them as a basis for comparing methods (Bl) and 
(B2). Taking n = 20 and the noise to be randomly determined but of 
modulus 0.1 the following quantities are of interest. 

1. E,, the error in the trigonometric interpolant to the data; 

2. E,, the final error in the identified model after the Nehari exten- 
sion (4.1). 

The two functions in question are f,(z) = 3(z2 + 1 /(z* -t 22-t 5), 
which is exponentially stable and in H,(L),) for p < 2 5; and f2(z) = 
epS/(s2 + s + l), with s = AZ, which is a delay system of index 2. 
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The following table summarizes the L, errors obtained; so as to com- 
pare the errors caused by noise and errors caused by finite sampling, we 
include for reference the errors obtained when identifying with zero noise. 

Function Method Noise Level Et E2 

11 Bl 0.1 0.16 0.14 
82 0.1 0.12 0.15 
Bl 0 0.10 0.10 
82 0 0.02 0.02 

.fz BI 0.1 0.20 0.17 
B2 0.1 0.12 0.14 
Bl 0 0.15 0.15 
B2 0 0.04 0.03 

These results reflect the error bounds given earlier. Two remarks may be 
made. Firstly, that the second function is clearly more difficult to identify 
correctly than the first one, owing to its lack of exponential stability, and 
that the effects of noise are complemented by the effects of taking a limited 
number of interpolation points. Secondly, that the Nehari extension step 
rarely seems to increase the L, error in the identified model, and 
frequently reduces it. 
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