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The generic Mobius transformation of the complex open unit disc induces a¨
binary operation in the disc, called the Mobius addition. Following its introduction,¨
the extension of the Mobius addition to the ball of any real inner product space¨
and the scalar multiplication that it admits are presented, as well as the resulting
geodesics of the Poincare ball model of hyperbolic geometry. The Mobius gyrovec-´ ¨
tor spaces that emerge provide the setting for the Poincare ball model of hyper-´
bolic geometry in the same way that vector spaces provide the setting for Euclidean
geometry. Our summary of the presentation of the Mobius ball gyrovector spaces¨
sets the stage for the goal of this article, which is the introduction of the hyperbolic
derivative. Subsequently, the hyperbolic derivative and its application to geodesics
uncover novel analogies that hyperbolic geometry shares with Euclidean geometry.
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1. INTRODUCTION

In the 20th century the notions of group and vector space dominated
analysis, geometry, and physics to the present days. However, their gener-
alization to gyrogroups and gyrovector spaces, which sprung from the soil
of Einstein’s special theory of relativity, does not seem to have fired the
interest of physicists to the same extent despite their compelling applica-
tion in hyperbolic geometry and in relativistic physics. Thus, despite the

Ž � �fascination of gyrocommutative gyrogroups which, following 6 , are also
. � �known as K-loops in non-associative algebra 4 for over a decade, it is fair

to say that they still await universal acceptance. This is not to say that
there have not been valiant attempts to find appropriate uses for them.
One can point to their impact on special relativity theory and hyperbolic

� �geometry 9�17 . The theories of gyrogroups and gyrovector spaces provide
a new avenue for investigation, leading to a new approach to hyperbolic

� � Ž .geometry 12 and, subsequently, to new as yet to be discovered physics.
� �The discovery of the first gyrogroup 7 followed the exposition of the

� �mathematical regularity that the Thomas precession stores 5 . The Thomas
precession of relativity physics is a rotation that has no classical counter-

� �part. It has been extended in 9 by abstraction to the so-called Thomas
gyration which, in turn, suggests the prefix ‘‘gyro’’ that we extensively use to
emphasize analogies with classical notions. Thomas gyration is an isometry
of hyperbolic geometry that any two points of the geometry generate,
enabling novel analogies shared by Euclidean and hyperbolic geometry to
be exposed. The novel analogies, in turn, allow the unification of Eu-

� �clidean and hyperbolic geometry and trigonometry 14, 15 .
Ž .The aim of this article is i to extend the differential operation in vector

Ž .spaces to a differential operation in gyrovector spaces; and ii to study its
application to geodesics.

2. GYROGROUPS AND GYROVECTOR SPACES

Gyrogroups are generalized groups that share remarkable analogies with
� �groups 9 . In full analogy with groups

Ž .1 gyrogroups are classified into gyrocommutative gyrogroups and
non-gyrocommutative gyrogroups; and

Ž .2 some gyrocommutative gyrogroups admit scalar multiplication,
turning them into gyrovector spaces;

Ž .3 gyrovector spaces, in turn, provide the setting for hyperbolic
geometry in the same way that vector spaces provide the setting for
Euclidean geometry, thus enabling the two geometries to be unified.
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In the study of Mobius transformations patterns and interesting con-¨
� �cepts emerge from time to time as, for instance, in 2, 13, 16 . A most

intriguing motivation for the introduction of the notion of a gyrogroup is,
indeed, provided by the Mobius transformation group of the complex open¨
unit disc.

The most general Mobius transformation of the complex open unit disc¨
� � � 4 � �� � z : z � 1 in the complex z-plane 1, 3 ,

a � z
i� i�z � e � e a � z 2.1Ž . Ž .

1 � az

induces the Mobius addition � in the disc, allowing the Mobius transfor-¨ ¨
mation of the disc to be viewed as a Mobius left gyrotranslation¨

a � z
z � a � z � 2.2Ž .

1 � az

followed by a rotation. Here � � � is a real number, a, z � �, and a is
the complex conjugate of a. Mobius addition � is neither commutative¨
nor associative. The breakdown of commutativity in Mobius addition is¨

Ž .‘‘repaired’’ by the introduction of gyration, gyr : � � � � Aut �, � ,
given by the equation

a � b 1 � ab
� �gyr a, b � � , 2.3Ž .

b � a 1 � ab

Ž . Ž .where Aut �, � is the automorphism group of the groupoid �, � . We
Ž .recall that a groupoid G, � is a nonempty set G with a binary operation

Ž .�, and an automorphism of a groupoid G, � is a bijective self-map of
the groupoid G which respects its binary operation �. The set of all

Ž .automorphisms of a groupoid G, � forms a group under bijection
Ž .composition, denoted Aut G, � .

The gyrocommutati�e law of Mobius addition � follows from the defini-¨
Ž .tion of gyr in 2.3 ,

� �a � b � gyr a, b b � a . 2.4Ž . Ž .

� �Coincidentally, the gyration gyr a, b that repairs the breakdown of the
Ž .commutative law of � in 2.4 , repairs the breakdown of the associative

law of � as well, giving rise to the respective left and right gyroassociati�e
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laws

� �a � b � z � a � b � gyr a, b zŽ . Ž .
2.5Ž .

� �a � b � z � a � b � gyr b , a zŽ . Ž .

for all a, b, z � �.
Guided by analogies with groups we take key features of the Mobius¨

addition as a model of a gyrogroup, obtaining the following

Ž . Ž .DEFINITION 2.1 Gyrogroups . The groupoid G, � is a gyrogroup if
its binary operation satisfies the following axioms. In G there is at least
one element, 0, called a left identity, satisfying

Ž .G1 0 � a � a, Left Identity
Ž .for all a � G. There is an element 0 � G satisfying axiom G1 such that

for each a in G there is an element 	a in G, called a left inverse of a,
satisfying

Ž .G2 	a � a � 0, Left Inverse.
� �Moreover, for any a, b, z � G there exists a unique element gyr a, b z � G

such that
Ž . Ž . Ž . � �G3 a � b � z � a � b � gyr a, b z, Left Gyroassociative Law.

� � � � � �If gyr a, b denotes the map gyr a, b : G � G given by z � gyr a, b z
then

Ž . � � Ž .G4 gyr a, b � Aut G, � , Gyroautomorphism
� �and gyr a, b is called the Thomas gyration, or the gyroautomorphism of

� �G, generated by a, b � G. Finally, the gyroautomorphism gyr a, b gener-
ated by any a, b � G satisfies

Ž . � � � �G5 gyr a, b � gyr a � b, b , Left Loop Property.

Ž . Ž .DEFINITION 2.2 Gyrocommutative Gyrogroups . A gyrogroup G, �
is gyrocommutative if it satisfies

Ž . � �Ž .G6 a � b � gyr a, b b � a , Gyrocommutative Law.

Grouplike gyrogroup theorems that follow from Definitions 2.1 and 2.2
� �are presented in 9 . These theorems ensure, for instance, that there exists
Ž . Ža unique identity which is both left and right and a unique inverse which

.is both left and right . Gyrocommutativity, for instance, is equivalent to the
validity of the automorphic inverse law, as shown in the following

Ž .THEOREM 2.3. A gyrogroup G, � is gyrocommutati�e if and only if

Ž . Ž .G7 	 a � b � 	a 	 b, Automorphic In�erse Law.
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Furthermore, the left gyroassociative law and the left loop property are
accompanied by right counterparts,

Ž . Ž . Ž � � .G8 a � b � z � a � b � gyr b, a z , Right Gyroassociative Law
Ž . � � � �G9 gyr a, b � gyr a, b � a , Right Loop Property

and the left cancellation law is valid,

Ž . Ž .G10 a � 	a � b � b, Left Cancellation Law.

¨3. THE MOBIUS GYROGROUPS AND
GYROVECTOR SPACES

Ž .DEFINITION 3.1 The Mobius Addition . Let � be a real inner product¨
� � � 4space, and let � � v � � : v � c be the open c-ball of � of radiusc

c � 0. Mobius addition � in the ball � is a binary operation in � given¨ M c c
� �by the equation 8

2 2 � � 2 2 � � 21 � 2�c u � v � 1�c v u � 1 
 1�c u vŽ . Ž . Ž .Ž . Ž .
u � v � , 3.1Ž .M 2 22 4 � � � �1 � 2�c u � v � 1�c u vŽ . Ž .

� �where � and � are the inner product and norm that the ball � inheritsc
from its space �.

To justify calling � in Definition 3.1 a Mobius addition we will show in¨M
Ž . Ž . 23.4 below that � of 3.1 in two dimensions, when � � � andM

2 Ž .� � � , is equivalent to � of 2.2 in the complex unit disc �. For thisc c M
sake we identify vectors in �2 with complex numbers in the usual way,

u � u , u � u � iu � u. 3.2Ž . Ž .1 2 1 2

The inner product and the norm in �2 then become the real numbers

u� � u�
u � v � Re u� �Ž .

2 3.3Ž .
� � � �u � u ,

where u is the complex conjugate of u.
Ž . 2 2Under the translation 3.3 of elements of the open unit disc � of �c�1

Ž .into elements of the complex unit disc �, the Mobius addition 3.1 in the¨
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open ball � � �2 of � � �2, with c � 1 for simplicity, takes the formc c�1

� � 2 � � 21 � 2u � v � v u � 1 
 u vŽ . Ž .
u � v �M 2 2� � � �1 � 2u � v � u v

2 2� � � �1 � u� � u� � � u � 1 
 u �Ž . Ž .
� 2 2� � � �1 � u� � u� � u �

1 � u� u � �Ž . Ž .
�

1 � u� 1 � u�Ž . Ž .
u � �

�
1 � u�

� u � � 3.4Ž .

for all u, v � �2 and all u, � � �, as desired. We will now use thec�1
notation � � �.M

Ž .Since 3.1 forms a most natural extension of the Mobius addition in¨
Ž . � �2.2 , the following theorem is expected 9 .

Ž .THEOREM 3.2 Mobius Gyrogroups . Let � be the c-ball of a real inner¨ c
Ž .product space �, and let � be the Mobius addition 3.1 in � . Then the¨ c

Ž . Žgroupoid � , � is a gyrocommutati�e gyrogroup called a Mobius gy-¨c
.rogroup .

Ž . Ž .DEFINITION 3.3 Mobius Scalar Multiplication . Let � , � be a¨ c
Mobius gyrogroup. The Mobius scalar multiplication r � v � v � r is¨ ¨
given by the equation

r r
� � � �1 � v �c 
 1 
 v �c vŽ . Ž .

r � v � c r r � �� � � � v1 � v �c � 1 
 v �cŽ . Ž .
� �v v


1� c tanh r tanh , 3.5Ž .ž / � �c v

where r � �, v � � , v � 0; and r � 0 � 0.c

The Mobius addition � � � and its associated scalar multiplication¨ M
� possess the following properties. For all r, r , r � � and a, b, u, v � � ,1 2 c

Ž .V1 1 � v � v
Ž . Ž .V2 r � r � v � r � v � r � v, Scalar Distributive Law1 2 1 2

Ž . Ž . Ž .V3 r r � v � r � r � v , Scalar Associative Law1 2 1 2
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Ž . Ž . Ž . Ž .V4 r � r � v � r � v � r � r � v � r � r � v , Monodis-1 2 1 2
tributi�e Law

Ž . Ž � � . � � � �V5 r � v � r � v � v� v , Scaling Property
Ž . � � � � � �V6 r � v � r � v , Homogeneity Property
Ž . � � � � � �V7 u � v � u � v , Gyrotriangle inequality
Ž . � �Ž . � �V8 gyr a, b r � v � r � gyr a, b v, Gyroautomorphism Property.

Ž .We may note that, ambiguously, � in V7 is a binary operation in �c
and in � . The introduction of scalar multiplication satisfying propertiesc
Ž . Ž .V1 � V7 suggests the following

Ž . Ž .DEFINITION 3.4 Mobius Gyrovector Spaces . Let � , � be a Mobius¨ ¨c
Ž .gyrogroup equipped with scalar multiplication �. The triple � , � , � isc

called a Mobius gyrovector space.¨

¨4. GEODESICS IN MOBIUS GYROVECTOR SPACES

The unique Euclidean geodesic passing through two given points a and b
of a vector space � n can be represented by the expression

a � 
a � b t , 4.1Ž . Ž .

t � �. It passes through a when t � 0, and through b when t � 1. In full
analogy, the unique hyperbolic geodesic passing through two given points a

Ž .and b of a Mobius gyrovector space � , � , � can be represented by the¨ c
expression

a � 	a � b � t , 4.2Ž . Ž .

t � �, where 	a � 
a. It passes through a when t � 0, and through b
when t � 1. The latter follows from the left cancellation law in any

� � Ž . 2gyrogroup 9 . The graphs of 4.2 in two dimensions, � � � , and inc c�1
three dimensions, � � �3 , are shown in Figs. 1 and 2. These are circlesc c�1
that intersect the boundary of the ball � orthogonally, and are recognizedc
as the geodesics of the Poincare ball model of hyperbolic geometry in two´
and in three dimensions, respectively.

The well known Poincare distance function d in the ball can be written´
in terms of Mobius addition as¨

� �d a, b � a 	 b 4.3Ž . Ž .

� �as explained in 10, 11 .
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Ž .FIG. 1. The unique 2-dimensional Mobius geodesic 4.2 that passes through the two¨
given points a and b.

Ž .FIG. 2. The unique 3-dimensional Mobius geodesic 4.2 that passes through the two¨
given points a and b.
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Ž .To emphasize analogies with Euclidean geometry, the geodesics 4.2 are
Ž .also called gyrolines. The gyrolines 4.2 are geodesics relative to the

Ž .Poincare metric 4.3 . The Poincare metric induces a topology relative to´ ´
which continuity and limits are defined enabling us to define the gy-
roderivative in a Mobius gyrovector space.¨

5. GYRODERIVATIVES: THE HYPERBOLIC,
GYROVECTOR SPACES DERIVATIVES

Guided by analogies with vector spaces, we define the gyroderivative.
The effects of the gyroderivative are then explored by studying its applica-
tion to parametrized geodesics.

Ž . Ž .DEFINITION 5.1 The Gyroderivative . Let � , � , � be a Mobius¨c
gyrovector space, and let v : � � � be a map from the real line � into thec
ball � . If the limitc

1
v� t � lim � 	v t � v t � h 5.1� 4Ž . Ž . Ž . Ž .

hh�0

exists for any t � �, we say that the map v is differentiable on �, and that
Ž . Ž . Ž .the gyroderivative or, hyperbolic derivative of v t is v� t .

Ž .The gyroderivative in a Mobius ball gyrovector space � , � is closely¨ c
related to the ordinary derivative in the vector space � of the ball � .c
Indeed, in the limit of small neighborhood of any point of � , hyperbolicc

Ž .geometry reduces to Euclidean geometry. Accordingly, i the Mobius¨
Ž .addition � in � reduces to the vector addition � in �, and ii thec

Mobius scalar multiplication � reduces to the scalar multiplication in �¨
Ž .near any point of � . Hence, the gyroderivative v� t of the map v : � � �c c

given by

v t � a � b � t 5.2Ž . Ž .

t � �, a, b � � is expected to be a Euclidean vector parallel to thec
Ž . Ž .Euclidean tangent line at any point v t , t � �, of the geodesic v t . We0 0

Ž .will show in 5.3 and, graphically, in Fig. 3 that this is indeed the case.
Despite its close relation to the ordinary derivative in a vector space, the
gyroderivative introduces simplicity and elegance when applied to
geodesics.
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Ž .FIG. 3. Euclidean tangent lines at points of Mobius geodesics. v t � a � b � t ,¨ n n
Ž .t � �, n � 1, 2, 3, are three points on the geodesic v t � a � b � t, parametrized by t � �.n

Ž .The Euclidean tangent line at any point v t of the geodesic is Euclidean parallel to the
� Ž . � Ž . Ž .vector gyr v t , 
a b which, by 5.3 , equals v� t . Shown are the tangent lines at the three

Ž . Ž . Ž .points of the geodesic, v t , v t , v t , and their corresponding Euclidean parallel vectors in1 2 3
Ž 2 .the Mobius disc � , � , � , which is the Poincare disc model of hyperbolic geometry.¨ ´c�1

Ž . Ž .Calculating the gyroderivative of v t in 5.2 and employing gyrogroup
manipulations we have the following chain of equations, some of which are
numbered for later reference,

1
v� t � lim � 	v t � v t � h� 4Ž . Ž . Ž .

hh�0

1
� lim � 	 a � b � t � a � b � t � h� 4Ž . Ž .

hh�0

Ž .1 1���
� lim � 	 a � b � t � a � b � t � b � h� 4Ž . Ž .

hh�0

Ž .2 1���
� lim � 	 a � b � t� Ž .

hh�0

� �� a � b � t � gyr a, b � t b � h 4Ž . Ž .
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Ž .3 1��� � �� lim � gyr a, b � t b � h� 4Ž .
hh�0

Ž .4 1��� � �� lim � gyr a, b � t b � h� 4Ž .
hh�0

Ž .5��� � �� lim gyr a, b � t b
h�0

� �� gyr a, b � t b
Ž .6���

� gyr a, 	a � a � b � t bŽ .
� gyr a, 	a � v t bŽ .

Ž .7���
� gyr v t , 	a � v t bŽ . Ž .
Ž .8���

� gyr v t , 	a b. 5.3Ž . Ž .

Ž .The derivation of 5.3 follows.

Ž . Ž .1 follows from the scalar distributive law V2 .
Ž . Ž .2 follows from the left gyroassociative law G3 .
Ž . Ž .3 follows from the left cancellation law G10 .
Ž . Ž .4 follows from the gyroautomorphism property V8 .
Ž . Ž .5 follows from the scalar associative law V3 .
Ž . Ž .6 is verified by applying the left cancellation law G10 .
Ž .7 follows from a left loop and a left cancellation.
Ž .8 follows from a right loop.

Ž .In 5.3 we have thus verified the gyrovector space identity

� � � �v� t � a � b � t � � gyr a � b � t , 	a b � gyr a, b � t b 5.4Ž . Ž . Ž .

according to which the gyroderivative of the parametric gyroline

v t � a � b � t 5.5Ž . Ž .

is the gyrovector b gyrated by a gyroautomorphism.
Ž .The parametric gyroline v t is shown in Fig. 3 where three of its points,

Ž . Ž . Ž .v t , v t , and v t corresponding to the parameter values t � t , t , and1 2 3 1 2
t in �, are emphasized. The Euclidean tangent lines of the gyroline at the3

Ž . Ž . Ž .three selected points v t , v t , and v t are shown as well as their1 2 3
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� Ž . � � Ž . �corresponding Euclidean vectors gyr v t , 	 a b, gyr v t , 	 a b and1 2
� Ž . �gyr v t , 	a b, to which they are respectively Euclidean parallel.3

Hence, the gyroderivative of a gyroline introduces elegance when notic-
ing that the gyroderivative of the parametric gyroline is analogous to the
derivative of a parametric line, where the analogy reveals itself in terms of
a Thomas gyration.

We now wish to explore another analogy, that gyrolines share with lines,
to which the gyroderivative gives rise. Guided by analogies with Euclidean

Ž .geometry, we define the tangent gyroline of the hyperbolic curve v t in
Ž . Ž .5.2 at any point v t , t � � being a constant, to be the gyroline0 0

y t � v t � v� t � t , 5.6Ž . Ž . Ž . Ž .0 0

t � �. In Euclidean geometry the tangent line of a line at any of its points
is identical with the line itself. We will show that this is the case for
gyrolines as well.

Ž . Ž . Ž . Ž .Substituting v� t from 5.5 and 5.4 into 5.6 we have the tangent
gyroline

� �y t � a � b � t � gyr a � b � t , 	a b � t 5.7Ž . Ž . Ž .Ž .0 0

Ž . Ž .of the gyroline v t , 5.5 , at the point t . With several gyrovector space0
algebraic manipulations we simplify it to the point where it is recognized

Ž .as the gyroline v t itself but with a new parameter. We thus have

� �y t � a � b � t � gyr a � b � t , 	a b � tŽ . Ž . Ž .0 0

Ž .1��� � �� a � b � t � gyr a � b � t , 	a b � tŽ . Ž .0 0

Ž .2��� � �� a � b � t � gyr a � b � t , b � t b � tŽ . Ž .0 0 0

Ž .3��� � �� a � b � t � gyr a, b � t b � tŽ . Ž .0 0

Ž .4���
� a � b � t � b � tŽ .0

Ž .5���
� a � b � t � t 5.8Ž . Ž .0

Ž .recovering the gyroline v t parametrized by a new parameter, t � t,0
Ž .replacing the old parameter t, 5.5 . The derivation of each of the equa-

Ž .tions in the chain of Eqs. 5.8 follows.

Ž . Ž .1 follows from the gyroautomorphism property V8 .
Ž . Ž .2 follows from a right loop G9 followed by a left cancellation

Ž .G10 .
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Ž . Ž .3 follows from a left loop G5 .
Ž .4 follows from the left gyroassociative law.
Ž . Ž .5 follows from the scalar distributive law V2 .
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