GW25-e4428

Exogenous Hydrogen Sulfide Delays Nicotinamide-Induced Premature Senescence via SIRT1 pathway in Human Umbilical Vein Endothelial Cells
Qiao Weili, Zheng Meihua, Liu Lei, Yan Changdong
Xuchang Medical College

Objectives: The present study was designed to observe the effect of hydrogen sulfide (H₂S) on cellular senescence of human umbilical vascular endothelial cells (HUVECs) and its underlying mechanism.

Methods: The premature senescence-like phenotype HUVECs (the fourth passage) was induced by nicotinamide (NAM, an inhibitor of SIRT1) at the concentration of 5 mmol/L for 12h. Cells were cultured with sodium hydrosulfide (NaHS, 12.5, 25, 50, 100μmol/L) added into the fresh medium for 48 hours on the basis of premature senescence-like phenotype HUVECs. The fourth passage of HUVECs was considered as young group. Senescence associated (SA)-β-galactosidase positive cells and the formation of SAHF were markedly increased after treatment with NAM (5mmol/L) for 12h. We also used DAPI DNA staining. The mRNA and protein levels of Sirt1 were measured by RT-PCR and western blotting analysis, respectively.

Results: The results showed that SAHF, senescence associated SA-β-galactosidase positive cells and the formation of SAHF were markedly increased after treatment with NAM (5mmol/L) for 12h. We also found that NaHS (12.5μmol/L) had no effect on the percentage of SA-β-gal positive cells and the expression of SAHF, and the hallmark decreased at the concentration of 25 and 50μmol/L, reaching the minimum at 50μmol/L, while the percentage of SA-β-gal positive cells and the expression of SAHF increased at the concentration of 100μmol/L. Furthermore we found that SIRT1 expression both on protein and mRNA in the Y+N+S50 group was significantly increased compared with that in Y-N group.

Conclusion: NaHS delays senescence of HUVECs induced by NAM via up-regulation of SIRT1 expression.

GW25-e4464

MicroRNAs and cardiac channelopathies
Shen Yang, Zhenyu Xu, Kai Hong
1Cardiovascular Department, the Second Affiliated Hospital of Nanchang University, 2Key Laboratory of Molecular Medicine of JiangXi, the Second Affiliated Hospital of Nanchang University

Objectives: Cardiac channelopathies are primary arrhythmias caused by variations in the genes encoding cardiac ion channels. It is one of the major causes which could lead to sudden cardiac death.

Methods: The pathological change leading to cardiac channelopathies is intimately linked to the genes encoding ion channels. MicroRNAs (miRNAs) are one of the participants that regulate the target gene expression.

Results: By analyzing microRNAs, researchers found that miR-1 and miR-133a were found to be upregulated in patients with cardiac channelopathies. These microRNAs may serve as a diagnostic biomarker for cardiac channelopathies. They can modulate the function of cardiac ion channel genes and would be a good choice to act as a miR-based drug target.

Conclusions: We review the mechanisms and functions of miRNAs related to cardiac ion channels and focus on the potential perspective of miRNAs as a novel therapeutic target for cardiac channelopathies.

GW25-e4495

ZP2495 improves cardiomyocyte energy metabolism post myocardial ischemia-reperfusion injury in db/db diabetic mice
Li Shuang, Dongdong Sun, Feng Cao
1Department of Cardiology, Jinan Central Hospital, 2Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, OH, the U.S.A.

Objectives: This study was designed to evaluate the impact of a glucagon-GLP-1 dual-agonist (ZP2495) on cardiac function and energy metabolism after myocardial ischemia-reperfusion injury in db/db mice, and the underlying mechanisms involved.

Methods: The peptides of glucagon, GLP-1 receptor agonist (ZP131) and glucagon-GLP-1 dual-agonist (ZP2495) were synthesized and purified by ChinaPeptides. Wild-type (WT) and db/db mice received 4-weeks treatment of glucagon, ZP131 or ZP2495 followed by left anterior descending coronary artery (LAD) ligation and reperfusion.

Results: Cardiac function, hemodynamic parameters, glucose metabolism, mitochondrial function and expression of the proteins.

Conclusions: These findings suggest that atorvastatin attenuated cardiac remodeling and heart dysfunction in SHR probably through its regulation on cardiac autophagy via akt/mTor pathways.

GW25-e4531

Statin attenuate cardiac hypertrophy by regulating autophagy via AKT/mTOR Pathway in Spontaneously Hypertensive Rats
Zhao Zhou, 1, 2, 3
1Department of Cardiology, Jinan Central Hospital, 2Department of Cardiology, Shandong Provincial Chest Hospital, Jinan, China, 3Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA

Objectives: Autophagy is activated in hypertension-induced cardiac hypertrophy, in which the mechanisms are unclear. Our previous study has demonstrated that atorvastatin inhibits heart remodeling spontaneously hypertensive rats (SHR). This study was designed to determine the regulation of atorvastatin on cardiac autophagy in SHR.

Methods: Twenty-four male SHR at 8 weeks of age were randomly divided into four groups receiving vehicle (SHR+V) or atorvastatin at a dose of 50 mg/kg/day (SHR+ATO) until ages of 6 months or 12 months old. WKY rats were used as controls. Cardiac magnetic resonance (CMR) was used to evaluate heart functions.

Results: Atorvastatin treatments for both 4 and 10 months significantly attenuated cardiac dysfunction, remodeling, and atrial natriuretic peptide expression in SHR, which were increased compared with WKY rats. At 12 months of age, autophagy was found to be increased in the heart of SHR treated with vehicle or atorvastatin. The activated autophagy was especially increased in the cardiomyocytes of SHR with atorvastatin treatment for 10 months. P-Akt and P-mTor decreased in the heart of SHR versus WKY rats, while atorvastin further decreased cardiac akt and mTor phosphorylation.

Conclusions: These findings suggest that atorvastatin attenuated cardiac remodeling and heart dysfunction in SHR probably through its regulation on cardiac autophagy via akt/mTOR pathways.

GW25-e4532

Effects of EPC-derived Microvesicles on Ang II-induced Cardiomyocyte Hypertrophy and Apoptosis
Gu Shenrong 1, Jin Chen 2, Xiang Xue 1, Yanfeng Chen 1
1Department of Gerontology, the Affiliated Hospital of Hainan Medical College, 2Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, OH, the U.S.A.

Objectives: Cell-released microvesicles (MVs) are implicated in mediating cell-to-cell communication and are able to modulate target cell functions. Previous evidence indicated that endothelial progenitor cells (EPCs) -derived MVs can modulate endothelial cell survival and proliferation. In this study, we evaluated whether EPC-MVs could protect cardiomyocytes (CMs) against angiotension II (Ang II) induced hypertrophy and apoptosis.

Methods: The cell line H9c2 CMs were exposed to Ang II in the presence or absence of EPC-MVs. Cell viability, apoptosis, surface area and β-myosin heavy chain (β-MHC) expression were analyzed. To investigate the underlying mechanisms, reactive oxygen species (ROS) generation, semr/norepinephrine (aka), phospho-Akt (P-Akt), endothelial nitric oxide synthase (eNOS) and phospho-eNOS (P-eNOS) expression levels were measured. The inhibitors of phosphatidylinositol-3-kinase (PI3K) and NOS were used for pathway verification. The role of MV carried RNAs in mediating these effects was also explored.

Results: Results showed that EPC-MVs could prevent CM against Ang II-induced changes in cell viability, apoptosis, surface area and β-MHC expression;