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Abstract 

It is known that the d-dimensional axial transportation (assignment) problem can easily be 
solved by a greedy algorithm if and only if the underlying cost array fulfills the d-dimensional 
Monge property. In this paper the following question is solved: Is it possible to find d permuta- 
tions in such a way that the permuted array becomes a Monge array? Furthermore we give an 
algorithm which constructs such permutations in the affirmative case. If the cost array has the 
dimensions n, x nz x ... x nd with nl < n2 < ... < nd, then the algorithm has time complexity 
0(d2n2 . ..nd(nl + 1ognJ). By using this algorithm a wider class of d-dimensional axial trans- 
portation problems and in particular of the d-dimensional axial assignment problems can be 
solved efficiently. 

Key words: Monge arrays; Transportation problems 

1. Introduction 

Already in the 18th century Monge [12] observed that if unit quantities are to be 

transported from locations X and Y to Z and Win such a way as to minimize the total 

distance traveled, then the route from X and the route from Y must not intersect. This 

property was rediscovered by Hoffman in 1963 [ll]. Hoffman calls an n x m matrix 

C a Monge matrix if C satisfies 

Cij + Cr, < Cis + Crj Vi < Y, Vj < S. (1) 

Property (1) is commonly known as the Monge property-named after Monge 

-although in some papers, e.g. [6,7], property (1) is called strong Monge property to 

distinguish it from a weaker condition defined for square matrices. Another condition 
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related to (1) leads to the definition of Monge sequences, which are treated e.g. in 

[3, 10, 111. 

Aggarwal and Park [l, 21 generalize property (1) to d-dimensional arrays: 

Definition 1. Ford 2 2, an ni x n2 x ... x nd d-dimensional array C = (ci, il.,,id) has the 

Monge property if for each pair of entries Cili2,,,id and Cj,jZ,,,j, we have 

C sIs2...sd + CtIf2...fd 6 Cili2...id + cj,j,...jd2 

where for 1 d k d d, s k := min{i,, jkf and t, := max{ik, jk}. 

(2) 

Arrays possessing property (2) are called Monge arrays. Monge arrays play an 

important role as cost arrays in connection with transportation problems. Hoffman 

[l l] shows that the lexicographical greedy algorithm - in this case nothing other 

than the well known north-west corner rule [9] - solves the classical two-dimen- 

sional transportation problem if and only if the cost matrix is a Monge matrix. 

The classical transportation problem can easily be extended to d dimensions. The 

d-dimensional transportation problem (dTP) is defined as follows: Given an 

n, x n2 x ... x nd array C, d supply-demand vectors A,, . . . , Ad, where the kth vector 

Ak = {ak(i)) contains nk entries. All elements of Ak are positive and 

g1 q(i) = f a2(i) = ... = 
i=l 

igl adti). 

Then the problem is to 

minimize i$l i$, ... izl ci,i2...id’xili,...i, 

such that C Xi,i,,,,i, = ak(t), 1 < k < d, 1 < t < nk, 
ii,iz.,...,id 

ik=f 

where xi,i,... id / > 0 tli,, i2, . . . . id. 

We get the formulation of the closely related d-dimensional axial assignment 

problem,(dAP),ifn, = n2 = ... = nd, ak(i) = 1 and all Xi, i2 ,,,i, are forced to be integer. 

Bein et al. [4] prove a theorem, which can be seen as the natural generalization of 

Hoffman’s result. They show that the lexicographical greedy algorithm solves the 

d-dimensional transportation problem if and only if C is a Monge array. Therefore 

(dTP) can be solved in 0 (C;f= 1 nk) time if C fulfills (2). Though (dAP) is in general 

NP-hard, it can even be solved in O(n) time. 

In this paper a wider class of efficiently solvable (dTP)‘s and polynomially solvable 

(dAP)‘s is presented based on the concept of Monge arrays. We ask whether an array 

can be permuted into a Monge array just by renumbering the occurring variables in 

a different order. If such d permutations can be found, the problem can be solved by 

the lexicographical greedy algorithm with respect to the accordingly permuted array. 
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A method for determining two permutations 4 and $ for an arbitrary n x n matrix is 

due to Deineko and Filonenko [S] and has time complexity O(n’). In [7], Cechlarova 

and Szabo outline a recognition algorithm for square matrices with respect to 

a different weaker Monge property. 

In this paper we search all d-tuples ($i, 42,. . . , &) of permutations, such that the 

permuted array C+,,+,, . . . . ,+d, defined as C+,,+, ,_.., +a := (c41(i),4,(i), _._, 4r(i)) becomes 
a Monge array. An algorithm is presented, which either constructs all d-tuples 

(41, 42, . ..> &) such that C4,,+2r . . . . &d is Monge or proves that no such permutations 

can exist. 

The paper is organized as follows: Section 2 outlines the algorithm of Deineko and 

Filonenko which constructs for a given matrix C one pair (4, II/) such that C,,, fulfills 

the Monge property. In Section 3 we first investigate the set of all permutations (4, $) 

such that a given n x m matrix becomes Monge, when 4 is applied to the rows and I/ to 

the columns of C. Based on these results we then describe the algorithm for d dimen- 

sions. To illustrate it two short examples are given in Section 4. 

2. The algorithm for two dimensions 

Since property (1) can also be written as 

Cij + Ci+l,j+l < Ci,j+l + Ci+l,j, 1 d id n - 1, 1 <j < m - 1 (3) 

an n x m matrix C can be checked in O(nm) time to be a Monge matrix or not. 

A method for determining permutations $ and $ for an arbitrary n x n 

matrix-which can simply be extended to n x m matrices-is due to Deineko and 

Filonenko [S]. Their algorithm has time complexity O(n’) and runs as follows. 

Algorithm 2.1. Determination of (4, $) such that C,,, is Monge. 

Input: an n x n matrix C. 

Output: a pair (4, $) s.t. C,,, is a Monge matrix. 

(1) 

(2) 

(3) 

Find an integer j such that 

elk - cjk # cl1 - cjl for some k, 1. 

If there is no such j, then C is a “constant” matrix, i.e. cij := ui + vj with ui := cil, 

Uj := Clj - ~11 and 4 and $ can be chosen arbitrarily. 

Determine $ by sorting (cli - cji): 

cla,G(l) - cjJ(l) d c14T(2) - cj&(2) d “’ d Clj(n) - Cj&(n). 

Find the maximal value of m such that 

cl&(Z) - cj$(I) = min (crk - Cjk) vl = 1, . . . . m 

k=l,...,n 
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(4) 

(5) 

(6) 

R. Rudo(f 1 Discrete Applied Mathematics 52 (1994) 71-82 

and the minimal value of M such that 

c~,J(L) - CjscL) = max (ilk - Cjk) VL = M,..., n. 
k=l,...,n 

Construct an auxiliary vector R = {ri} with elements 

Ti := (n - M + 1) j!J c,- 

1=1 Ee(l) - 

m f CiJcL) Vi = 1, . . . . n. 
L=M 

Determine 4 by sorting ri with 

rg(l) d rb(2) d ... d r&cn) 

and find $ by sorting (c+(i)i - c+(,)i): 

%(l)W) - %(n)ti(l) G %(l)!W) - %Oz)ti,(2) d ... d %(l)Jl(n) - %(“WW 

If and only if the (n - 1)2 inequalities for C ,+,@ given by (3) are satisfied then 

C,,, is a Monge matrix. 

If we use an extended version of above algorithm to arbitrary n x m matrices, we get 

an overall time complexity of O(nm + n log n), if m < n. 

3. The algorithm for three and higher dimensions 

The idea of the algorithm for permuting a d-dimensional array to become a Monge 

array is on one hand based on the algorithm of Deineko and Filonenko and on the 

other hand on the following result, first proved by Aggarwal and Park. 

Lemma 3.1 (Aggarwal and Park [l, 23). A d-dimensional array C is a Monge array if 

and only if every two-dimensional submatrix is a Monge matrix. 

Let us start with the main idea for the algorithms for d dimensions. First we apply 

Algorithm 2.1 to each two-dimensional ni x nj submatrix of the given n, x n2 x ... x nd 

array C, to get a pair of permutations which transforms this submatrix into a Monge 

matrix. 

If at least one submatrix cannot be rearranged as a Monge matrix, then C can never 

be a Monge array (refer to Lemma 3.1). Now we have to check if there is a d-tuple of 

permutations (41, 42, . . . , $d) such that C+,,+,, ,,,, +_ fulfills property (2). 

For this purpose it is not sufficient to know for every ni x nj submatrix of the array 

C the pair of permutations (pi, ~j) determined by Algorithm 2.1, we need the set of all 

permutations which transform this submatrix into a Monge matrix. Therefore, we 

shall describe in the following the set of all permutations PC defined as PC := 

((4% @) I c#%, is a Monge matrix} for a given n x m matrix C. Fortunately, it turns out 

that the set PC can be characterized in a nice way. 

First we need two definitions. 
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Definition 3.2. Let 4 be a permutation of (1, . . . , n}. Then 4- defined as 

$-(i):=+(n-ii+ 1) Vi= l,...,n 

is called the reverse permutation of 4, 

Definition 3.3. Given an n x m matrix C. Then two rows i and j are called equivalent if 

there exists a constant number a such that cil + a = Cjl Vl = 1, . . . , m. TWO columns 

i and j are called equivalent if there exists a constant number b such that cli + b = cu 

Vl= 1, . . . . n. 

Now we are ready to formulate the following observations about Pc. 

Observation 3.4. Let an n x m matrix C be given. Then 

(4, $)EPc c> (4-9 K)EPc. 

Observation 3.5. Let C be an n x m Monge matrix. Then two rows (columns) i and j can 

change their position in C not losing the Monge property if and only if rows (columns) 

i and j are equivalent. 

Proof. ( a) Let r < S. Since C is a Monge matrix the inequality cir + cjs < cis + cj, 

holds. Exchanging row i and row j not losing property (1) means that 

cjr + Cis < cjs + Cir. But this implies that cj, + ciS = cj, + pi,. o cjr - Cjs = cir - cis. 

Since r and s were chosen arbitrarily, rows i and j are equivalent. 

(F) Since rows i and j are equivalent, there exists a constant number a such that 

cir + u = cjr Vr. Let r < S. Then again cir + cjs < cis + Cj, holds. Adding on both sides 

2a yields cjl + Cis d Cjs + Cir. In a similar way all other inequalities can be verified to 

ensure property (1). Thus our observation is proven. 0 

Observation 3.6. Let an n x m Monge matrix C be given. Let 1 d i < j < k d n and 

assume that row i and row k are equivalent. Then row j is equivalent to row i and row k. 

Proof. Let r < s. Then the following inequalities hold: 

Cir -t Cjs G Cis + cj, and Cjr + ckS d cjs + ck,.. 

Adding these two we obtain: Cir + ckS < Cis + ckr. On the other hand, since row i and 

row k are equivalent, Ci* + ckS = Cis + ckr. Hence we have Cir -I- Cjs = Cis -I- Cjl = Cis -I- ck,. 

Since r and s were arbitrary, all three rows are equivalent. 0 

From Observation 3.6 it follows that in a Monge matrix equivalent rows and 

columns occur consecutively in a block of the matrix and inside this block they can 

have an arbitrary order (refer to Observation 3.5). Therefore we can restrict our 

further investigations on matrices without equivalent rows and columns. 
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What we want to prove is that for an n x m matrix without equivalent rows and 

columns the reversing of the matrix is the only way to permute it without destroying 

the Monge structure. To this end we need the following two lemmata. 

Lemma 3.7. Let C be a 2 x 3 Monge matrix without equivalent rows and equivalent 
columns and denote I, the identity permutation on (1, . . . , n}. Then 

PC = {(12,13), VT, I;,}. 

Proof. Since C is a Monge matrix and since Observation 3.4 holds, 

PC 1 {(I,, I,),(I,> I;)}. W e only have to show that no other possible pair of 

permutations exists. Therefore two cases are distinguished: 

(i) Row 1 and row 2 remain unchanged. But then at least two columns have to 

change their positions. Without loss of generality (w.1.o.g) we change column 1 and 2. 

To fulfill again the Monge property the inequality clz + czl < cii + cz2 must be 

satisfied. On the other hand cl1 + cz2 < cl2 + czl holds, since the original matrix is 

a Monge matrix. So cl2 + czl = cii + cz2 o cl1 - cl2 = czl - cz2 implying that 

column 1 and column 2 are equivalent. But this is a contradiction to our assumption. 

Exchanging other pairs of columns leads again to contradictions. 

(ii) Row 2 and row 1 change their positions. Then the only possibility to obtain 

a Monge matrix by permuting the columns is tj = (3,2, 1). We assume that e.g. 

column 1 precedes column 2 in $. But then we get as in (i) the equation cl1 + cz2 = 

cl2 + c2i which yields again a contradiction to our assumptions. 

So PC = {(I,, 13), (I,> I;)}. 0 

Lemma 3.8. Let C be a 3 x 3 Monge matrix without equivalent rows and equivalent 
columns. Then 

PC = ((13, z,),u;> IT,>. 

Proof. Clearly Cr,, ,s and C,;,,; are Monge matrices. It remains to show that there is 

no other pair of permutations (4, $) E Pc. Since C contains no equivalent rows and 

columns and C is a Monge matrix, at least one of the following conditions is satisfied: 

(i) c11 + c22 < cl2 + c21 and c22 + c33 < c23 + c32, 

(ii) ~12 + ~23 < cl3 + ~22 and ~2~ + ~32 < ~~2 + ~31. 

We only treat case (i) and case (ii) can be handled in a similar way. 

Since C is a Monge matrix we have c2r + c32 < cjl + c22. Combining this e.g. with 

cl1 + cz2 < cl2 + czl we derive cl1 + ~32 < cl2 + ~3~. Similarly we get the following 

inequalities: cl2 + c33 < c32 + c13, czl + cj3 < c3r + C23, cl1 + cz3 < cl3 + czl. So 

if row 1 precedes row 2 in 4, rl <r2 for short, then cl <c2, cl <c3. Again from rl <r3 it 

follows that cl<c2, c2<c3 and r2<r3 implies c,<c, and c2<c3. It can easily be 

verified that the only two possible pairs of permutations are the claimed ones. For 

every other pair we would get a contradiction in the conditions described above. 0 
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Now we are prepared to formulate a characterization of Monge matrices without 

equivalent rows and columns. If a matrix C is already a Monge matrix then the only 

way to permute it without losing the Monge property is to reverse the total matrix. 

More precisely we have the following result. 

Theorem 3.9. Given an arbitrary n x m Monge matrix without equivalent rows and 

equivalent columns. Then 

PC = {(I,, IIn)> (I,> 1, )>. 

Proof. We assume that $ is neither the identity nor its reverse permutation. But then 

at least one of those conditions below hold. Take a triple of integers 1 < i < j < k < m 

with 

(a) $(i) < $(j) and It/(j) > Ii/(k) or 

(b) $(i) > G(j) and Icl(j) < $(k). 
We will only prove part (a), the proof of (b) can be done analogously. Let us 

concentrate on the n x 3 matrix containing the columns $(i), $(j) and $(k) in the 

original order before using permutation $. As long as a pair of equivalent rows exist 

delete one of them. After that, two different types of matrices can remain: 

(i) A 2 x 3 matrix is left and since the three columns $(i), $(j) and $(k) are pairwise 

non-equivalent the conditions of Lemma 3.7 are satisfied. Therefore $(i), $(j) and 

$(k) (in this order) can never be a part of a Monge matrix. Since this 2 x 3-matrix is 

a submatrix of C the whole matrix cannot be a Monge matrix. 

(ii) If more than two rows are left we take the first, the last and an arbitrary row and 

apply Lemma 3.8. Again this submatrix cannot appear in a Monge matrix. 

So no permutation 4 exists, such that (4, II/) E PC. And since I, and 1; are the only 

permutations not fulfilling both (a) and (b) the theorem is proven. 0 

It turns out that instead of describing the set Pc it is easier to change over to the set 

PC which is defined as follows: PC := ((4, $) 1 (c#-‘, I+-~)EP~}. 

The reason therefore is that in every member $- (I,-) of pc all equivalent rows 

(columns) occur consecutively. Note that this property does not hold for 4 and $, 

respectively. The key observation is that PC can be represented in a compact form. To 

this end, we define a block structure. Two rows (columns) belong to the same block if 

and only if they are equivalent. Within a block no order is fixed, but the ordering of 

the blocks is fixed. 

More formally we introduce the following definition. 

Definition 3.10. Let a set S of permutations, a number k with 1 < k < n and a parti- 

tion of {l,..., n> into k ordered blocks Bi, each containing bi numbers, be given. 

DefinesI:= l,si+,:=si+biforalli=l,..., k. Then S is called a block-permutation if 
the following property holds: 

YES * Vi = l,..., n Vj = l,..., k: iEBj =z= sj ~ 4(i)-’ < s~+~. 



78 R. Rudolf / Discrete Applied Mathematics 52 (1994) 71-82 

To illustrate Definition 3.10 consider the following block-permutation S := (Cl], 

[3,5], [2], [4,6]). Each block is marked with [.a.]. Then S contains those four 

different permutations: 

(1, 3, 5,2,4,6), (1, 3, 5, 2,6,4), (1, 5, 3, 24, 6), (1, 5, 3,2, 6,4). 

Another data structure describing a similar set of permutations in a compact form 

are PQ-trees and can be found e.g. in [S]. 

Now we are prepared to formulate an algorithm for constructing the set Pc. 

Algorithm 3.11. Construction of the set P,. 

Input: an n x m matrix C. 

Output: the set PC. 

(1) Use Algorithm 2.1 to determine a pair (4, $) E PC. If no such pair exists, PC = 8; 

stop. 

(2) Determine the blocks of 4- ’ by scanning & ’ element by element from left to 

right. Let S(4) be the corresponding block-permutation. 

(3) Determine the blocks of I+-’ by scanning $ ~’ element by element from left to 

right. Let S($) be the corresponding block-permutation. 

(4) Set 

which can shortly be written as 

Theorem 3.12. Given an n x m matrix C with n d m. Then Algorithm 3.11 constructs pc 

in O(nm + m log m) time. 

Proof. The correctness of Algorithm 3.11 follows from the previous observations and 

Theorem 3.9. Hence the complexity bound remains to be proven. Algorithm 2.1 can 

be performed in O(nm + mlogm) steps. Since we have only to check adjacent rows, 

S(4) can be constructed in O(nm). Hence Step 3 can also be done in O(nm). Step 4 

needs linear time to reverse the block-permutation. Summarizing all steps we get the 

claimed complexity of O(nm + mlogm). 0 

A fast algorithm for intersecting block-permutations is a first step towards an 

efficient algorithm for the recognition of d-dimensional Monge arrays. We first show 

how to intersect two arbitrary block-permutations S1 and S2 and how to construct the 

corresponding new block-permutation S3 := S1 n S2. This intersection process is 

done recursively. Let C1 , . . . , C, and D1, . . , D, be the different blocks which define S1 

and S2, respectively. To have S3 # 0, we must either have C1 c D1 or D1 c C,; 
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w.1.o.g. suppose C1 c Dr. Then C1 is the first block of the intersection Sa. Its next 

blocks are obtained recursively as the intersection of the block-permutations induced 

by Cz, . . . . C, and Dl\C,, D2, . . . . D,. This algorithm can be implemented to run in 

linear time. 

Now we show that the intersection of two pairs of block-permutations can again be 

represented by a new pair of block-permutations. Given two sets PC, and Fee, which 

are represented by a pair of block-permutations for the rows and columns, say (S(4,), 

S(tjr)) and (S(4,), S(&)), respectively. To compute the intersection p we first deter- 

mine the following intersections of pairs of block-permutations: (S(+,) n S(cj,), 
S(t,bl) n S($J) and (S($ ;) n S(+,), S($ ;) n S($,)) (note that either one set is empty or 

both sets are equal). Let (S(@,), S($,)) be the resulting pair of block-permutations. 

Then we have (a, z) E P if and only if either (a, z) E(S(&), S(&)) or (c, T) E(S(+;), S($ 3)). 

Hence the set p can again be represented by a pair of block-permutations and 

therefore constructed in linear time. 

Based on Algorithm 3.11 described above and on the possibility of representing the 

intersection of two pairs of block-permutations again as a pair of block-permutations 

we are now able to give an algorithm for the main problem considered in this paper. 

Given an n, xnzx... x nd array C we want to decide whether there is a d-tuple of 

permutations, (4r, 42, . . . , &), such that CdI,_ ,,,, 4d becomes a Monge array. 

For the ease of exposition we first describe the algorithm for d = 3 and explain 

afterwards how it can be generalized easily to arbitrary dimension d. 
Let an n x n x n array C be given. Then Algorithm 3.13 either constructs the set of 

all triples of permutations 4, $ and n such that Cg,ti,, is a Monge array or shows that 

no such transformation exists. It works as follows. 

Algorithm 3.13. Construction of all (4, $, n) such that C,,,,, is Monge. 

Input: an n x n x n array C. 

Output: all triples (4, II/, rc) s.t. C,-l,,-l,,-i is a Monge array. 

(1) Determine possible candidates for 4 and $: 

(i) For all k define the matrix Dk with dij := Cijk. Apply Algorithm 3.11 to 

construct the set p,,. 

(ii) Set Pij := ((4, $) I(4, $)EFD, Vk}. Thus Pij d enotes the “intersection” of all 

block-permutations p,,. 

(2) Determine possible candidates for 4 and rc: 

(i) For all j define the matrix Ej with eik := Cijk. Apply Algorithm 3.11 to 

construct the set FE,. 

(ii) Set Pik : = m> 4 I(43 4 E hi vjrj>. 
(3) Determine possible candidates for $ and rc: 

(i) For all i define the matrix Fi with fjk := Cijk. Apply Algorithm 3.11 to 

construct the set pFI. 

(ii) Set Pjk := { ($, n) I(+, n) EjF, vi}. 

(4) Construct the set i’ defined as 
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If p = 8, the array C cannot be arranged as Monge array, otherwise for each 

triple (4, $, rc)~P the array Cb-l,ti-l,n-l is a Monge array. 

Theorem 3.14. Algorithm 3.13 has time complexity 0(n3). 

Proof. Step 1 (i) can be performed in O(n3) since we use IZ times Algorithm 3.11. Since 

an intersection of two block-permutations can be done in O(n) time and again be 

represented by a new block-permutation, we can intersect all n block-permutations in 

O(n’). Obviously Step 2 and 3 have same complexity as Step 1. Step 4 can also be 

executed in O(n) time. Thus we get an overall time complexity of 0(n3). 0 

In a straightforward way Algorithm 3.13 can be extended to d dimensions. The 

basic step is to construct the sets Pi,il represented as a pair of block-permutations, say 

(Sik, Sil), for all 1 < k, 1 f d, 1 # k and then -like in (4) - checking if a global 

solution can be found. This can be done for example in the following way. Represent 

the set p also as block-permutations, say T,, . . . , T,, and fix K = A, where A denotes 

that block-permutation which contains all permutations. Now procede in a two-phase 

method. First choose an arbitrary pair (Sikr Si,) # (A, A) and compute T, := Tk n Si, 

and T, := T, n Si,. In a second step as long as you find a pair (Sip, S,,) with either 

T, # A and Sik # A or T # A and Si, # A compute again the new block-permutations 

T, and z as the intersection of the old sets Tk and T, with Sik and Sil. If no such pair 

can be found continue with the first phase. 

After taking into account all computed pairs (Si,, S,,) # (A, A) and intersecting 

them with T,,..., Td either the set p is empty if at least one intersection fails, or 

contains at least one d-tuple of permutations. 

Since there are ($).nd-’ possible two-dimensional submatrices of the given array 

and since Algorithm 3.11 has time complexity O(n’) we get an overall running time of 

O((d,). nd), which yields the time complexity of 0(d2nd). If we use our algorithm on 

arbitrary n, x n2 x ... x nd arrays C where nI < n2 d ‘.. d nd holds, we get an overall 

running time complexity of 0(d2n2a3”‘nd(nl + log nd)). 

4. Examples 

To illustrate Algorithm 3.13 we consider two different examples. In both examples 

we try to rearrange a given 4 x 4 x 3 matrix C into a Monge matrix using Algo- 

rithm 3.13. For the ease of description we represent the array C as three 4 x 4 matrices. 

Example 4.1. 

I 
12 15 12 9 

16 17 16 15 
c := 

14 16 14 12 

\ 16 17 16 15 
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(1) Fixing k = 1 and performing Algorithm 2.1 on the matrix D with dij = cijl we 
get a pair (4, $) of permutations with 

$I = (1, 3,2, 4) and I,/J = (2,4,3, l), 

Hence~-1=(1,3,2,4)and$-‘=(4,1,3,2). 

We construct S(4) = (Cl], [3], [2,4]) and S($) = ([4], [l, 31, [2]). For all 

other k we get the same sets S(4) and S($). Therefore 

pij = (( Cl15 C31, C2, 41 > x ( C41t Cl, 315 C21 >) 

” (<P, 41, c31, [II > x (C21, CL 31, C41>). 

(2) Compute S(4) = ([l], [3], [2,4]) and S(rc) = ([a], [l, 31). Then 

Pik = (<[II, C3I, C’L4I)X<C2I> C~,~I))U((CZ~I, C3I> Cll>X(Cl, 31, [I2I)). 

(3) Determine S($) = ([4], [l, 31, [2]) and S(rc) = ([2], [l, 33). Then 

Pjk = ((C4I, Cl> 312 [12I> X (C2I> Cl> ~I))u(<C~I, Cl> 31, [AI> X (Cl> 312 C2I>). 

(4) Calculate 

P = (( Cl19 [I31> c2,41> x < c41, CL 31, [I21 > x <CL 31, C21>) 

“((L-2,41, c31, [II> x (C21, CL 31, [41)x (CL 31, PI)). 

So the given array C can be permuted into a Monge array. For example take 

4 = (1, 3,2,4), @ = (2,4, 3, 1) and 7c = (1, 3,2). 

Example 4.2. 

c:=i;;;][i ;;;i#;;;]. 

Performing Steps 1 to 3 we get the following sets: 

pij = ((C1, 419 C2, 31) x (C31> C1l, C419 C21>) 

” (<C2,31, CL 41) x (C217 c41, [II, C31>); 

Pik=(([1,4I,[2,3I)x([2I,[1,3I>)U(([2~3I,[1,4I)x([1,3I,[2I)); 

Pjk = ((C3I, Cl]> C4I> C2I> X<Cla 319 [2I))“(<C2I, C4I> Cll, C3I>X<C2I> Cl> 31)). 

Intersecting these three sets, we get P = 8. So no triple of permutations exists, which 

permutes C into a Monge array. 
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