
DISCRETE
APPLIED

ELSEZVIER Discrete Applied Mathematics 52 (1994) 71-82
MATHEMATICS

Recognition of d-dimensional Monge arrays

Riidiger Rudolf’

Institut fi’ir Mathematik B. Technical University Graz, Kopernikusgasse 24, A-8010 Graz, Austria

(Received 18 September 1992)

Abstract

It is known that the d-dimensional axial transportation (assignment) problem can easily be
solved by a greedy algorithm if and only if the underlying cost array fulfills the d-dimensional
Monge property. In this paper the following question is solved: Is it possible to find d permuta-
tions in such a way that the permuted array becomes a Monge array? Furthermore we give an
algorithm which constructs such permutations in the affirmative case. If the cost array has the
dimensions n, x nz x ... x nd with nl < n2 < ... < nd, then the algorithm has time complexity
0(d2n2 . ..nd(nl + 1ognJ). By using this algorithm a wider class of d-dimensional axial trans-
portation problems and in particular of the d-dimensional axial assignment problems can be
solved efficiently.

Key words: Monge arrays; Transportation problems

1. Introduction

Already in the 18th century Monge [12] observed that if unit quantities are to be

transported from locations X and Y to Z and Win such a way as to minimize the total

distance traveled, then the route from X and the route from Y must not intersect. This

property was rediscovered by Hoffman in 1963 [ll]. Hoffman calls an n x m matrix

C a Monge matrix if C satisfies

Cij + Cr, < Cis + Crj Vi < Y, Vj < S. (1)

Property (1) is commonly known as the Monge property-named after Monge

-although in some papers, e.g. [6,7], property (1) is called strong Monge property to

distinguish it from a weaker condition defined for square matrices. Another condition

‘The author acknowledges financial support by the Fonds zur Fd’rderung der wissenschaftlichen
Forschung, Project P8971-PHY.

0166-218X/94/$07.00 0 199GElsevier Science B.V. All rights reserved
SSDI 0166-218X(92)00189-A

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82621075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

72 R. Rudolf J Discrete Applied Mathematics 52 (1994) 71-82

related to (1) leads to the definition of Monge sequences, which are treated e.g. in

[3, 10, 111.

Aggarwal and Park [l, 21 generalize property (1) to d-dimensional arrays:

Definition 1. Ford 2 2, an ni x n2 x ... x nd d-dimensional array C = (ci, il.,,id) has the

Monge property if for each pair of entries Cili2,,,id and Cj,jZ,,,j, we have

C sIs2...sd + CtIf2...fd 6 Cili2...id + cj,j,...jd2

where for 1 d k d d, s k := min{i,, jkf and t, := max{ik, jk}.

(2)

Arrays possessing property (2) are called Monge arrays. Monge arrays play an

important role as cost arrays in connection with transportation problems. Hoffman

[l l] shows that the lexicographical greedy algorithm - in this case nothing other

than the well known north-west corner rule [9] - solves the classical two-dimen-

sional transportation problem if and only if the cost matrix is a Monge matrix.

The classical transportation problem can easily be extended to d dimensions. The

d-dimensional transportation problem (dTP) is defined as follows: Given an

n, x n2 x ... x nd array C, d supply-demand vectors A,, . . . , Ad, where the kth vector

Ak = {ak(i)) contains nk entries. All elements of Ak are positive and

g1 q(i) = f a2(i) = ... =
i=l

igl adti).

Then the problem is to

minimize i$l i$, ... izl ci,i2...id’xili,...i,

such that C Xi,i,,,,i, = ak(t), 1 < k < d, 1 < t < nk,
ii,iz.,...,id

ik=f

where xi,i,... id / > 0 tli,, i2, id.

We get the formulation of the closely related d-dimensional axial assignment

problem,(dAP),ifn, = n2 = ... = nd, ak(i) = 1 and all Xi, i2 ,,,i, are forced to be integer.

Bein et al. [4] prove a theorem, which can be seen as the natural generalization of

Hoffman’s result. They show that the lexicographical greedy algorithm solves the

d-dimensional transportation problem if and only if C is a Monge array. Therefore

(dTP) can be solved in 0 (C;f= 1 nk) time if C fulfills (2). Though (dAP) is in general

NP-hard, it can even be solved in O(n) time.

In this paper a wider class of efficiently solvable (dTP)‘s and polynomially solvable

(dAP)‘s is presented based on the concept of Monge arrays. We ask whether an array

can be permuted into a Monge array just by renumbering the occurring variables in

a different order. If such d permutations can be found, the problem can be solved by

the lexicographical greedy algorithm with respect to the accordingly permuted array.

R. RudoIf/ Discrete Applied Mathematics 52 (1994) 71-82 13

A method for determining two permutations 4 and $ for an arbitrary n x n matrix is

due to Deineko and Filonenko [S] and has time complexity O(n’). In [7], Cechlarova

and Szabo outline a recognition algorithm for square matrices with respect to

a different weaker Monge property.

In this paper we search all d-tuples ($i, 42,. . . , &) of permutations, such that the

permuted array C+,,+,, ,+d, defined as C+,,+, ,_.., +a := (c41(i),4,(i), _._, 4r(i)) becomes
a Monge array. An algorithm is presented, which either constructs all d-tuples

(41, 42, . ..> &) such that C4,,+2r &d is Monge or proves that no such permutations

can exist.

The paper is organized as follows: Section 2 outlines the algorithm of Deineko and

Filonenko which constructs for a given matrix C one pair (4, II/) such that C,,, fulfills

the Monge property. In Section 3 we first investigate the set of all permutations (4, $)

such that a given n x m matrix becomes Monge, when 4 is applied to the rows and I/ to

the columns of C. Based on these results we then describe the algorithm for d dimen-

sions. To illustrate it two short examples are given in Section 4.

2. The algorithm for two dimensions

Since property (1) can also be written as

Cij + Ci+l,j+l < Ci,j+l + Ci+l,j, 1 d id n - 1, 1 <j < m - 1 (3)

an n x m matrix C can be checked in O(nm) time to be a Monge matrix or not.

A method for determining permutations $ and $ for an arbitrary n x n

matrix-which can simply be extended to n x m matrices-is due to Deineko and

Filonenko [S]. Their algorithm has time complexity O(n’) and runs as follows.

Algorithm 2.1. Determination of (4, $) such that C,,, is Monge.

Input: an n x n matrix C.

Output: a pair (4, $) s.t. C,,, is a Monge matrix.

(1)

(2)

(3)

Find an integer j such that

elk - cjk # cl1 - cjl for some k, 1.

If there is no such j, then C is a “constant” matrix, i.e. cij := ui + vj with ui := cil,

Uj := Clj - ~11 and 4 and $ can be chosen arbitrarily.

Determine $ by sorting (cli - cji):

cla,G(l) - cjJ(l) d c14T(2) - cj&(2) d “’ d Clj(n) - Cj&(n).

Find the maximal value of m such that

cl&(Z) - cj$(I) = min (crk - Cjk) vl = 1, m

k=l,...,n

74

(4)

(5)

(6)

R. Rudo(f 1 Discrete Applied Mathematics 52 (1994) 71-82

and the minimal value of M such that

c~,J(L) - CjscL) = max (ilk - Cjk) VL = M,..., n.
k=l,...,n

Construct an auxiliary vector R = {ri} with elements

Ti := (n - M + 1) j!J c,-

1=1 Ee(l) -

m f CiJcL) Vi = 1, n.
L=M

Determine 4 by sorting ri with

rg(l) d rb(2) d ... d r&cn)

and find $ by sorting (c+(i)i - c+(,)i):

%(l)W) - %(n)ti(l) G %(l)!W) - %Oz)ti,(2) d ... d %(l)Jl(n) - %(“WW

If and only if the (n - 1)2 inequalities for C ,+,@ given by (3) are satisfied then

C,,, is a Monge matrix.

If we use an extended version of above algorithm to arbitrary n x m matrices, we get

an overall time complexity of O(nm + n log n), if m < n.

3. The algorithm for three and higher dimensions

The idea of the algorithm for permuting a d-dimensional array to become a Monge

array is on one hand based on the algorithm of Deineko and Filonenko and on the

other hand on the following result, first proved by Aggarwal and Park.

Lemma 3.1 (Aggarwal and Park [l, 23). A d-dimensional array C is a Monge array if

and only if every two-dimensional submatrix is a Monge matrix.

Let us start with the main idea for the algorithms for d dimensions. First we apply

Algorithm 2.1 to each two-dimensional ni x nj submatrix of the given n, x n2 x ... x nd

array C, to get a pair of permutations which transforms this submatrix into a Monge

matrix.

If at least one submatrix cannot be rearranged as a Monge matrix, then C can never

be a Monge array (refer to Lemma 3.1). Now we have to check if there is a d-tuple of

permutations (41, 42, . . . , $d) such that C+,,+,, ,,,, +_ fulfills property (2).

For this purpose it is not sufficient to know for every ni x nj submatrix of the array

C the pair of permutations (pi, ~j) determined by Algorithm 2.1, we need the set of all

permutations which transform this submatrix into a Monge matrix. Therefore, we

shall describe in the following the set of all permutations PC defined as PC :=

((4% @) I c#%, is a Monge matrix} for a given n x m matrix C. Fortunately, it turns out

that the set PC can be characterized in a nice way.

First we need two definitions.

R. Rudolf / Discrete Applied Mathematics 52 (1994) 71-82 1.5

Definition 3.2. Let 4 be a permutation of (1, . . . , n}. Then 4- defined as

$-(i):=+(n-ii+ 1) Vi= l,...,n

is called the reverse permutation of 4,

Definition 3.3. Given an n x m matrix C. Then two rows i and j are called equivalent if

there exists a constant number a such that cil + a = Cjl Vl = 1, . . . , m. TWO columns

i and j are called equivalent if there exists a constant number b such that cli + b = cu

Vl= 1, n.

Now we are ready to formulate the following observations about Pc.

Observation 3.4. Let an n x m matrix C be given. Then

(4, $)EPc c> (4-9 K)EPc.

Observation 3.5. Let C be an n x m Monge matrix. Then two rows (columns) i and j can

change their position in C not losing the Monge property if and only if rows (columns)

i and j are equivalent.

Proof. (a) Let r < S. Since C is a Monge matrix the inequality cir + cjs < cis + cj,

holds. Exchanging row i and row j not losing property (1) means that

cjr + Cis < cjs + Cir. But this implies that cj, + ciS = cj, + pi,. o cjr - Cjs = cir - cis.

Since r and s were chosen arbitrarily, rows i and j are equivalent.

(F) Since rows i and j are equivalent, there exists a constant number a such that

cir + u = cjr Vr. Let r < S. Then again cir + cjs < cis + Cj, holds. Adding on both sides

2a yields cjl + Cis d Cjs + Cir. In a similar way all other inequalities can be verified to

ensure property (1). Thus our observation is proven. 0

Observation 3.6. Let an n x m Monge matrix C be given. Let 1 d i < j < k d n and

assume that row i and row k are equivalent. Then row j is equivalent to row i and row k.

Proof. Let r < s. Then the following inequalities hold:

Cir -t Cjs G Cis + cj, and Cjr + ckS d cjs + ck,..

Adding these two we obtain: Cir + ckS < Cis + ckr. On the other hand, since row i and

row k are equivalent, Ci* + ckS = Cis + ckr. Hence we have Cir -I- Cjs = Cis -I- Cjl = Cis -I- ck,.

Since r and s were arbitrary, all three rows are equivalent. 0

From Observation 3.6 it follows that in a Monge matrix equivalent rows and

columns occur consecutively in a block of the matrix and inside this block they can

have an arbitrary order (refer to Observation 3.5). Therefore we can restrict our

further investigations on matrices without equivalent rows and columns.

16 R. Rudolf/ Discrete Applied Mathematics 52 (1994) 71-82

What we want to prove is that for an n x m matrix without equivalent rows and

columns the reversing of the matrix is the only way to permute it without destroying

the Monge structure. To this end we need the following two lemmata.

Lemma 3.7. Let C be a 2 x 3 Monge matrix without equivalent rows and equivalent
columns and denote I, the identity permutation on (1, . . . , n}. Then

PC = {(12,13), VT, I;,}.

Proof. Since C is a Monge matrix and since Observation 3.4 holds,

PC 1 {(I,, I,),(I,> I;)}. W e only have to show that no other possible pair of

permutations exists. Therefore two cases are distinguished:

(i) Row 1 and row 2 remain unchanged. But then at least two columns have to

change their positions. Without loss of generality (w.1.o.g) we change column 1 and 2.

To fulfill again the Monge property the inequality clz + czl < cii + cz2 must be

satisfied. On the other hand cl1 + cz2 < cl2 + czl holds, since the original matrix is

a Monge matrix. So cl2 + czl = cii + cz2 o cl1 - cl2 = czl - cz2 implying that

column 1 and column 2 are equivalent. But this is a contradiction to our assumption.

Exchanging other pairs of columns leads again to contradictions.

(ii) Row 2 and row 1 change their positions. Then the only possibility to obtain

a Monge matrix by permuting the columns is tj = (3,2, 1). We assume that e.g.

column 1 precedes column 2 in $. But then we get as in (i) the equation cl1 + cz2 =

cl2 + c2i which yields again a contradiction to our assumptions.

So PC = {(I,, 13), (I,> I;)}. 0

Lemma 3.8. Let C be a 3 x 3 Monge matrix without equivalent rows and equivalent
columns. Then

PC = ((13, z,),u;> IT,>.

Proof. Clearly Cr,, ,s and C,;,,; are Monge matrices. It remains to show that there is

no other pair of permutations (4, $) E Pc. Since C contains no equivalent rows and

columns and C is a Monge matrix, at least one of the following conditions is satisfied:

(i) c11 + c22 < cl2 + c21 and c22 + c33 < c23 + c32,

(ii) ~12 + ~23 < cl3 + ~22 and ~2~ + ~32 < ~~2 + ~31.

We only treat case (i) and case (ii) can be handled in a similar way.

Since C is a Monge matrix we have c2r + c32 < cjl + c22. Combining this e.g. with

cl1 + cz2 < cl2 + czl we derive cl1 + ~32 < cl2 + ~3~. Similarly we get the following

inequalities: cl2 + c33 < c32 + c13, czl + cj3 < c3r + C23, cl1 + cz3 < cl3 + czl. So

if row 1 precedes row 2 in 4, rl <r2 for short, then cl <c2, cl <c3. Again from rl <r3 it

follows that cl<c2, c2<c3 and r2<r3 implies c,<c, and c2<c3. It can easily be

verified that the only two possible pairs of permutations are the claimed ones. For

every other pair we would get a contradiction in the conditions described above. 0

R. Rudolf/ Discrete Applied Mathematics 52 (1994) 71-82 77

Now we are prepared to formulate a characterization of Monge matrices without

equivalent rows and columns. If a matrix C is already a Monge matrix then the only

way to permute it without losing the Monge property is to reverse the total matrix.

More precisely we have the following result.

Theorem 3.9. Given an arbitrary n x m Monge matrix without equivalent rows and

equivalent columns. Then

PC = {(I,, IIn)> (I,> 1,)>.

Proof. We assume that $ is neither the identity nor its reverse permutation. But then

at least one of those conditions below hold. Take a triple of integers 1 < i < j < k < m

with

(a) $(i) < $(j) and It/(j) > Ii/(k) or

(b) $(i) > G(j) and Icl(j) < $(k).
We will only prove part (a), the proof of (b) can be done analogously. Let us

concentrate on the n x 3 matrix containing the columns $(i), $(j) and $(k) in the

original order before using permutation $. As long as a pair of equivalent rows exist

delete one of them. After that, two different types of matrices can remain:

(i) A 2 x 3 matrix is left and since the three columns $(i), $(j) and $(k) are pairwise

non-equivalent the conditions of Lemma 3.7 are satisfied. Therefore $(i), $(j) and

$(k) (in this order) can never be a part of a Monge matrix. Since this 2 x 3-matrix is

a submatrix of C the whole matrix cannot be a Monge matrix.

(ii) If more than two rows are left we take the first, the last and an arbitrary row and

apply Lemma 3.8. Again this submatrix cannot appear in a Monge matrix.

So no permutation 4 exists, such that (4, II/) E PC. And since I, and 1; are the only

permutations not fulfilling both (a) and (b) the theorem is proven. 0

It turns out that instead of describing the set Pc it is easier to change over to the set

PC which is defined as follows: PC := ((4, $) 1 (c#-‘, I+-~)EP~}.

The reason therefore is that in every member $- (I,-) of pc all equivalent rows

(columns) occur consecutively. Note that this property does not hold for 4 and $,

respectively. The key observation is that PC can be represented in a compact form. To

this end, we define a block structure. Two rows (columns) belong to the same block if

and only if they are equivalent. Within a block no order is fixed, but the ordering of

the blocks is fixed.

More formally we introduce the following definition.

Definition 3.10. Let a set S of permutations, a number k with 1 < k < n and a parti-

tion of {l,..., n> into k ordered blocks Bi, each containing bi numbers, be given.

DefinesI:= l,si+,:=si+biforalli=l,..., k. Then S is called a block-permutation if
the following property holds:

YES * Vi = l,..., n Vj = l,..., k: iEBj =z= sj ~ 4(i)-’ < s~+~.

78 R. Rudolf / Discrete Applied Mathematics 52 (1994) 71-82

To illustrate Definition 3.10 consider the following block-permutation S := (Cl],

[3,5], [2], [4,6]). Each block is marked with [.a.]. Then S contains those four

different permutations:

(1, 3, 5,2,4,6), (1, 3, 5, 2,6,4), (1, 5, 3, 24, 6), (1, 5, 3,2, 6,4).

Another data structure describing a similar set of permutations in a compact form

are PQ-trees and can be found e.g. in [S].

Now we are prepared to formulate an algorithm for constructing the set Pc.

Algorithm 3.11. Construction of the set P,.

Input: an n x m matrix C.

Output: the set PC.

(1) Use Algorithm 2.1 to determine a pair (4, $) E PC. If no such pair exists, PC = 8;

stop.

(2) Determine the blocks of 4- ’ by scanning & ’ element by element from left to

right. Let S(4) be the corresponding block-permutation.

(3) Determine the blocks of I+-’ by scanning $ ~’ element by element from left to

right. Let S($) be the corresponding block-permutation.

(4) Set

which can shortly be written as

Theorem 3.12. Given an n x m matrix C with n d m. Then Algorithm 3.11 constructs pc

in O(nm + m log m) time.

Proof. The correctness of Algorithm 3.11 follows from the previous observations and

Theorem 3.9. Hence the complexity bound remains to be proven. Algorithm 2.1 can

be performed in O(nm + mlogm) steps. Since we have only to check adjacent rows,

S(4) can be constructed in O(nm). Hence Step 3 can also be done in O(nm). Step 4

needs linear time to reverse the block-permutation. Summarizing all steps we get the

claimed complexity of O(nm + mlogm). 0

A fast algorithm for intersecting block-permutations is a first step towards an

efficient algorithm for the recognition of d-dimensional Monge arrays. We first show

how to intersect two arbitrary block-permutations S1 and S2 and how to construct the

corresponding new block-permutation S3 := S1 n S2. This intersection process is

done recursively. Let C1 , . . . , C, and D1, . . , D, be the different blocks which define S1

and S2, respectively. To have S3 # 0, we must either have C1 c D1 or D1 c C,;

R. Rudolf/ Discrete Applied Mathematics 52 (1994) 71-82 19

w.1.o.g. suppose C1 c Dr. Then C1 is the first block of the intersection Sa. Its next

blocks are obtained recursively as the intersection of the block-permutations induced

by Cz, C, and Dl\C,, D2, D,. This algorithm can be implemented to run in

linear time.

Now we show that the intersection of two pairs of block-permutations can again be

represented by a new pair of block-permutations. Given two sets PC, and Fee, which

are represented by a pair of block-permutations for the rows and columns, say (S(4,),

S(tjr)) and (S(4,), S(&)), respectively. To compute the intersection p we first deter-

mine the following intersections of pairs of block-permutations: (S(+,) n S(cj,),
S(t,bl) n S($J) and (S($;) n S(+,), S($;) n S($,)) (note that either one set is empty or

both sets are equal). Let (S(@,), S($,)) be the resulting pair of block-permutations.

Then we have (a, z) E P if and only if either (a, z) E(S(&), S(&)) or (c, T) E(S(+;), S($ 3)).

Hence the set p can again be represented by a pair of block-permutations and

therefore constructed in linear time.

Based on Algorithm 3.11 described above and on the possibility of representing the

intersection of two pairs of block-permutations again as a pair of block-permutations

we are now able to give an algorithm for the main problem considered in this paper.

Given an n, xnzx... x nd array C we want to decide whether there is a d-tuple of

permutations, (4r, 42, . . . , &), such that CdI,_ ,,,, 4d becomes a Monge array.

For the ease of exposition we first describe the algorithm for d = 3 and explain

afterwards how it can be generalized easily to arbitrary dimension d.
Let an n x n x n array C be given. Then Algorithm 3.13 either constructs the set of

all triples of permutations 4, $ and n such that Cg,ti,, is a Monge array or shows that

no such transformation exists. It works as follows.

Algorithm 3.13. Construction of all (4, $, n) such that C,,,,, is Monge.

Input: an n x n x n array C.

Output: all triples (4, II/, rc) s.t. C,-l,,-l,,-i is a Monge array.

(1) Determine possible candidates for 4 and $:

(i) For all k define the matrix Dk with dij := Cijk. Apply Algorithm 3.11 to

construct the set p,,.

(ii) Set Pij := ((4, $) I(4, $)EFD, Vk}. Thus Pij d enotes the “intersection” of all

block-permutations p,,.

(2) Determine possible candidates for 4 and rc:

(i) For all j define the matrix Ej with eik := Cijk. Apply Algorithm 3.11 to

construct the set FE,.

(ii) Set Pik : = m> 4 I(43 4 E hi vjrj>.
(3) Determine possible candidates for $ and rc:

(i) For all i define the matrix Fi with fjk := Cijk. Apply Algorithm 3.11 to

construct the set pFI.

(ii) Set Pjk := { ($, n) I(+, n) EjF, vi}.

(4) Construct the set i’ defined as

80 R. Rudorf/ Discrete Applied Mathematics 52 (1994) 71-82

If p = 8, the array C cannot be arranged as Monge array, otherwise for each

triple (4, $, rc)~P the array Cb-l,ti-l,n-l is a Monge array.

Theorem 3.14. Algorithm 3.13 has time complexity 0(n3).

Proof. Step 1 (i) can be performed in O(n3) since we use IZ times Algorithm 3.11. Since

an intersection of two block-permutations can be done in O(n) time and again be

represented by a new block-permutation, we can intersect all n block-permutations in

O(n’). Obviously Step 2 and 3 have same complexity as Step 1. Step 4 can also be

executed in O(n) time. Thus we get an overall time complexity of 0(n3). 0

In a straightforward way Algorithm 3.13 can be extended to d dimensions. The

basic step is to construct the sets Pi,il represented as a pair of block-permutations, say

(Sik, Sil), for all 1 < k, 1 f d, 1 # k and then -like in (4) - checking if a global

solution can be found. This can be done for example in the following way. Represent

the set p also as block-permutations, say T,, . . . , T,, and fix K = A, where A denotes

that block-permutation which contains all permutations. Now procede in a two-phase

method. First choose an arbitrary pair (Sikr Si,) # (A, A) and compute T, := Tk n Si,

and T, := T, n Si,. In a second step as long as you find a pair (Sip, S,,) with either

T, # A and Sik # A or T # A and Si, # A compute again the new block-permutations

T, and z as the intersection of the old sets Tk and T, with Sik and Sil. If no such pair

can be found continue with the first phase.

After taking into account all computed pairs (Si,, S,,) # (A, A) and intersecting

them with T,,..., Td either the set p is empty if at least one intersection fails, or

contains at least one d-tuple of permutations.

Since there are ($).nd-’ possible two-dimensional submatrices of the given array

and since Algorithm 3.11 has time complexity O(n’) we get an overall running time of

O((d,). nd), which yields the time complexity of 0(d2nd). If we use our algorithm on

arbitrary n, x n2 x ... x nd arrays C where nI < n2 d ‘.. d nd holds, we get an overall

running time complexity of 0(d2n2a3”‘nd(nl + log nd)).

4. Examples

To illustrate Algorithm 3.13 we consider two different examples. In both examples

we try to rearrange a given 4 x 4 x 3 matrix C into a Monge matrix using Algo-

rithm 3.13. For the ease of description we represent the array C as three 4 x 4 matrices.

Example 4.1.

I
12 15 12 9

16 17 16 15
c :=

14 16 14 12

\ 16 17 16 15

R. Rudolf J Discrete Applied Muthematics 52 (1994) 71-82 81

(1) Fixing k = 1 and performing Algorithm 2.1 on the matrix D with dij = cijl we
get a pair (4, $) of permutations with

$I = (1, 3,2, 4) and I,/J = (2,4,3, l),

Hence~-1=(1,3,2,4)and$-‘=(4,1,3,2).

We construct S(4) = (Cl], [3], [2,4]) and S($) = ([4], [l, 31, [2]). For all

other k we get the same sets S(4) and S($). Therefore

pij = ((Cl15 C31, C2, 41 > x (C41t Cl, 315 C21 >)

” (<P, 41, c31, [II > x (C21, CL 31, C41>).

(2) Compute S(4) = ([l], [3], [2,4]) and S(rc) = ([a], [l, 31). Then

Pik = (<[II, C3I, C’L4I)X<C2I> C~,~I))U((CZ~I, C3I> Cll>X(Cl, 31, [I2I)).

(3) Determine S($) = ([4], [l, 31, [2]) and S(rc) = ([2], [l, 33). Then

Pjk = ((C4I, Cl> 312 [12I> X (C2I> Cl> ~I))u(<C~I, Cl> 31, [AI> X (Cl> 312 C2I>).

(4) Calculate

P = ((Cl19 [I31> c2,41> x < c41, CL 31, [I21 > x <CL 31, C21>)

“((L-2,41, c31, [II> x (C21, CL 31, [41)x (CL 31, PI)).

So the given array C can be permuted into a Monge array. For example take

4 = (1, 3,2,4), @ = (2,4, 3, 1) and 7c = (1, 3,2).

Example 4.2.

c:=i;;;][i ;;;i#;;;].

Performing Steps 1 to 3 we get the following sets:

pij = ((C1, 419 C2, 31) x (C31> C1l, C419 C21>)

” (<C2,31, CL 41) x (C217 c41, [II, C31>);

Pik=(([1,4I,[2,3I)x([2I,[1,3I>)U(([2~3I,[1,4I)x([1,3I,[2I));

Pjk = ((C3I, Cl]> C4I> C2I> X<Cla 319 [2I))“(<C2I, C4I> Cll, C3I>X<C2I> Cl> 31)).

Intersecting these three sets, we get P = 8. So no triple of permutations exists, which

permutes C into a Monge array.

82 R. Rudolf/ Discrete Applied Mathematics 52 (1994) 71-82

Acknowledgement

We would like to thank Vladimir Deineko for making available to us a description

of his algorithm for solving our problem in two dimensions.

References

[I] A. Aggarwal and J.K. Park, Parallel searching in multidimensional monotone arrays, Research

Report RC 14826, IBM T.J. Watson Research Center, Yorktown Heights, NY, August 1989.

Submitted to J. Algorithms. Portions of this paper appear in Proceedings of the 29th Annual IEEE

Symposium on Foundations of Computer Science (1988) 497-512.

[2] A. Aggarwal and J.K. Park, Sequential searching in multidimensional monotone arrays, Research

Report RC 15128, IBM T.J. Watson Research Center, Yorktown Heights, NY, November 1989.

Submitted to J. Algorithms. Portions of this paper appear in Proceedings of the 29th Annual IEEE

Symposium on Foundations of Computer Science (1988) 497-512.
[3] N. Alon, S. Cosares, D.S. Hochbaum and R. Shamir, An algorithm for the detection and construction

of Monge sequences, Linear Algebra Appl. 114/115, (1989) 669-680.

[4] W. Bein, P. Brucker, J.K. Park and P.K. Pathak, A Monge property for the d-dimensional transporta-

tion problem, Discrete Appl. Math., to appear.

[S] K.S. Booth and G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph

planarity using PQ-trees algorithms, J. Comput. System Sci. 13 (1976) 335-379.

[6] R.E. Burkard, Assignment problems: Recent solution methods and applications. System Modelling

and Optimization, Proceedings of 12th IFTP Conference, Budapest, Hungary, 1985, Lecture Notes in

Control and Information Sci., Vol. 84 (Springer, Berlin, 1986) 153-169.

[7] K. Cechlirova and P. Szab6, On the Monge property of matrices, Discrete Math. 81 (1990) 123-128.

[S] V.G. Deineko and V.L. Filonenko, On the reconstruction of specially structured matrices, Aktualnyje

Problemy EVM, programmirovanije, Dnepropetrovsk, DGU, 1979 (Russian).

[9] G. Hadley, Linear Programming (Addison-Wesley, Reading, MA, 1962).
[lo] B. Dietrich and R. Shamir, Characterization and algorithms for greedily solvable transportation

problems, Proceedings of the First ACM-SIAM, Symposium of Discrete Algorithms, January 1990,

358-366.
[l l] A.J. Hoffman, On simple linear programming problems, in: Convexity, Proceedings of Symposia in

Pure Mathematics (AMS, Providence, RI, 1961) 317-327.

[12] G. Monge, Dtblai et remblai, Mtmoires de 1’Academie des Sciences, Paris, 1781.

