

Available online at www.sciencedirect.com

DISCRETE APPLIED MATHEMATICS

Discrete Applied Mathematics 156 (2008) 2420–2422

www.elsevier.com/locate/dam

Note

Embedding graphs as isometric medians

P. Dankelmann^{[a,](#page-0-0)*}, G. Sa[b](#page-0-2)idussi^b

^a *School of Mathematical Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa* ^b *Mathematiques et Statistique, Universit ´ e de Montr ´ eal, C.P. 6128 Centre-ville, Montr ´ eal, Qu ´ e., H3C 3J7, Canada ´*

> Received 7 June 2005; received in revised form 4 October 2007; accepted 23 October 2007 Available online 21 February 2008

Abstract

We show that every connected graph can be isometrically (i.e., as a distance preserving subgraph) embedded in some connected graph as its median. As an auxiliary result we also show that every connected graph is an isometric subgraph of some Cayley graph. c 2007 Elsevier B.V. All rights reserved.

Keywords: Distance; Median; Isometric; Embedding

1. Introduction

Given a finite connected graph *G*, we denote the geodesic (i.e., shortest path) distance of two vertices *x*, *y* by $\rho_G(x, y)$. The *distance sum* of a vertex *x* of *G* is $\sigma_G(x) := \sum_{y \in V(G)} \rho_G(x, y)$. The *median subgraph* (or simply *median*) of *G*, denoted by *MG*, is the subgraph of *G* induced by the vertices of minimum distance sum. An old result of Slater [\[7\]](#page-2-0) states that any graph *H* is the median of some connected graph *G*. Slater's paper was followed by several others [\[2,](#page-2-1)[3](#page-2-2)[,5\]](#page-2-3) that were concerned with finding bounds (in terms of various parameters of *H*) for the order of a smallest graph *G* containing *H* as median.

In view of the fact that the median is defined in terms of the metric it is natural to ask, in the case where the given graph *H* is connected, whether the embedding of *H* as a median can be so arranged that the metrics of *H* and the ambient graph *G* coincide, i.e. that *H* is an isometric subgraph of *G*. (Recall that a connected subgraph *H* of a connected graph *G* is *isometric* in *G* if $\rho_H(x, y) = \rho_G(x, y)$ for any $x, y \in V(H)$.) The embeddings constructed in all the papers mentioned above are such that in the target graph *G* the vertices of *H* are at distance \leq 2 from each other, destroying the metric structure of *H* as soon as the diameter of *H* exceeds 2.

In the present note we show that any connected graph *H* can be *isometrically* embedded in some connected graph *G* as its median. Our construction yields a graph *G* of order $O((2r)^n)$, where *n* is the order of *H* and *r* its diameter, leaving open the question of an ambient graph *G* whose order is polynomial in *n*. This is in sharp contrast to the case for graphs constructed in the earlier papers, where *H* is not required to be the isometric median of *G* (in fact, as shown in [\[2\]](#page-2-1), *G* can be chosen so as to have order $\langle 2n \rangle$.

All graphs considered in this paper are finite and simple.

[∗] Corresponding author.

E-mail address: dankelma@ukzn.ac.za (P. Dankelmann).

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. [doi:10.1016/j.dam.2007.10.018](http://dx.doi.org/10.1016/j.dam.2007.10.018)

2. Isometric embeddings in vertex-transitive graphs

In the proof of our main result [\(Theorem 3.1\)](#page-1-0) we make use of the fact that any connected graph can be isometrically embedded in a graph all of whose vertices have the same distance sum. One way of achieving this is to make sure that the target graph of the embedding is vertex-transitive. That such an embedding always exists is probably folklore; we present here a proof which is a slight variation of the Nowakowski–Rival embedding theorem which says that every connected graph can be isometrically embedded in a strong product of paths ([\[6\]](#page-2-4), and for strong products in general see Imrich and Klavžar [[4\]](#page-2-5), Chapter 5).

Theorem 2.1. *Any connected graph can be isometrically embedded in a strong torus (i.e., a strong product of cycles).*

Strong products of vertex-transitive graphs being vertex-transitive, it follows that strong tori are vertex-transitive. In fact, they are Cayley graphs based on direct products of cyclic groups.

Proof. Let *H* be a connected graph with vertices x_1, \ldots, x_n , and denote the diameter of *H* by *r*. Consider the cycle *C* whose vertex-set is the cyclic group \mathbb{Z}_s , where $s \geq 2r$, two vertices *i*, *j* being adjacent if and only if $i - j = \pm 1$, and let *G* be the strong product of *n* copies of *C*. Note that $V(G) = \mathbb{Z}_{s}^{n}$. Define a map $\varphi : V(H) \longrightarrow \mathbb{Z}_{s}^{n}$ as follows. Given $x_i \in V(H)$, define the *j*-th coordinate of $\varphi(x_i)$ to be the distance $\rho_H(x_i, x_i)$, i, $j = 1, ..., n$. As in the proof of the Nowakowski–Rival theorem it is then a matter of straightforward checking that φ is an isometric embedding of *H* in *G*. \Box

Remark 2.2. The map φ used in the preceding proof can be thought of as first mapping *H* isometrically into the strong product *P* of *n* paths of length *r* (invoking the theorem of Nowakowski–Rival in its original form), and then embedding *P* into a strong torus *G* which is the strong product of sufficiently long cycles so that the embedding $P \rightarrow G$ can be made isometric (whence the condition that $s \geq 2r$). The number of factors in *P* could be reduced from *n* to *d*, the strong isometric dimension of *H* (as defined by Fitzpatrick and Nowakowski in [\[1\]](#page-2-6)). Taking *s* as small as possible the strong isometric dimension of the torus then is *r d*. It would be interesting to know whether any *H* can always be isometrically embedded in a vertex-transitive graph whose strong isometric dimension only depends on that of *H*.

3. Isometrically embedded medians

The following is the main result of this paper.

Theorem 3.1. *Given any connected graph H, there exists a connected graph G whose median is an isometric subgraph which is isomorphic to H.*

We first establish a result concerning the median subgraph of a partial cartesian product [\(Proposition 3.4\)](#page-1-1). From this, [Theorem 3.1](#page-1-0) follows as an easy corollary.

Definition 3.2 (*Partial Cartesian Product*). Let *G*, *H* be graphs, *A* a subset of $V(G)$. By $G\Box_A H$ we denote the graph *P* defined by

$$
V(P) = V(G) \times V(H),
$$

(x, y)(x', y') \in E(P) \iff xx' \in E(G), y = y'; or x = x' \in A, yy' \in E(H).

Remark 3.3. (1) The subgraph P_A of P induced by $A \times V(H)$ is $G_A \square H$, where G_A is the subgraph of G induced by *A*. In particular, for $A = V(G)$, *P* is the full cartesian product $G \Box H$. If $A \neq \emptyset$ and *G* and *H* are connected, then so also is *P*.

(2) If *G*, *GA*, and *H* are connected, and *G^A* is isometric in *G*, then *P^A* is isometric in *P*. This follows from the fact that if $(u, v), (u', v') \in A \times V(H)$, then $\rho_{P_A}(u, v), (u', v')) = \rho_{G_A}(u, u') + \rho_H(v, v')$.

Proposition 3.4. *Given:* (1) *a connected graph G which is its own median;*

(2) *a non-empty isometric subgraph F of G;*

(3) *a connected graph H of order* \geq 2.

Let $P = G \Box_A H$, where $A = V(F)$. Then $M_P = F \Box M_H$. Moreover, if M_H is isometric in H, then M_P is isometric *in P.*

Proof. We use the following notation:

• $n_G := |V(G)|, n_H := |V(H)|;$

• given $u \in A$, the *H*-fiber H_u is the copy of *H* in *P* with $V(H_u) = \{u\} \times V(H)$; for $v \in V(H)$, the *G*-fiber G_v is defined analogously.

By hypothesis, all vertices of *G* have the same distance sum, say *s*. Put $\min_{v \in V(H)} \sigma_H(v) =: s_H$.

Let $u \in A, u' \in V(G)$, and $v, v' \in V(H)$. Then *P* contains a $(u, v)(u', v')$ -geodesic which consists of a segment in the fiber H_u from (u, v) to (u, v') , followed by a segment in the fiber $G_{v'}$ from (u, v') to (u', v') . Hence $\rho_P((u, v)(u', v')) = \rho_G(u, u') + \rho_H(v, v')$ as in the full product $G \Box H$, and therefore

$$
\sigma_P(u, v) = n_H \sigma_G(u) + n_G \sigma_H(v) \ge n_H s + n_G s_H,
$$
\n⁽¹⁾

with equality if and only if $v \in V(M_H)$.

Now let $u \notin A$, $u' \in V(G)$, and $v, v' \in V(H)$, $v \neq v'$. Because *F* is isometric in *G*, $F \Box H$ is isometric in *P*; hence *P* contains a $(u, v)(u', v')$ -geodesic which consists of a segment in the fiber G_v from (u, v) to some vertex (w, v) , $w \in A$, then a segment in H_w from (w, v) to (w, v') , and finally a segment in $G_{v'}$ from (w, v') to (u', v') . Hence

$$
\rho_P((u, v), (u', v')) = \min_{w \in A} (\rho_G(u, w) + \rho_H(v, v') + \rho_G(w, u'))
$$

$$
\geq \rho_G(u, u') + \rho_H(v, v'),
$$

and for $u' = u$ this inequality is strict. Therefore, since $n_H \geq 2$,

$$
\sigma_P(u, v) > n_H \sigma_G(u) + n_G \sigma_H(v) \ge n_H s + n_G s_H. \tag{2}
$$

[\(1\)](#page-2-7) and [\(2\)](#page-2-8) together imply that $\sigma_P(u, v)$ attains its minimum if and only if $(u, v) \in A \times V(M_H)$. Hence $M_P = F \square M_H$. The statement that M_P is isometric in *P* if M_H is isometric in *H* follows from [Remark 3.3\(](#page-1-2)2).

Proof of Theorem 3.1. At variance with the notation in the statement of the theorem we continue to use the notation of [Proposition 3.4.](#page-1-1) Let a connected graph *F* be given. By [Theorem 2.1](#page-1-3) there is a connected vertex-transitive graph *G* which contains *F* as an isometric subgraph. Being vertex-transitive, *G* coincides with its median. Applying [Proposition 3.4](#page-1-1) to *G* and any connected graph *H* of order \geq 3 whose median is a single vertex v (e.g. a star $K_{1,r}$, $r \geq 2$) it follows that the median of $P = G \Box_A H$ is the cartesian product of *F* with the single vertex v, and hence isomorphic to *F*. M_P is isometric in *P* because v, considered as a subgraph of *H*, is isometric. \square

References

- [1] S.L. Fitzpatrick, R.J. Nowakowski, The strong isometric dimension of finite reflexive graphs, Discuss. Math. Graph Theory 20 (2000) 23–28.
- [2] G.R.T. Hendry, On graphs with prescribed median I, J. Graph Theory 9 (1985) 477–481.
- [3] G.R.T. Hendry, On graphs with prescribed median II, Util. Math. 29 (1986) 193–199.
- [4] W. Imrich, S. Klavžar, Product Graphs, Wiley, 2000.
- [5] Z. Miller, Medians and distance sequences in graphs, Ars Combin. 15 (1983) 169–177.
- [6] R.J. Nowakowski, I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223–234.
- [7] P.J. Slater, Medians of arbitrary graphs, J. Graph Theory 4 (1980) 389–392.