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Abstract

In [Math. Mag. 64 (1991) 325-332], Schwenk has completely determined the set of all integers
andn for which them x n chessboard admits a closed knight's tour. In this paper, (i) we consider
the corresponding problem with the knight's move generalize@@ t®)-knight's move (defined in
the paper, Section 1). (ii) We then generalize a beautiful coloring argument of Pésa and Golomb to
show that various: x n chessboards do not admit closed generalized knight's tour (Section 3). (iii)
By focusing on the&?2, 3)-knight's move, we show that the x n chessboard does not have a closed
generalized knight's tour ifn = 1,2, 3,4, 6, 7,8 and 12 and determine almost completely which
5k x m chessboards have a closed generalized knight's tour (Section 4). In addition, (iv) we present
a solution to the (standard) open knight’s tour problem (Section 2).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An intriguing old puzzle in recreational mathematics is that of finding a closed tour
for the knight on the standard>8 8 chessboard. The knight moves one square in a single
direction, either horizontally or vertically, and then followed by two squares perpendicular
to it. According to[15], this easily understood problem has its history that dates back to
the time of Euler and De Moivre. The problem has been extended taany rectangular
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chessboard but a complete solution was available only recently. It was Schwenk who proved
the following:

Theorem 1 (Schwenl16]). Them x n chessboard withm <n admits a closed knighg
tour unless one or more of the following conditions holds

() mand n are both odd
(i) m=1,2o0r4;or
(i) m=3andn=4,60r8.

We observe, in passing, that other problems concerning knight’s tour have also been
discussed (sefp]). In [21], Watkins and Hoenigman consider knight's tours on the torus.

It turns out, unexpectedly, that some of the knight’s tours on the torus, when restricted to
square chessboards, give rise to magic squarefl(ge€he knight's tour problem has also
been considered on cylinders and other surfit@sand on chessboards of other shapes,

for example the triangular honeycorit18]. In the meantime, a problem concerning the
number of knight’s tours on the square chessboard has also received due consifightion
More about the knight’s tour (and other) problems on chessboard are available in the recent
book[20] by Watkins.

Knight's moves are amenable to generalization. We consider the following one. Suppose
the squares of the x n chessboard arg, j) where 1<i <m and 1< j <n. A move from
squareg(i, j) to squarek, 1) is termed ar(a, b)-knights movef {|k —i|, |l — j|} ={a, b}.

For a given(a, b)-knight's move on ann x n chessboard, there is associated with it a
graph whose vertex set and edge set{étej) | 1<i<m, 1<j<n}and{(, j)(k,1) |
1<i, k<m, 1<j,1<n, {lk—i|, |l—j|}={a, b}}, respectively. LeG ((a, b), m, n) denote
this graph, or justG (m, n) for simplicity if the move(a, b) is understood or not to be
emphasized.

A closed(a, b)-knights touris a series ofa, b)-knight's moves that visits every square
of them x n chessboard exactly once and then returns to the starting squageréralized
knights tour problemasks: whichm x n chessboards admit a closed b)-knight's tour?

This amounts to asking: which gragh((a, b), m, n) is Hamiltonian?

We shall make a few easy observations. First; # b is even, then no close@, b)-
knight's tour is possible because only cells of the same color (that is either all black or all
white cells) are covered during the moves. Thusb is assumed to be odd. Also, we shall
assume that < b since an(a, b)-knight's move and &b, a)-knight's move are the same.

Next, if m andn are both odd, then no closé&d, b)-knight's tour is possible because
G (m, n) is then a bipartite graph with an odd number of vertiegs

We may further assume that<n. If m <a + b — 1, then no closedu, b)-knight's tour
onthem x n chessboard is possible. This is because the véttey in G (m, n) is of degree
< 1. Suppose < 2b. Then the vertexb, b) is of degree 0.

We summarize the above observations in the following:

Theorem 2. Suppose tha x n chessboard admit a closéd, )-knights tour, wherea < b
andm <n.Then

(i) a+bisodd
(iiy morniseven
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(iiiy m>a+ b; and
(iv) n>2b.

Perhaps the simplest generalized knight's move is that of@h&)-knight's move. In
this case, the associated graptm, n) is the horizontal grid whose hamiltonicity is easily
decided. As for the€0, b)-knight's move, wheré > 3 is odd, the associated gra@tim, n)
is disconnected. Henceforth, we shall assume tkat k b.

2. Open knight's tour on rectangular boards

In[16], Schwenk mentioned that the corresponding problem for the open knight's tour can
also be solved by the same method he has introduced. The solution was left as a challenge to
the interested readers. In this section, we provide a complete solution to the open knight’s
tour problem. Earlier, Cull and de Curtifi8] proved that everyn x n chessboard with
5<m <n admits an open knight’s tour.

Theorem 3 (Cull and de Curting3]). Everym x n chessboard witlh <m <»n admits an
open knight tour.

The casen =3 was considered ifi14] where Van Rees showed that the 8 chessboard
admits an open knight’s tour if and onlyrit=4 orn > 7. Here, we shall present the solution
for the missing casa = 4 as well as some constructions for the open knight's tours on the
3 x n chessboard.

We shall make use of the following necessary condition for the existence of a Hamiltonian
path in a graph. I/ is a graph, we leto(H) denote the nhumber of componentsin

Theorem 4. Let S be a proper subset of the vertex set of a graph G. If G contains a
Hamiltonian paththen

oG -85S+ 1.

Theorem 5. Them x n chessboard with: <n admits an open knight tour unless one or
more of the following conditions holds

(i) m=1or2;
(i) m=3andn=3,5, 6;0r
(i) m=4andn =4.

Proof. Both G(3,3) and G(m, n) for m<2 are disconnected and hence do not have
Hamiltonian paths.

For the remaining part on the non-existence of Hamiltonian paths, we shall make use of
Theorem 4Fig. 1(a) shows a disconnected graph with seven components. It is the result
of removing five verticeg1, 2), (1, 4), (2, 3), (3,2) and (3, 4) from the graphG(3, 5).
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Fig. 1(b) is the resulting disconnected graph with six components when the four vertices
(j, 2y and(j, 3) for j=2, 3are removed from the grajgh(4, 4). Fig. 1(c) shows the resulting
disconnected graph with eight components when the six veriic&and(i, 4) fori=1, 2, 3
are removed from the grapli(3, 6). By Theorem 4, all three graplis(3, 5), G(4, 4) and
G (3, 6) do not contain Hamiltonian paths.

Next, we show that every other board admits an open knight’s Egr.2 depicts a
Hamiltonian path inG (3, n) for eachn € {4, 7, 8, 9} and inG (4, k) for eachk € {5, 6, 7}.
Let P(m, n) denote a Hamiltonian path i@ (m, n). We shall show that eachA(3, n), for
n € {7,9}, in Fig. 2is extendable to & (3, n + 4) and eachP (4, k), for k € {5, 6, 7}, in
Fig. 2is extendable to & (4, k 4+ 3). This can be done by placing the grapf8, 4) (a
subgraph of5 (3, 4)) andS(4, 3) (a subgraph o7 (4, 3)) on the right-hand side a? (3, n)
andP (4, k), respectively, and joining them by suitable edges as explained below. The graphs
S(3, 4) andS(4, 3) are shown irFig. 3(a) and (b), respectively.

For the case: = 3, note that each of thB (3, n), forn € {7, 9}, has(l, n) and(2, n — 1)
as end vertices. Joining the vertiogdsn) and (2, n — 1) of P(3, n) to the verticeg3, 1)
and(1, 1) of (3, 4), respectively, yields a Hamiltonian pathdh(3, n + 4) with (1, n + 4)
and(2, n + 3) as end vertices. The extension of a Hamiltonian paifi (8, 7) to a Hamil-
tonian path inG (3, 11) is shown inFig. 3(a). Repeat the process, we obtain a Hamiltonian
path inG (3, n) for every oddn >7. For the case where> 10 is even, Schwenk’s result
(Theorem 1) implies tha (3, n) contains a Hamiltonian path.
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P(3,4) P(3,9)

P(3,7)

P(4,5)

Fig. 2. The Hamiltonian pathB (3, 4), P(3,7), P(3,8), P(3,9), P(4,5), P(4,6) andP (4, 7).

For the casen = 4, note that each of th@ (4, k), for k € {5, 6, 7}, has(l, k) and
(4, k) as end vertices. Joining these two vertices to the ver{i&el and(2, 1) of S(4, 3),
respectively, yields a Hamiltonian pathdh4, k + 3) with (1, k + 3) and(4, £ + 3) as end
vertices. The extension of a Hamiltonian pattGitd, 5) to a Hamiltonian path id7 (4, 8) is
shown inFig. 3(b). Repeat the process, we obtain a Hamiltonian path(ih n) for every
n>b.

By Theorem 3G (m, n) contains a Hamiltonian path for every>5. This completes the
proof. O
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(a) P(Bv 7) S(3, 4)

(b) P(4,5) S(4,3)

Fig. 3. (a) Extension of (3, 7) to P(3, 11); (b) Extension ofP (4, 5) to P (4, 8).

3. Forbidden rectangular boards

In this section, we show that certain rectangular chessboards do not admit a closed
generalized knight's tour. The first two results generalize that of POsfl@gand Golomb
[5] which states that the 4 n chessboard does not admit a cloggd)-knight'’s tour.

Theorem 6. Supposen =a + b + 2t + 1where0<t <a — 1. Then then x n chessboard
admits no closeda, b)-knights tour.

Proof. Asa + b is odd, we may write: + b =2s + 1. Thena <s andb > s because < b.

Letr =% =s+t+ 1 and let the vertices of the x n chessboard® be colored using
distinct colorsey, ¢, . . ., ¢ in the following manner.

If 1 <i<s-+t+1,thenverticesin thidh row of B are colored withy; . If s+ +2<i <m,
then vertices in théth row of B are colored withe,, +1—;.

Since the case + b = 3 (wherea = 1 andb = 2) has been settled by Pdsa (and also
Golomb[5]) and discussed if16], we may assume that+ » > 5 (so thats > 2).

Consider vertices in thé + 1)th row. They are all colored with, ;1. Moreover these
vertices are adjacent only to the vertices in@the- ¢ + 1)th and(b + ¢ + 1)th rows because
0<r<a— 1.

Sincea +t+1<s+t+1andb+1t+1>s +1t+ 1, vertices in these two rows are
colored withcy4;+1.

Now, look at those vertices in th@ — ¢)th row. They are colored with, 1. Moreover
these vertices are adjacent only to the vertices indhe ¢ + 1)th and(b + ¢ + 1)th rows
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which are colored, .1 (as explained earlier). This means that vertices which are colored
¢;+1 together with their neighbors force a proper subcycle and the proof is compléte.

Lemma 1. Suppose the vertices of an x n chessboard B are colored in equal amount
with two colors red and blue. Suppose further that every red vertex is adjacent only to the
blue vertices and that at least one blue vertex is adjacent to a blue v&tiex B admits

no closeda, b)-knights tour.

Proof. Suppose that there is a closed b)-knight’s tourC = v1vs. .. v,,v1 of B. Since

B contains an equal amount of vertices of each color and a red vertex must always be
sandwiched by two blue vertices, the red and blue vertices must alternate arolueidall

the odd-labelled vertices, 1 be colored in red and all the even-labelled vertiegsbe
colored in blue. But from the original coloring of the chessboBrdith black and white,

we may conclude that all the vertices 1 are also white. Thus all red vertices are white
vertices, but this contradicts the different pattern chosen for the two colorings. We conclude
that no closeda, b)-knight's tour is possible. [J

Pdésa’s and Golomb’s theorem can also be generalized to the following:

Theorem 7. Supposen = a(k + 2I) wherel<![ < ’5 Then then x n chessboard admits
no closeda, ak)-knights tour, where a is odd and k is even

Proof. The proof is reminiscent of that of Pdsa.
First note that, a8 + ak = a(1 + k) is odd (by Theorem 2); is odd andk is even.
Next, letB be armn x n chessboard. Foreack=1, 2, ..., k+ 2, let A; denote the: x n

chessboard which consists of e — 1)a + 1)th, (i — L)a + 2)th, ..., iath rows of B. In
other words,B is partitioned intak + 2/ sub-chessboard$;, A, ..., Ay each of size
a X n.

Now, let the vertices oB be colored with two colors in the following manner:

For 1<i <k, letthe vertices im; be colored with red if is odd and with blue otherwise.

Fork +1<i <k + 2I, let the vertices im; be colored with blue if is odd and with red
otherwise.

Consider the vertices in thih row. They are adjacent only to the vertices inthe-a)th
and the(j + ak)th rows. Note that not all the four rows are always possible. For example,
if j <a, thenthe(j — a)th and the(j — ak)th rows do not exist.

Suppose thegth row belongs ta4;. Then the(j 4+ a)th and the(j — a)th rows belong to
A;jy1 andA;_1, respectively. Also, théj + ak)th and the(j — ak)th rows belong t4;
andA;_y, respectively.

Suppose Xi < k. Then avertex in thgth row is not adjacent to a vertexin thge—ak)th
row (since there is nd;_; sub-chessboard).

If i is odd, then the vertices ia; are colored with red whereas the verticesiin; and
A;_1 are colored with blue. Sinde+ i is odd andk + i >k + 1, the vertices im; 1, are
colored with blue.

If i is even, then the vertices iy are colored with blue. Clearly, the verticesdp_; are
colored with red. Sincé + i is even and +i >k + 1, the vertices in thé; ., are colored



G.L. Chia, S.-H. Ong/Discrete Applied Mathematics 150 (2005) 80—-98 87

with red. The vertices im; 1 are colored with red wheh< k, but they are colored with
blue when = k.

Now, supposé + 1<i <k + 2I. Then, a vertex in the¢th row is not adjacent to a vertex
in the (j + ak)th row (since there is nd;; sub-chessboard).

If i is even and < k + 2/ then the vertices im; are colored with red and the vertices
in A; 11 andA;_1 are colored with blue. Since— k is even and — k <k, the vertices in
A;_ are colored with blue. If = k + 2, then the vertices i, are adjacent only to the
vertices inA;2—1 and Ay which are both colored with blue.

If i is odd, then the vertices it; are colored with blue. Clearly, the verticesdn, 1 and
A,_; are colored with red. The vertices i} _41 are colored with red wheh> k + 1, but
they are colored with blue when=k + 1.

Thus, we may make the conclusion that every red verte®B irs adjacent only to
the blue vertices; however there is a blue vertex that is adjacent to a blue vertex. By
Lemma 1, no close, ak)-knight’s tour is possible. [

Theorem 8. Supposer =2(ak +1) wherel <k <I<a.Thenthen x n chessboard admits
no closeda, a + 1)-knights tour.

Proof. Let B be anm x n chessboard. A</, we haven > k(2a + 1). Partition the first
k(2a + 1) rows of vertices int@ sub-chesshoard§, Ao, ..., Ay, each of siz€2a + 1) x n.
Foreachd;,i =1, 2, ..., k, we shall color the first rows of vertices with red and the next
a + 1 rows of vertices that follow with blue. Note that in the chessbdareve haveak
rows of vertices colored with red(a + 1) rows of vertices colored with blue and 2 k
rows uncolored.

Let D denote the€2/ — k) x n sub-board that contains all the uncolored verticeB dks
[ >k, we have 2— k =k + s for somes > 0. Clearly,s is even. We shall color the firgt+ %
rows of vertices inD with red and the remaining rows of vertices with blue. The number
of vertices colored with red i is now equal to the number of vertices colored with blue.

Consider the vertices in thih row. They are adjacent only to the vertices inthe-a)th
and thegj +(a+1))th rows. Note that not all the four rows are always possible. For example,
if j <a,thenthe(j — a)th and the(j — a — 1)th rows do not exist.

Suppose thgth row belongs tad;, forsome =1, 2, .. ., k. If the jth row is colored red,
then the(j £ a)th and the(j + (a + 1))th rows are colored blue. So, every vertex colored
with red in A; is adjacent only to vertices colored with blue.

Suppose thgth row belongs taD. Sincek + 5 <a, every vertex colored with red iP
can only be adjacent to vertices colored in blue.

Consider a vertex in th@: + 1)th row. It is colored with blue and is adjacent to a vertex
in the (2a + 1)th row which is also colored with blue.

Thus, we may make the conclusion that every red vertékimadjacent only to the blue
vertices; however there is a blue vertex that is adjacent to another blue vertex. By Lemma
1, B does not admit a closgd, a + 1)-knight’s tour. [

The previous three results deal with forbidden boards of mize n with m even. The
next result considers a case where the move,is + 1) andm is odd. However, the result
is not enjoyed by thél, 2)-knight’s move.
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Theorem 9. Supposen = 2a + 2t + 1 wherel<rs<a — 1. Then then x n chessboard
admits no closeda, a + 1)-knights tour.

Proof. Let A, (respectively,A;) denote thea x a sub-board located at the upper
(respectively, lower) left corner of the x n chessboard. It is easy to see that vertices
in A, or A; are of degree 2 i (m, n).

Consider the verteta +t + 1, a + 2). It is adjacent to the verticas + 1, 1), (¢, 2) and
(2a +1t+1,1). Clearly,(r + 1, 1) and(z, 2) belong toA,,. Since Kt <a — 1, itis easy to
see that2a +t + 1, 1) belongs ta4;. Hence(a + ¢ + 1, a + 2) is adjacent to three vertices
of degree 2 and thus (m, n) is non-Hamiltonian. [J

4. (2, 3)-knight’s move

In this section, we shall confine our attention to {2e3)-knight's move. Clearly, if
m <4, then then x n chessboard admits no clos&] 3)-knight’s tour (by Theorem 2). By
Theorem 8, no close@, 3)-knight’s tour is possible ifn is 6, 8 or 12. By Theorem 9, there
is no closed2, 3)-knight’s tour on the % n chessboard.

Corollary 1. Ifm<4orm=6, 7, 8, 12,then then x n chessboard does not admit a closed
(2, 3)-knights tour.

Itis thus natural to look at the smallest undecided case which is #he &hessboard. In
fact, in the rest of the paper, we determine the valuesfof which the % x n chessboard,
except for the 5x 18, admits a closed2, 3)-knight’s tour. The result is summarized in
Theorem 10. It is very likely that the % 18 chessboard admits no closgtl 3)-knight's
tour but we are unable to show it.

Similar question could also be asked for titeX®n and 1% x n cases, but a full account
(if available) may have to appear elsewhere.

Proposition 1. Suppose # 18.Then theb x n chessboard admits a closé?| 3)-knights
tour if and only ifrn > 16is even

Proof. SinceG (5, n) is a bipartite graph; mustbe eveninorderthat(5, n) is hamiltonian.

If n <4, then clearlyG (5, n) is non-Hamiltonian because the board is not wide enough
to permit a closed2, 3)-knight’s tour.

If nis 6,8 or 12, Corollary 1 shows thai (5, n) is non-Hamiltonian.

If n = 10, the fact thaiG (5, 10) is non-Hamiltonian is easily seen. The two vertices
(3, 2) and(3, 8) are both of degree 2 and they force a 4-cy@e2)(5, 5)(3, 8)(1, 5)(3, 2)
in G(5, 10).

For n = 14, suppose&s (5, 14) contains a Hamiltonian cycl€' (5, 14). Then the path
(2,13)(5,11)(3, 14)(1, 11)(4, 13) must be part ofC (5, 14) becauseg3, 14), (2, 13) and
(4, 13) are vertices of degree 2. This implies that the path- (1, 5)(3, 8)(5, 5) must also
be part ofC (5, 14) because the neighbors @, 8) are (1, 11), (5, 11), (1, 5) and (5, 5).
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Fig. 4. Hamiltonian cycle€'(5, 16), C (5, 20), C(5, 24) andC (5, 26).

Since(3, 2) is of degree 2, the path, = (1, 5)(3, 2)(5, 5) must also be part of (5, 14).
But thenPy U Py is a 4-cycle inC (5, 14), a contradiction.

We now show that every other board admits a cloge@®)-knight's tour. This is done
by first showing that some smaller boards contain Hamiltonian cycles and then use these to
build up Hamiltonian cycles in bigger boards.

Fig. 4 depicts a Hamiltonian cycle each @ (5, n) for n € {16, 20, 24, 26}. These
Hamiltonian cycles are indicated by the sequences of consecutive integers from Léb 5
these Hamiltonian cycles be denotéb, n), n € {16, 20, 24, 26}.

For eachr € {11, 19, 21}, let R, denote the subgraph @f (5, ) depicted inFig. 5.
Note that eaclR, consists of three disjoint paths whose union includes all the vertices in
G5, 1), t € {11,19 21}. Letu — v denote a path whose end vertices arandv. We
further note that the three disjoint paths Ry arex1 — x2, y1 — y2 andz1 — zz where
x1=Q 1), x2=4t—-2),y1=8,t—2),y2=(4,t —1),z1=(4,1t) andzz = (5, 1).
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z1

Fig. 5. The graph®11, R1g andRo1.

Now suppose there is a subgraph@(s, s), denotedL,, which consists of three dis-
joint paths whose union includes all the verticeiitb, s). Suppose further that the end
vertices of these paths arg, a2, f1, 2, 71 @andy,. Moreover, these end vertices are such
that, whengr; is placed on the left hand side bf, there is a2, 3)-knight’s move fromy;

to «;, from y; to f; and fromz; toy;, i = 1, 2. It is easy to see that if the three paths in
Ly are

(') o1 — Y1, Y2 — Ba, B1 — o2,
(") 01— 71,72 — P1, B — %2 Or
(iil) o1 — B, f1— 71, V2 — %2,

then we have a Hamiltonian cycle, denot®d+ L, in G(5, ¢t + s). This is illustrated in
Fig. 6.

We now show the existence of the graghswhich meet the above conditions for every
s = 11+ 6k wherek >0. Note thatR1; + L, takes care ofi = 22,28 34, ...; Rig+ L;
takes care of =30, 36,42, ...; andR»; + L, takes care of = 32, 38,44, ....

The graphd.17 and L3 are depicted ifrig. 7. They satisfy conditions (i) and (ii) above,
respectively. We shall use these two graphs to build yp.e;. For this purpose, leB1;
denote the spanning subgraphb, 12) which is depicted iffrig. 7. Note thatB1, consists
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o e O[30 e

O e O

Flg 6.R1 + Lg.

BIZ

Fig. 7. The graphd.11, L17, L3 andB12.

of five disjoint pathsu — y4, a2 — a2, 1 — b1, > — b2 andy, — c2 together with the isolated

1,2),y,=

(Za 1)’ /))l = (57 1)9 ﬁ2 = (27 2)9 71

(3,3),a2=(5,11), by = (4,12), b, = (5, 12) andcy = (1, 12).

vertexz = (2, 11). Here, a1 = (4, 2), ap
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To obtainLyg, placeBi2 on the left-hand side af17. Then add six new edge$,, zo1,
aop, b1y1, b2, andeay,. Note thatl og satisfies condition (i) above. Continue the process,
we obtainL 7512 Which satisfies condition (i) above for aky> 0.

Similarly, we obtainZ 312 Which satisfies condition (ii) above for ary>0.

To complete the proof, we need to constrigi. This graph is depicted iRig. 7. Note
that L1 satisfies condition (iii) above.

Proposition 2. Thel0 x n chessboard admits a closég, 3)-knights tour if and only if
n>10andn # 12.

Proof. By Proposition 1 and Corollary 1, the graph{10, n) is non-Hamiltonian forn <8
orn=12.

For n = 9, suppose&; (10, 9) contains a Hamiltonian cycl€' (10, 9). Then the paths
(2,2)(4,5)(2, 8), (10, 2)(8, 5)(10, 8) and the edgél, 9)(3, 6) must be a part of (10, 9)
becaus€?2, 2), (2, 8), (10, 2), (10, 8) and(1, 9) are vertices of degree 2 i{@(10, 9). This
implies that the edgél, 3)(3, 6) must also be included i@’ (10, 9), but then the vertex
(6, 8) cannot be included since it has only one available €8gé) (6, 8), a contradiction.

Next, we shall show thak (10, n) is Hamiltonian for every other value of Fig. 8depicts
a Hamilton cycleC (10, n) in G(10, n) forn € {10, 11, 13, 14, 17}. Note that eacld' (10, n)
in Fig. 8containsthe edges=(1, n)(4, n—2),e2=(1, n—2)(4, n) andez=(3, n—2)(6, n).

Fig. 9shows a subgraph @ (10, 5), denotedS(10, 5), which consists of three disjoint
pathsP; = a1 — a, Po = by — bp andP3=c1 — cp whose end vertices atg = (1, 1), ap =
(8,3),b1=(2,1), b = (3,3),c1 = (3,1) andcz = (2, 3). Note thatV (Py) U V(P2) U
V(P3) = V(G(10,5)).

The process of extension is to replace each edde=1, 2, 3, in C (10, n) by a pathp; for
some; such that X j <3, and obtain an extension of a Hamiltonian cycl&i(10, n + 5)
forn € {10, 11, 13 14, 17}.

PlaceS (10, 5) on the right-hand side of@(10, n). Remove the edgg = (1, n)(4, n —2)
fromC (10, n) andjoin(1, n) and(4, n—2) to the vertice$, andb1 of S(10, 5), respectively.
Next, remove the edge = (1, n — 2)(4, n) from C(10, n) and join(1,n — 2) and(4, n)
to the vertices:; andc;, of S(10, 5), respectively. Finally, remove the edgg= (3,n —
2)(6, n) from C (10, n) and join(3, n — 2) and(6, n) to the verticesi; andaz of S(10, 5),
respectively. Thus, we obtain a Hamiltonian cy€¢l€l0, n + 5) which also includes the
edgeql,n+5 @, n+3), (1, n+3)(4,n+5) and(3,n + 3)(6, n + 5). The extension of
aC(10,10) to aC(10, 15) is shown inFig. 10

Repeating the above construction, we obtain a Hamiltonian cyd&1®, n) for each
n>10andn # 12. O

Proposition 3. Supposé >3 is an integer. Then thBk x n chessboard admits a closed
(2, 3)-knights tour if and only if

(i) n>10is even andk # 12whenk is odd or
(i) n=5,9,10,110r n>13whenk is even
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Fig. 8. Hamiltonian cycle€’ (10, n), n = 10, 11, 13, 14, 17.

(2, 3)-knight’s tourifn <4 orn=6, 7, 8, 12. Further, i is odd, then the6x n chessboard
does not admit a close@, 3)-knight’s tour ifn <9 or if n is odd (by Theorem 2).
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Fig. 9. The grapt$(10, 5).

Next, we show that every othek 5 n chessboard admits a clos&l] 3)-knight's tour.
The following construction shall be used throughout.

Construction(*): Supposés (m, n) has a Hamiltonian cycl€ (m, n) which contains the
edgeq1, 1)(3,4) and(m — 2, 3)(m, 6). Take a copy of’; = C(m,, n) and a copy o’;, =
C (myp, n). PlaceC, belowC;. Delete the edgén, — 2, 3)(m;,, 6) (respectively(1, 1)(3, 4))
from C, (respectivelyC}). Joining the vertexm, — 2, 3) (respectively(m,, 6)) of C; to
the vertex(1, 1) (respectively(3, 4)) of C;,, we obtain a Hamiltonian cycl€ (m; + my, n)
in G (m; + my, n) which contains the edg&s, 1)(3, 4) and(m; + mj — 2, 3)(m; +my, 6).

Case(1): kis odd

Supposer > 16 is even and: # 18. Note that every Hamiltonian cycté(5, n) con-
structed in Proposition 1 contains the edggsl) (3, 4) and (3, 3)(5, 6). Take two copies
of C(5, n) and place one above the other. By the construdafiprwe obtain a Hamiltonian
cycle in G(10, n) which contains the edged, 1)(3, 4) and (8, 3)(10, 6). Repeating the
construction(*) by takingC; = C(10, n) andCj, = C(5, n), we have a Hamiltonian cycle
G (5k, n) which contains the edge&4, 1)(3, 4) and(5k — 2, 3)(5k, 6) for k>3 andn > 16
is even except = 18.

Supposer € {10, 14, 18}. The required Hamiltonian cycles(10, 10), C (10, 14) and
C(15, 14), C(15, 18) are shown inFigs. 8and 11, respectively. Now( (10, 18) can be
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C(10,15)

Fig. 10. Extension of a closed (2, 3)-knight’s tour in thex1 @0 chessboard to one in the X015 chessboard.

constructed by using the method described in the proof of Proposition 2 @til& 10)
can be obtained by taking a 96lockwise rotation on the Hamiltonian cyal&10, 15) of
Fig. 10 Note that, all these Hamiltonian cycl€g5s, n) contain the edgedl, 1)(3, 4) and
(5s — 2,3)(5s,6) fors =2, 3 andn € {10, 14, 18}. Now, by takingC; = C (15, n) and
C,=C(10, n) and applying the constructidii), we obtain a Hamiltonian cycle i@ (5k, n)
for all oddk >3 andn = 10, 14, 18.

Case(2): kis even

In this case, b= 0(mod 10.

Forn =5, C(10i, 5) can be obtained by a 9@&lockwise rotation on the Hamiltonian
cycleC (5, 10i) (constructed in Proposition 1), wherg: 2.

Forn =9, note that the Hamiltonian cyclé¥20, 9) andC (30, 9) in Fig. 12both contain
the edgesl, 1)(3, 4) and(10i —2, 3)(10i, 6) wherei =2, 3. As such, these two Hamiltonian
cycles can be used to obtain a Hamiltonian cycl&{i0i, 9) for i > 2 by the construction
*).

Forn>10 andn # 12, note that all the Hamiltonian cycles obtained in the proof of
Proposition 2 contain the edgéls 1)(3, 4) and(10i — 2, 3)(10i, 6). So, by the construction
(*), we have a Hamiltonian cycle i@i(10i, n) fori >1,n>10 andn # 12.

This completes the proof.lJ

Putting all the above propositions together, we have the following result.

Theorem 10. Thebk xn chessboard whei@k, n) # (5, 18) admits aclose(R, 3)knights
tour if and only if
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Fig. 11. Hamiltonian cycle€' (15, 14) andC (15, 18).

() k=1andn>16is evenor

(i) k=2andn>10andn # 12;o0r
(i) k>3isodd and:>10is even and: # 12;0r
(iv) k=4isevenand =5,9,10,110rn>13.
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Fig. 12. Hamiltonian cycle€'(20, 9) andC (30, 9).
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