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Abstract

In [Math. Mag. 64 (1991) 325–332], Schwenk has completely determined the set of all integersm

andn for which them × n chessboard admits a closed knight’s tour. In this paper, (i) we consider
the corresponding problem with the knight’s move generalized to(a, b)-knight’s move (defined in
the paper, Section 1). (ii) We then generalize a beautiful coloring argument of Pósa and Golomb to
show that variousm × n chessboards do not admit closed generalized knight’s tour (Section 3). (iii)
By focusing on the(2,3)-knight’s move, we show that them × n chessboard does not have a closed
generalized knight’s tour ifm = 1,2,3,4,6,7,8 and 12 and determine almost completely which
5k × m chessboards have a closed generalized knight’s tour (Section 4). In addition, (iv) we present
a solution to the (standard) open knight’s tour problem (Section 2).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An intriguing old puzzle in recreational mathematics is that of finding a closed tour
for the knight on the standard 8× 8 chessboard. The knight moves one square in a single
direction, either horizontally or vertically, and then followed by two squares perpendicular
to it. According to[15], this easily understood problem has its history that dates back to
the time of Euler and De Moivre. The problem has been extended to anym× n rectangular
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chessboard but a complete solution was available only recently. It was Schwenkwho proved
the following:

Theorem 1 (Schwenk[16]). Them × n chessboard withm�n admits a closed knight’s
tour unless one or more of the following conditions holds:

(i) m and n are both odd;
(ii) m = 1,2 or 4; or
(iii) m = 3 andn = 4,6 or 8.

We observe, in passing, that other problems concerning knight’s tour have also been
discussed (see[5]). In [21], Watkins and Hoenigman consider knight’s tours on the torus.
It turns out, unexpectedly, that some of the knight’s tours on the torus, when restricted to
square chessboards, give rise to magic squares (see[1]). The knight’s tour problem has also
been considered on cylinders and other surfaces[19] and on chessboards of other shapes,
for example the triangular honeycomb[6,18]. In the meantime, a problem concerning the
number of knight’s tours on the square chessboard has also received due consideration[10].
More about the knight’s tour (and other) problems on chessboard are available in the recent
book[20] by Watkins.
Knight’s moves are amenable to generalization.We consider the following one. Suppose

the squares of them× n chessboard are(i, j) where 1� i�m and 1�j �n. A move from
square(i, j) to square(k, l) is termed an(a, b)-knight’s moveif {|k − i|, |l − j |} = {a, b}.
For a given(a, b)-knight’s move on anm × n chessboard, there is associated with it a
graph whose vertex set and edge set are{(i, j) | 1� i�m, 1�j �n} and{(i, j)(k, l) |
1� i, k�m, 1�j, l�n, {|k−i|, |l−j |}={a, b}}, respectively. LetG((a, b),m, n) denote
this graph, or justG(m, n) for simplicity if the move(a, b) is understood or not to be
emphasized.
A closed(a, b)-knight’s tour is a series of(a, b)-knight’s moves that visits every square

of them×n chessboard exactly once and then returns to the starting square. Thegeneralized
knight’s tour problemasks: whichm × n chessboards admit a closed(a, b)-knight’s tour?
This amounts to asking: which graphG((a, b),m, n) is Hamiltonian?
We shall make a few easy observations. First, ifa + b is even, then no closed(a, b)-

knight’s tour is possible because only cells of the same color (that is either all black or all
white cells) are covered during the moves. Thusa + b is assumed to be odd. Also, we shall
assume thata <b since an(a, b)-knight’s move and a(b, a)-knight’s move are the same.
Next, if m andn are both odd, then no closed(a, b)-knight’s tour is possible because

G(m, n) is then a bipartite graph with an odd number of verticesmn.
We may further assume thatm�n. If m�a + b − 1, then no closed(a, b)-knight’s tour

on them×n chessboard is possible. This is because the vertex(a,1) inG(m, n) is of degree
�1. Supposen<2b. Then the vertex(b, b) is of degree 0.
We summarize the above observations in the following:

Theorem 2. Suppose them×n chessboard admit a closed(a, b)-knight’s tour,wherea <b

andm�n. Then

(i) a + b is odd;
(ii) m or n is even;
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(iii) m�a + b; and
(iv) n�2b.

Perhaps the simplest generalized knight’s move is that of the(0,1)-knight’s move. In
this case, the associated graphG(m, n) is the horizontal grid whose hamiltonicity is easily
decided. As for the(0, b)-knight’s move, whereb�3 is odd, the associated graphG(m, n)

is disconnected. Henceforth, we shall assume that 1�a <b.

2. Open knight’s tour on rectangular boards

In [16], Schwenkmentioned that the correspondingproblem for theopenknight’s tour can
also be solved by the samemethod he has introduced. The solution was left as a challenge to
the interested readers. In this section, we provide a complete solution to the open knight’s
tour problem. Earlier, Cull and de Curtins[3] proved that everym × n chessboard with
5�m�n admits an open knight’s tour.

Theorem 3 (Cull and de Curtins[3] ). Everym × n chessboard with5�m�n admits an
open knight’s tour.

The casem=3 was considered in[14] whereVan Rees showed that the 3×n chessboard
admits an open knight’s tour if and only ifn=4 orn�7. Here, we shall present the solution
for the missing casem= 4 as well as some constructions for the open knight’s tours on the
3× n chessboard.
We shallmake use of the following necessary condition for the existence of aHamiltonian

path in a graph. IfH is a graph, we let�(H) denote the number of components inH .

Theorem 4. Let S be a proper subset of the vertex set of a graph G. If G contains a
Hamiltonian path, then

�(G − S)� |S| + 1.

Theorem 5. Them× n chessboard withm�n admits an open knight’s tour unless one or
more of the following conditions holds:

(i) m = 1 or 2;
(ii) m = 3 andn = 3,5,6; or
(iii) m = 4 andn = 4.

Proof. Both G(3,3) andG(m, n) for m�2 are disconnected and hence do not have
Hamiltonian paths.
For the remaining part on the non-existence of Hamiltonian paths, we shall make use of

Theorem 4.Fig. 1(a) shows a disconnected graph with seven components. It is the result
of removing five vertices(1,2), (1,4), (2,3), (3,2) and (3,4) from the graphG(3,5).
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Fig. 1.

Fig. 1(b) is the resulting disconnected graph with six components when the four vertices
(j,2)and(j,3) for j=2,3are removed from thegraphG(4,4).Fig. 1(c) shows the resulting
disconnectedgraphwitheight componentswhen thesix vertices(i,3)and(i,4) for i=1,2,3
are removed from the graphG(3,6). By Theorem 4, all three graphsG(3,5),G(4,4) and
G(3,6) do not contain Hamiltonian paths.
Next, we show that every other board admits an open knight’s tour.Fig. 2 depicts a

Hamiltonian path inG(3, n) for eachn ∈ {4,7,8,9} and inG(4, k) for eachk ∈ {5,6,7}.
Let P(m, n) denote a Hamiltonian path inG(m, n). We shall show that eachP(3, n), for
n ∈ {7,9}, in Fig. 2 is extendable to aP(3, n + 4) and eachP(4, k), for k ∈ {5,6,7}, in
Fig. 2 is extendable to aP(4, k + 3). This can be done by placing the graphsS(3,4) (a
subgraph ofG(3,4)) andS(4,3) (a subgraph ofG(4,3)) on the right-hand side ofP(3, n)
andP(4, k), respectively, and joining themby suitable edges as explained below.Thegraphs
S(3,4) andS(4,3) are shown inFig. 3(a) and (b), respectively.
For the casem=3, note that each of theP(3, n), for n ∈ {7,9}, has(1, n) and(2, n−1)

as end vertices. Joining the vertices(1, n) and(2, n − 1) of P(3, n) to the vertices(3,1)
and(1,1) of S(3,4), respectively, yields a Hamiltonian path inG(3, n+ 4) with (1, n+ 4)
and(2, n + 3) as end vertices. The extension of a Hamiltonian path inG(3,7) to a Hamil-
tonian path inG(3,11) is shown inFig. 3(a). Repeat the process, we obtain a Hamiltonian
path inG(3, n) for every oddn�7. For the case wheren�10 is even, Schwenk’s result
(Theorem 1) implies thatG(3, n) contains a Hamiltonian path.
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Fig. 2. The Hamiltonian pathsP(3,4), P (3,7), P (3,8), P(3,9), P(4,5), P(4,6) andP(4,7).

For the casem = 4, note that each of theP(4, k), for k ∈ {5,6,7}, has(1, k) and
(4, k) as end vertices. Joining these two vertices to the vertices(3,1) and(2,1) of S(4,3),
respectively, yields a Hamiltonian path inG(4, k + 3) with (1, k + 3) and(4, k + 3) as end
vertices. The extension of a Hamiltonian path inG(4,5) to a Hamiltonian path inG(4,8) is
shown inFig. 3(b). Repeat the process, we obtain a Hamiltonian path inG(4, n) for every
n�5.
By Theorem 3,G(m, n) contains a Hamiltonian path for everym�5. This completes the

proof. �
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Fig. 3. (a) Extension ofP(3,7) to P(3,11); (b) Extension ofP(4,5) to P(4,8).

3. Forbidden rectangular boards

In this section, we show that certain rectangular chessboards do not admit a closed
generalized knight’s tour. The first two results generalize that of Pósa (see[16]) andGolomb
[5] which states that the 4× n chessboard does not admit a closed(1,2)-knight’s tour.

Theorem 6. Supposem= a + b + 2t + 1where0� t�a − 1.Then them× n chessboard
admits no closed(a, b)-knight’s tour.

Proof. As a + b is odd, we may writea + b = 2s + 1. Thena�s andb> s becausea <b.
Let r = m

2 = s + t + 1 and let the vertices of them× n chessboardB be colored usingr
distinct colorsc1, c2, . . . , cr in the following manner.

If 1� i�s+t+1, then vertices in theith row ofB are coloredwithci . If s+t+2� i�m,
then vertices in theith row ofB are colored withcm+1−i .
Since the casea + b = 3 (wherea = 1 andb = 2) has been settled by Pósa (and also

Golomb[5]) and discussed in[16], we may assume thata + b�5 (so thats�2).
Consider vertices in the(t + 1)th row. They are all colored withct+1. Moreover these

vertices are adjacent only to the vertices in the(a+ t +1)th and(b+ t +1)th rows because
0� t�a − 1.
Sincea + t + 1�s + t + 1 andb + t + 1>s + t + 1, vertices in these two rows are

colored withca+t+1.
Now, look at those vertices in the(m − t)th row. They are colored withct+1. Moreover

these vertices are adjacent only to the vertices in the(a + t + 1)th and(b + t + 1)th rows
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which are coloredca+t+1 (as explained earlier). This means that vertices which are colored
ct+1 together with their neighbors force a proper subcycle and the proof is complete.�

Lemma 1. Suppose the vertices of anm × n chessboard B are colored in equal amount
with two colors, red and blue. Suppose further that every red vertex is adjacent only to the
blue vertices and that at least one blue vertex is adjacent to a blue vertex. Then B admits
no closed(a, b)-knight’s tour.

Proof. Suppose that there is a closed(a, b)-knight’s tourC = v1v2 . . . vmnv1 of B. Since
B contains an equal amount of vertices of each color and a red vertex must always be
sandwiched by two blue vertices, the red and blue vertices must alternate aroundC. Let all
the odd-labelled verticesv2r+1 be colored in red and all the even-labelled verticesv2r be
colored in blue. But from the original coloring of the chessboardB with black and white,
we may conclude that all the verticesv2r+1 are also white. Thus all red vertices are white
vertices, but this contradicts the different pattern chosen for the two colorings.We conclude
that no closed(a, b)-knight’s tour is possible. �

Pósa’s and Golomb’s theorem can also be generalized to the following:

Theorem 7. Supposem = a(k + 2l) where1� l� k
2. Then them × n chessboard admits

no closed(a, ak)-knight’s tour, where a is odd and k is even.

Proof. The proof is reminiscent of that of Pósa.
First note that, asa + ak = a(1+ k) is odd (by Theorem 2),a is odd andk is even.
Next, letB be anm×n chessboard. For eachi =1,2, . . . , k+2l, letAi denote thea×n

chessboard which consists of the((i −1)a +1)th, ((i −1)a +2)th, . . . , iath rows ofB. In
other words,B is partitioned intok + 2l sub-chessboardsA1, A2, . . . , Ak+2l each of size
a × n.
Now, let the vertices ofB be colored with two colors in the following manner:
For 1� i�k, let the vertices inAi be colored with red ifi is odd and with blue otherwise.
Fork + 1� i�k + 2l, let the vertices inAi be colored with blue ifi is odd and with red

otherwise.
Consider the vertices in thej th row. They are adjacent only to the vertices in the(j ±a)th

and the(j ± ak)th rows. Note that not all the four rows are always possible. For example,
if j �a, then the(j − a)th and the(j − ak)th rows do not exist.
Suppose thej th row belongs toAi . Then the(j + a)th and the(j − a)th rows belong to

Ai+1 andAi−1, respectively. Also, the(j + ak)th and the(j − ak)th rows belong toAi+k

andAi−k, respectively.
Suppose 1� i�k. Then a vertex in thej th row is not adjacent to a vertex in the(j −ak)th

row (since there is noAi−k sub-chessboard).
If i is odd, then the vertices inAi are colored with red whereas the vertices inAi+1 and

Ai−1 are colored with blue. Sincek + i is odd andk + i�k + 1, the vertices inAi+k are
colored with blue.
If i is even, then the vertices inAi are colored with blue. Clearly, the vertices inAi−1 are

colored with red. Sincek + i is even andk + i�k + 1, the vertices in theAi+k are colored
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with red. The vertices inAi+1 are colored with red wheni < k, but they are colored with
blue wheni = k.
Now, supposek + 1� i�k + 2l. Then, a vertex in thej th row is not adjacent to a vertex

in the(j + ak)th row (since there is noAi+k sub-chessboard).
If i is even andi < k + 2l then the vertices inAi are colored with red and the vertices

in Ai+1 andAi−1 are colored with blue. Sincei − k is even andi − k�k, the vertices in
Ai−k are colored with blue. Ifi = k + 2l, then the vertices inAk+2l are adjacent only to the
vertices inAk+2l−1 andA2l which are both colored with blue.
If i is odd, then the vertices inAi are colored with blue. Clearly, the vertices inAi+1 and

Ai−k are colored with red. The vertices inAi−1 are colored with red wheni > k + 1, but
they are colored with blue wheni = k + 1.
Thus, we may make the conclusion that every red vertex inB is adjacent only to

the blue vertices; however there is a blue vertex that is adjacent to a blue vertex. By
Lemma 1, no closed(a, ak)-knight’s tour is possible. �

Theorem 8. Supposem=2(ak+ l)where1�k� l�a.Then them×n chessboard admits
no closed(a, a + 1)-knight’s tour.

Proof. LetB be anm × n chessboard. Ask� l, we havem>k(2a + 1). Partition the first
k(2a+1) rows of vertices intok sub-chessboardsA1,A2, . . . , Ak, each of size(2a+1)×n.
For eachAi , i =1,2, . . . , k, we shall color the firsta rows of vertices with red and the next
a + 1 rows of vertices that follow with blue. Note that in the chessboardB, we haveak
rows of vertices colored with red,k(a + 1) rows of vertices colored with blue and 2l − k

rows uncolored.
LetD denote the(2l − k)×n sub-board that contains all the uncolored vertices ofB. As

l�k, we have 2l− k= k+ s for somes�0. Clearly,s is even.We shall color the firstk+ s
2

rows of vertices inD with red and the remainings2 rows of vertices with blue. The number
of vertices colored with red inB is now equal to the number of vertices colored with blue.
Consider the vertices in thej th row. They are adjacent only to the vertices in the(j ±a)th

and the(j±(a+1))th rows.Note that not all the four rows are always possible. For example,
if j �a, then the(j − a)th and the(j − a − 1)th rows do not exist.
Suppose thej th row belongs toAi , for somei=1,2, . . . , k. If thej th row is colored red,

then the(j ± a)th and the(j ± (a + 1))th rows are colored blue. So, every vertex colored
with red inAi is adjacent only to vertices colored with blue.

Suppose thej th row belongs toD. Sincek + s
2 �a, every vertex colored with red inD

can only be adjacent to vertices colored in blue.
Consider a vertex in the(a + 1)th row. It is colored with blue and is adjacent to a vertex

in the(2a + 1)th row which is also colored with blue.
Thus, we may make the conclusion that every red vertex inB is adjacent only to the blue

vertices; however there is a blue vertex that is adjacent to another blue vertex. By Lemma
1,B does not admit a closed(a, a + 1)-knight’s tour. �

The previous three results deal with forbidden boards of sizem × n with m even. The
next result considers a case where the move is(a, a + 1) andm is odd. However, the result
is not enjoyed by the(1,2)-knight’s move.
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Theorem 9. Supposem = 2a + 2t + 1 where1� t�a − 1. Then them × n chessboard
admits no closed(a, a + 1)-knight’s tour.

Proof. Let Au (respectively,Al) denote thea × a sub-board located at the upper
(respectively, lower) left corner of them × n chessboard. It is easy to see that vertices
in Au orAl are of degree 2 inG(m, n).
Consider the vertex(a + t + 1, a + 2). It is adjacent to the vertices(t + 1,1), (t,2) and

(2a + t + 1,1). Clearly,(t + 1,1) and(t,2) belong toAu. Since 1� t�a − 1, it is easy to
see that(2a + t + 1,1) belongs toAl . Hence(a + t + 1, a + 2) is adjacent to three vertices
of degree 2 and thusG(m, n) is non-Hamiltonian. �

4. (2, 3)-knight’s move

In this section, we shall confine our attention to the(2,3)-knight’s move. Clearly, if
m�4, then them×n chessboard admits no closed(2,3)-knight’s tour (by Theorem 2). By
Theorem 8, no closed(2,3)-knight’s tour is possible ifm is 6,8 or 12. By Theorem 9, there
is no closed(2,3)-knight’s tour on the 7× n chessboard.

Corollary 1. If m�4orm=6,7,8,12,then them×n chessboard does not admit a closed
(2,3)-knight’s tour.

It is thus natural to look at the smallest undecided case which is the 5× n chessboard. In
fact, in the rest of the paper, we determine the values ofn for which the 5k × n chessboard,
except for the 5× 18, admits a closed(2,3)-knight’s tour. The result is summarized in
Theorem 10. It is very likely that the 5× 18 chessboard admits no closed(2,3)-knight’s
tour but we are unable to show it.
Similar question could also be asked for the 9k × n and 11k × n cases, but a full account

(if available) may have to appear elsewhere.

Proposition 1. Supposen 
= 18.Then the5×n chessboard admits a closed(2,3)-knight’s
tour if and only ifn�16 is even.

Proof. SinceG(5, n) is abipartitegraph,nmustbeeven inorder thatG(5, n) is hamiltonian.
If n�4, then clearlyG(5, n) is non-Hamiltonian because the board is not wide enough

to permit a closed(2,3)-knight’s tour.
If n is 6,8 or 12, Corollary 1 shows thatG(5, n) is non-Hamiltonian.
If n = 10, the fact thatG(5,10) is non-Hamiltonian is easily seen. The two vertices

(3,2) and(3,8) are both of degree 2 and they force a 4-cycle(3,2)(5,5)(3,8)(1,5)(3,2)
in G(5,10).
For n = 14, supposeG(5,14) contains a Hamiltonian cycleC(5,14). Then the path

(2,13)(5,11)(3,14)(1,11)(4,13) must be part ofC(5,14) because(3,14), (2,13) and
(4,13) are vertices of degree 2. This implies that the pathP1 = (1,5)(3,8)(5,5)must also
be part ofC(5,14) because the neighbors of(3,8) are(1,11), (5,11), (1,5) and(5,5).
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Fig. 4. Hamiltonian cyclesC(5,16), C(5,20), C(5,24) andC(5,26).

Since(3,2) is of degree 2, the pathP2 = (1,5)(3,2)(5,5) must also be part ofC(5,14).
But thenP1 ∪ P2 is a 4-cycle inC(5,14), a contradiction.
We now show that every other board admits a closed(2,3)-knight’s tour. This is done

by first showing that some smaller boards contain Hamiltonian cycles and then use these to
build up Hamiltonian cycles in bigger boards.
Fig. 4 depicts a Hamiltonian cycle each inG(5, n) for n ∈ {16,20,24,26}. These

Hamiltonian cycles are indicated by the sequences of consecutive integers from 1 to 5n. Let
these Hamiltonian cycles be denotedC(5, n), n ∈ {16,20,24,26}.

For eacht ∈ {11,19,21}, let Rt denote the subgraph ofG(5, t) depicted inFig. 5.
Note that eachRt consists of three disjoint paths whose union includes all the vertices in
G(5, t), t ∈ {11,19,21}. Let u − v denote a path whose end vertices areu andv. We
further note that the three disjoint paths inRt arex1 − x2, y1 − y2 andz1 − z2 where
x1 = (1, t), x2 = (4, t − 2), y1 = (3, t − 2), y2 = (4, t − 1), z1 = (4, t) andz2 = (5, t).
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Fig. 5. The graphsR11, R19 andR21.

Now suppose there is a subgraph ofG(5, s), denotedLs , which consists of three dis-
joint paths whose union includes all the vertices inG(5, s). Suppose further that the end
vertices of these paths are�1, �2,�1,�2, �1 and�2. Moreover, these end vertices are such
that, whenRt is placed on the left hand side ofLs , there is a(2,3)-knight’s move fromxi
to �i , from yi to �i and fromzi to �i , i = 1,2. It is easy to see that if the three paths in
Ls are

(i) �1 − �1, �2 − �2,�1 − �2,
(ii) �1 − �1, �2 − �1,�2 − �2 or
(iii) �1 − �2,�1 − �1, �2 − �2,

then we have a Hamiltonian cycle, denotedRt + Ls , in G(5, t + s). This is illustrated in
Fig. 6.
We now show the existence of the graphsLs which meet the above conditions for every

s = 11+ 6k wherek�0. Note thatR11 + Ls takes care ofn = 22,28,34, . . . ; R19 + Ls

takes care ofn = 30,36,42, . . . ; andR21 + Ls takes care ofn = 32,38,44, . . . .
The graphsL17 andL23 are depicted inFig. 7. They satisfy conditions (i) and (ii) above,

respectively. We shall use these two graphs to build upL11+6k. For this purpose, letB12
denote the spanning subgraph ofG(5,12)which is depicted inFig. 7. Note thatB12 consists
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Fig. 6.Rt + Ls .

Fig. 7. The graphsL11, L17, L23 andB12.

of five disjoint paths�1−�1, �2−a2,�1−b1,�2−b2 and�2−c2 together with the isolated
vertexz= (2,11). Here,�1 = (4,2), �2 = (2,1),�1 = (5,1),�2 = (2,2), �1 = (1,2), �2 =
(3,3), a2 = (5,11), b1 = (4,12), b2 = (5,12) andc2 = (1,12).
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To obtainL29, placeB12 on the left-hand side ofL17. Then add six new edgesz�1, z�1,
a2�2, b1�1, b2�2 andc2�2. Note thatL29 satisfies condition (i) above. Continue the process,
we obtainL17+12k which satisfies condition (i) above for anyk�0.

Similarly, we obtainL23+12k which satisfies condition (ii) above for anyk�0.
To complete the proof, we need to constructL11. This graph is depicted inFig. 7. Note

thatL11 satisfies condition (iii) above.�

Proposition 2. The10× n chessboard admits a closed(2,3)-knight’s tour if and only if
n�10andn 
= 12.

Proof. By Proposition 1 and Corollary 1, the graphG(10, n) is non-Hamiltonian forn�8
or n = 12.
For n = 9, supposeG(10,9) contains a Hamiltonian cycleC(10,9). Then the paths

(2,2)(4,5)(2,8), (10,2)(8,5)(10,8) and the edge(1,9)(3,6) must be a part ofC(10,9)
because(2,2), (2,8), (10,2), (10,8) and(1,9) are vertices of degree 2 inG(10,9). This
implies that the edge(1,3)(3,6) must also be included inC(10,9), but then the vertex
(6,8) cannot be included since it has only one available edge(9,6)(6,8), a contradiction.

Next, we shall show thatG(10, n) is Hamiltonian for every other value ofn. Fig. 8depicts
a Hamilton cycleC(10, n) inG(10, n) for n ∈ {10,11,13,14,17}. Note that eachC(10, n)
in Fig. 8contains theedgese1=(1, n)(4, n−2),e2=(1, n−2)(4, n)ande3=(3, n−2)(6, n).
Fig. 9shows a subgraph ofG(10,5), denotedS(10,5), which consists of three disjoint

pathsP1= a1− a2, P2= b1− b2 andP3= c1− c2 whose end vertices area1= (1,1), a2=
(8,3), b1 = (2,1), b2 = (3,3), c1 = (3,1) andc2 = (2,3). Note thatV (P1) ∪ V (P2) ∪
V (P3) = V (G(10,5)).
The process of extension is to replace each edgeei, i=1,2,3, inC(10, n)by a pathPj for

somej such that 1�j �3, and obtain an extension of a Hamiltonian cycle inG(10, n+ 5)
for n ∈ {10,11,13,14,17}.

PlaceS(10,5) on the right-hand side of aC(10, n). Remove the edgee1=(1, n)(4, n−2)
fromC(10, n)and join(1, n)and(4, n−2) to the verticesb2 andb1 ofS(10,5), respectively.
Next, remove the edgee2 = (1, n − 2)(4, n) from C(10, n) and join(1, n − 2) and(4, n)
to the verticesc1 andc2 of S(10,5), respectively. Finally, remove the edgee3 = (3, n −
2)(6, n) fromC(10, n) and join(3, n − 2) and(6, n) to the verticesa1 anda2 of S(10,5),
respectively. Thus, we obtain a Hamiltonian cycleC(10, n + 5) which also includes the
edges(1, n + 5)(4, n + 3), (1, n + 3)(4, n + 5) and(3, n + 3)(6, n + 5). The extension of
aC(10,10) to aC(10,15) is shown inFig. 10.
Repeating the above construction, we obtain a Hamiltonian cycle inG(10, n) for each

n�10 andn 
= 12. �

Proposition 3. Supposek�3 is an integer. Then the5k × n chessboard admits a closed
(2,3)-knight’s tour if and only if

(i) n�10 is even andn 
= 12whenk is odd, or
(ii) n = 5,9,10,11or n�13whenk is even.
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Fig. 8. Hamiltonian cyclesC(10, n), n = 10,11,13,14,17.

Proof. First, we note that, by Corollary 1, the 5k × n chessboard does not admit a closed
(2,3)-knight’s tour ifn�4 orn=6,7,8,12. Further, ifk is odd, then the 5k×n chessboard
does not admit a closed(2,3)-knight’s tour ifn�9 or if n is odd (by Theorem 2).
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Fig. 9. The graphS(10,5).

Next, we show that every other 5k × n chessboard admits a closed(2,3)-knight’s tour.
The following construction shall be used throughout.
Construction(∗): SupposeG(m, n) has a Hamiltonian cycleC(m, n)which contains the

edges(1,1)(3,4) and(m − 2,3)(m,6). Take a copy ofCt = C(mt , n) and a copy ofCb =
C(mb, n). PlaceCb belowCt . Delete the edge(mt −2,3)(mt ,6) (respectively,(1,1)(3,4))
from Ct (respectively,Cb). Joining the vertex(mt − 2,3) (respectively,(mt ,6)) of Ct to
the vertex(1,1) (respectively,(3,4)) of Cb, we obtain a Hamiltonian cycleC(mt +mb, n)

inG(mt +mb, n) which contains the edges(1,1)(3,4) and(mt +mb −2,3)(mt +mb,6).
Case(1): k is odd
Supposen�16 is even andn 
= 18. Note that every Hamiltonian cycleC(5, n) con-

structed in Proposition 1 contains the edges(1,1)(3,4) and(3,3)(5,6). Take two copies
of C(5, n) and place one above the other. By the construction(∗), we obtain a Hamiltonian
cycle inG(10, n) which contains the edges(1,1)(3,4) and (8,3)(10,6). Repeating the
construction(∗) by takingCt = C(10, n) andCb = C(5, n), we have a Hamiltonian cycle
G(5k, n) which contains the edges(1,1)(3,4) and(5k − 2,3)(5k,6) for k�3 andn�16
is even exceptn = 18.
Supposen ∈ {10,14,18}. The required Hamiltonian cyclesC(10,10), C(10,14) and

C(15,14), C(15,18) are shown inFigs. 8and11, respectively. Now,C(10,18) can be
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Fig. 10. Extension of a closed (2, 3)-knight’s tour in the 10× 10 chessboard to one in the 10× 15 chessboard.

constructed by using the method described in the proof of Proposition 2 whileC(15,10)
can be obtained by taking a 90◦ clockwise rotation on the Hamiltonian cycleC(10,15) of
Fig. 10. Note that, all these Hamiltonian cyclesC(5s, n) contain the edges(1,1)(3,4) and
(5s − 2,3)(5s,6) for s = 2,3 andn ∈ {10,14,18}. Now, by takingCt = C(15, n) and
Cb=C(10, n) and applying the construction(∗), we obtain a Hamiltonian cycle inG(5k, n)
for all oddk�3 andn = 10,14,18.
Case(2): k is even
In this case, 5k ≡ 0(mod 10).
For n = 5, C(10i,5) can be obtained by a 90◦ clockwise rotation on the Hamiltonian

cycleC(5,10i) (constructed in Proposition 1), wherei�2.
Forn=9, note that the Hamiltonian cyclesC(20,9) andC(30,9) in Fig. 12both contain

the edges(1,1)(3,4) and(10i−2,3)(10i,6)wherei=2,3.As such, these twoHamiltonian
cycles can be used to obtain a Hamiltonian cycle inG(10i,9) for i�2 by the construction
(∗).
For n�10 andn 
= 12, note that all the Hamiltonian cycles obtained in the proof of

Proposition 2 contain the edges(1,1)(3,4) and(10i−2,3)(10i,6). So, by the construction
(∗), we have a Hamiltonian cycle inG(10i, n) for i�1, n�10 andn 
= 12.
This completes the proof.�

Putting all the above propositions together, we have the following result.

Theorem 10. The5k×nchessboardwhere(5k, n) 
= (5,18)admitsaclosed(2, 3)-knight’s
tour if and only if
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Fig. 11. Hamiltonian cyclesC(15,14) andC(15,18).

(i) k = 1 andn�16 is even; or
(ii) k = 2 andn�10andn 
= 12;or
(iii) k�3 is odd andn�10 is even andn 
= 12;or
(iv) k�4 is even andn = 5,9,10,11or n�13.
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Fig. 12. Hamiltonian cyclesC(20,9) andC(30,9).
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