Available online at www.sciencedirect.com
DISCRETE
MATHEMATICS

A note on (k, n)-arcs

José Felipe Voloch
Department of Mathematics, University of Texas, Austin, TX 78712, USA

Received 4 March 2003; received in revised form 10 December 2003; accepted 29 April 2004
Available online 4 March 2005

Abstract

We construct (k, n)-arcs in $\operatorname{PG}(2, q)$ with k approximately q^{2} / d and n approximately q / d for each divisor d of $q-1$. © 2005 Elsevier B.V. All rights reserved.

MSC: 51E21
Keywords: (k, n)-Arc; Projective plane

We denote by $\operatorname{PG}(2, q)$ the projective plane over the finite field $\mathrm{GF}(q)$ of q elements. A (k, n)-arc in $\operatorname{PG}(2, q)$ is a subset of k points with at most n on a line. In the First Irsee Conference on Finite Geometry, Hill talked about $(k, n)-\operatorname{arcs}$ with $n=(q+1) / 2$ and remarked that very little is known about (k, n)-arcs except in the extremal cases of $n=2,3, q-1, q$ (see [1,2]). The purpose of this note is to improve the knowledge of the intermediate cases by proving the following result.

Theorem 1. Let q be a power of the prime p. For any divisor d of $q-1$ with $2<d<p$, there exists a (k, n)-arc in $\operatorname{PG}(2, q)$ with

$$
k \geqslant\left(q^{2}+q+1\right) / d-(d-2) \sqrt{q}-11 d q
$$

and $n \leqslant(q+1) / d+(d-2) \sqrt{q}$.

E-mail address: voloch@math.utexas.edu.
URL: http://www.ma.utexas.edu/users/voloch.

Proof. Let d be a divisor of $q-1$ and let $f(x, y, z)$ be a homogeneous polynomial of degree d such that the curve $X: f(x, y, z)=0$ is smooth. For any $\operatorname{coset} C$ of the d th powers in $\operatorname{GF}(q)^{*}$, the set $\{(x, y, z) \in \operatorname{PG}(2, q) \mid f(x, y, z) \in C\}$ is well-defined and the union of those sets is the complement of X in $\operatorname{PG}(2, q)$. Therefore, one of these sets has at least $\left(q^{2}+q+1-\# X(\mathrm{GF}(q))\right) / d$ points. We select this set K, minus any lines it might contain, as our arc and the bound on k follows from the Weil bound applied to X once we show that K contains at most $11 d-24$ lines.

Let L be a line in $\operatorname{PG}(2, q)$, which we may assume by a change of coordinates to be $z=0$. The number of points of the intersection of our set with L is the number of points (x, y) in $\mathrm{PG}(1, q)$ with $f(x, y, 0)$ in the chosen coset. By choosing a coset representative c we want to count the number of solutions to $f(x, y)=c w^{d}$ and note that a given (x, y) will lead to d values of w. The equation $f(x, y, 0)=c w^{d}$ determines an algebraic curve and it is easy to check that it is either smooth or a union of d lines. If the curve is smooth, then the bound on the number of points (x, y) follows from the Weil bound applied to this curve. If it is a union of lines, then L is contained in K but then it was removed in the original construction.
To show the upper bound on the lines we note that the lines correspond to sets of d lines on the surface $f(x, y, z)=c w^{d}$. Finally, the surface contains at most $d(11 d-24)$ by the positive characteristic analogue of Salmon's theorem, proved in [4].

The construction of the theorem also works for $d=2$ provided that the surface $f(x, y, z)=$ $c w^{2}$ in the proof is an elliptic quadric so that it has no lines. The resulting arcs probably coincide with the Barlotti arcs (see [1]) but we have not checked this.

By taking a pencil of lines through a point of a (k, n)-arc, we get that $k \leqslant(n-1) q+n$ and there are only small improvements known to this bound in general (see [2]). A way to produce (k, n)-arcs is to consider algebraic curves of degree n with no linear components. For small n those are usually complete as arcs but k is much smaller than the above bound. We note that, in [3], we constructed smooth algebraic curves of degree n with $k=n(q+1+n) / 2$ points for $n=q-1-2 d$ for the divisors $d<(q-1) / 2$ of $q-1$. So these are somewhat large as (k, n)-arcs and it would be interesting to know whether they are complete.

References

[1] R. Hill, C. Love, On the $(22,4)$-arcs in $\mathrm{PG}(2,7)$ and related codes, Discrete Math. 266 (2003) 253-261.
[2] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding theory and finite projective spaces: update 2001, in: A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel, J.A. Thas (Eds.), Developments in Mathematics, vol. 3, Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference, Chelwood Gate, July 16-21, 2000, Kluwer Academic Publishers, Dordrecht, pp. 201-246.
[3] F. Rodriguez Villegas, J.F. Voloch, D. Zagier, Constructions of plane curves with many points, Acta Arith. 99 (2001) 85-96.
[4] J.F. Voloch, Surfaces in P^{3} over finite fields, in Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001), 219-226; Contemp. Math., 324, Amer. Math. Soc., Providence, RI, 2003.

