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Abstract

A modification of the well-known step-by-step process for solving Nevanlinna–Pick problems in the
class of R0-functions gives rise to a linear pencil H−λJ , where H and J are Hermitian tridiagonal matrices.
First, we show that J is a positive operator. Then it is proved that the corresponding Nevanlinna–Pick

problem has a unique solution iff the densely defined symmetric operator J−
1
2 H J−

1
2 is self-adjoint and

some criteria for this operator to be self-adjoint are presented. Finally, by means of the operator technique,
we obtain that multipoint diagonal Padé approximants to a unique solution ϕ of the Nevanlinna–Pick
problem converge to ϕ locally uniformly in C\R. The proposed scheme extends the classical Jacobi matrix
approach to moment problems and Padé approximation for R0-functions.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The connection with Jacobi matrices has led to numerous applications of spectral techniques
for self-adjoint operators in the theory of moment problems, orthogonal polynomials on the real
line, and Padé approximation. Let us recall some basic ideas of this interplay. First, note that one
of the key tools in relating these theories is the class R0 of all functions having the representation

ϕ(λ) =

∫
R

dσ(t)
t − λ

, (1.1)
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where σ is a probability measure, that is,

R dσ(t) = 1. If the support supp σ of σ is contained

in [α, β] we will say that ϕ ∈ R[α, β].
Consider a probability measure σ such that all the moments

sn :=

∫
R

tndσ(t), n ∈ Z+ := N ∪ {0} (1.2)

are finite. In this case, the corresponding function ϕ has the following asymptotic expansion:

ϕ(λ) = −
s0

λ
−

s1

λ2 − · · · −
s2n

λ2n+1 + o


1

λ2n+1


, λ→∞, (1.3)

for every n ∈ Z+ (here and throughout in the sequel λ→∞ means that λ tends to ∞ non-
tangentially, that is, inside the sector ε < arg λ < π − ε for some ε > 0). In view of the
Hamburger–Nevanlinna theorem [1], the classical moment problem reads as follows.

Hamburger moment problem. Is the function ϕ ∈ R0 satisfying (1.3) uniquely determined by the
sequence {s j }

∞

j=0 of moments?
The moment problem is called determinate if ϕ is uniquely determined. Otherwise the moment

problem is said to be indeterminate. In fact, one can give an answer to the question in terms of the
underlying Jacobi operators generated by Jacobi matrices. To see Jacobi matrices in this context,
note that one can expand ϕ into the following continued fraction:

ϕ(λ) = −
1

λ− a0 −
b2

0

λ−a1−
b2
1

...

= −
1

λ− a0
−

b2
0

λ− a1
−

b2
1

λ− a2
− · · · , (1.4)

where a j are real numbers, b j are positive numbers (see [1,40,49]). Moreover, numbers a j and
b j can be explicitly expressed in terms of the moments s0, . . . , s2 j+1 [1]. Continued fractions of
the form (1.4) are called J -fractions [35,49]. With the continued fraction (1.4) one can associate
a Jacobi matrix H and its truncation H[0,n−1]:

H =


a0 b0
b0 a1 b1

b1 a2
. . .

. . .
. . .

 , H[0,n−1] =


a0 b0

b0 a1
. . .

. . .
. . . bn−2

bn−2 an−1

 .
Let ℓ2

[0,∞) denote a Hilbert space of complex square summable sequences (x0, x1, . . .) equipped
with the inner product

(x, y) =

∞−
i=0

xi yi , x, y ∈ ℓ2
[0,∞).

Now, in the standard way, we can define a minimal closed operator H acting in ℓ2 generated by
the matrix H [1,12]. We will denote the domain of H and the range of H by dom H and ran H ,
respectively. It is easy to see that H is symmetric, i.e.

(H x, y) = (x, H y), x, y ∈ dom H.
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Moreover, it is well known that H is self-adjoint if and only if the corresponding moment
problem is determinate and the solution of the problem admits the representation

ϕ(λ) =


(H − λ)−1e0, e0


where e = (1, 0, . . .)⊤ is a column vector (see [1,42]). In the indeterminate case, a description of
all ϕ ∈ R0 satisfying (1.3) can be found in [1,15,42] (see also [24] where the operator approach
to truncated moment problems was proposed). In both cases, we have

−
Qn(λ)

Pn(λ)
=


(H[0,n−1] − λ)−1e0, e0


= −

1
λ− a0

− · · · −
b2

n−2

λ− an−1
,

where Pn are orthogonal polynomials with respect to σ , and Qn are polynomials of the second
kind (see [1,40,42]). It is an elementary fact of the continued fraction theory (see, for instance,
[1,5,35]) that

ϕ(λ)+
Qn(λ)

Pn(λ)
= O


1

λ2n+1


, λ→∞. (1.5)

In other words, relation (1.5) means that the rational function −Qn/Pn is the nth diagonal
Padé approximant to ϕ at ∞ (for more details on Padé approximants see [5]). Now, we see
that in the self-adjoint case, convergence of diagonal Padé approximants appears as the strong
resolvent convergence of the finite matrix approximations H[0,n] to H . So, if the moment problem
is determinate then the corresponding diagonal Padé approximants converge to the solution
ϕ locally uniformly in C \ R. This statement for the class R[α, β] is known as the Markov
theorem [40]. The above-described scheme has been recently extended to the case of rational
perturbations of Nevanlinna functions [20–22]. Also, the scheme was adapted to the case of
complex Jacobi matrices [10] and generalized to the case of band matrices [9].

The main goal of this paper is to generalize the scheme to the case of Nevanlinna–Pick
problems and to prove convergence of related multipoint diagonal Padé approximants. To show
our purpose more precisely, let us recall that the classical Hamburger moment problem is the
limiting case of the following problem (see [1,27,36]).

Nevanlinna–Pick problem. Let {zk}
∞

k=0 be a sequence of distinct numbers from the upper half-
plane C+ and let ϕ ∈ R0. Define numbers w j := ϕ(z j ). Is the function ϕ ∈ R0 satisfying
the interpolation relation ϕ(z j ) = w j , j ∈ Z+, uniquely determined by the given data
{zk}

∞

k=0, {wk}
∞

k=0?
In view of the classical uniqueness theorem for analytic functions, the answer to this question

is trivial if the sequence {zk}
∞

k=0 has at least one accumulation point in C+. So, in what follows
we will suppose that the sequence {zk}

∞

k=0 does not have any accumulation point in C+. In other
words, all the accumulation points of the sequence {zk}

∞

k=0 lie in R.
Like for the moment problem case, the Nevanlinna–Pick problem is called determinate if ϕ

is uniquely determined. Otherwise the Nevanlinna–Pick problem is said to be indeterminate. We
should also note that diagonal Padé approximants at ∞ are the limiting case of the following
multipoint diagonal Padé approximants.

Definition 1.1 ([5]). The nth multipoint diagonal Padé approximant for the function ϕ at the
points {z0, z0, . . . , z j , z j , . . .} is defined as a ratio −Qn/Pn of two polynomials Qn, Pn of
degrees at most n − 1 and n, respectively, such that the function Pnϕ + Qn vanishes at the
points z0, z0, . . . , zn−1, zn−1.
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It appears that the problem of finding multipoint diagonal Padé approximants for the R0-
function ϕ at the points {z0, z0, . . . , z j , z j , . . .} is closely related to a continued fraction
expansion of the following type

−
1

a(2)0 λ− a(1)0

−
b2

0(λ− z0)(λ− z0)

a(2)1 λ− a(1)1

−
b2

1(λ− z1)(λ− z1)

a(2)2 λ− a(1)2

− · · · , (1.6)

where a(1)j are real numbers and a(2)j , b j are positive numbers. This continued fraction gives rise
to a tridiagonal linear pencil H − λJ , where H and J are semi-infinite tridiagonal matrices [23]
(see also [50] where tridiagonal linear pencils associated with general continued fractions of
type (1.6) were introduced). In this paper, we firstly obtain that J generates a positive operator.

Then we introduce a densely defined symmetric operator J−
1
2 H J−

1
2 and present criteria for this

operator to be self-adjoint. Next, we prove that the Nevanlinna–Pick problem in question has a

unique solution if and only if J−
1
2 H J−

1
2 is self-adjoint. Finally, we show that if J−

1
2 H J−

1
2 is

self-adjoint then the locally uniform convergence of the multipoint diagonal Padé approximants

−
Qn+1(λ)

Pn+1(λ)
=


J

−
1
2

[0,n]
H[0,n] J

−
1
2

[0,n]
− λ

−1

J
−

1
2

[0,n]
e0, J

−
1
2

[0,n]
e0


to the unique solution

ϕ(λ) =


J−

1
2 H J−

1
2 − λ

−1
J−

1
2 e0, J−

1
2 e0


of the Nevanlinna–Pick problem arises as the resolvent convergence.

The paper is organized as follows. In Section 2 we present the step-by-step process for
solving the Nevanlinna–Pick problems and associated sequences of polynomials. In Section 3, a
tridiagonal linear pencil is introduced and basic properties of the operator J are given. The one-
to-one correspondence between tridiagonal linear pencils and the Nevanlinna–Pick problems in
question is shown in Section 4. The next section is concerned with the Weyl circles. Section 6
reveals the underlying symmetric operators. In Section 7, we characterize the determinacy of the

underlying Nevanlinna–Pick problems in terms of the self-adjointness of J−
1
2 H J−

1
2 . After that,

in Section 8, for the determinate case, we prove the locally uniform convergence of multipoint
diagonal Padé approximants for R0-functions.

2. The modified multipoint Schur algorithm

As is known, the Schur transformation is a powerful tool in solving moment and interpolation
problems (see [1,3]). The starting point of our analysis is the following modification of the Schur
transformation.

Proposition 2.1 (Cf. [23]). Let ϕ ∈ R0 and let z ∈ C+ be a fixed number. Then there exist
unique numbers a(1), a(2) ∈ R and b > 0 such that the function ϕ1 defined by the equality

ϕ(λ) = −
1

a(2)λ− a(1) + b2(λ− z)(λ− z)ϕ1(λ)
(2.1)
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belongs to R0 ∪ {0}, that is, ϕ1 has the representation (1.1) with a probability measure in the
case ϕ1 ≢ 0. Moreover, we have that

b2
= a(2) − 1. (2.2)

Proof. To see that the numbers a(1), a(2) are uniquely determined, let us substitute λ for z and z
in (2.1). We thus get

a(2)z − a(1) = −
1
ϕ(z)

, a(2)z − a(1) = −
1
ϕ(z)

. (2.3)

Eliminating from the above relations a(1) and a(2), one can obtain the following formulas:

a(1) =

∫
R

tdσ(t)

|t − z|2

 ∫
R

dσ(t)
t − z

−2

, a(2) =

∫
R

dσ(t)

|t − z|2

 ∫
R

dσ(t)
t − z

−2

. (2.4)

Further, it follows from the Schwarz lemma that

ϕ1(λ) = −

1
ϕ(λ)

+ a(2)λ− a(1)

(λ− z)(λ− z)
=

∫
R

dµ(t)
t − λ

(2.5)

(the proof of this fact is in line with that of [23, Lemma 3.1]). Choosing b > 0 in the following
way:

b2
=

∫
R

dµ(t)

and defining ϕ1 := ϕ1/b2 we get that the function ϕ1 possesses the integral representation (1.1)
with a probability measure. Finally, by taking λ = iy and y → ∞ in (2.5) we get (2.2). �

Remark 2.2. It should be noted that for ϕ ∈ R[α, β] this modification of the Schur algorithm
was presented in [23, Lemma 3.1]. However, its proof is valid for ϕ ∈ R0. A similar
transformation for Caratheodory functions was proposed in [19].

Let ϕ be a non-rational function of the class R0, i.e. ϕ admits the representation (1.1) with a
probability measure which has an infinite support. Let also an infinite sequence {zk}

∞

k=0 ⊂ C+ of
distinct numbers be given. Since ϕ is not rational the given data give rise to infinitely many steps
of the step-by-step process. So, we have infinitely many linear fractional transformations of the
form (2.1) which lead to the following continued fraction:

−
1

a(2)0 λ− a(1)0

−
b2

0(λ− z0)(λ− z0)

a(2)1 λ− a(1)1

−
b2

1(λ− z1)(λ− z1)

a(2)2 λ− a(1)2

− · · · (2.6)

(for more details, see [23]). It should be noted that general continued fractions associated with
finding multipoint Padé approximants were introduced in [32] and studied in [33,34].

It is immediate from the construction that the (n + 1)th convergent of (2.6)

−
Qn+1(λ)

Pn+1(λ)
= −

1

a(2)0 λ− a(1)0

− · · · −
b2

n−1(λ− zn−1)(λ− zn−1)

a(2)n λ− a(1)n
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satisfies the following interpolation relation:

ϕ(z j ) = −
Qn+1(z j )

Pn+1(z j )
, j = 0, . . . , n. (2.7)

Since ϕ ∈ R0 and the coefficients a(1)j , a(2)j , b j are real, one also has

ϕ(z j ) = −
Qn+1(z j )

Pn+1(z j )
, j = 0, . . . , n.

So, we have just concluded the following.

Proposition 2.3. The rational function −Qn+1/Pn+1 is the (n + 1)th multipoint diagonal Padé
approximant to ϕ at the points {z0, z0, . . . , z j , z j , . . .}.

It is well known that denominators and numerators of the convergents of a continued fraction
satisfy a three-term recurrence relation (see, for instance, [35]). In particular, for the continued
fraction (2.6) the recurrence relation takes the following form:

u j+1 − (a(2)j λ− a(1)j )u j + b2
j−1(λ− z j−1)(λ− z j−1)u j−1 = 0, j ∈ N. (2.8)

Further, the polynomials Pj of the first kind are solutions u j = Pj (λ) of the system (2.8) with
the initial conditions

u0 = 1, u1 = a(2)0 λ− a(1)0 . (2.9)

Similarly, the polynomials of the second kind Q j (λ) are solutions u j = Q j (λ) of the system
(2.8) subject to the following initial conditions:

u0 = 0, u1 = −1. (2.10)

Remark 2.4. Note that the polynomials Pj are orthogonal with respect to the varying measures
dσ(t)∏ j−1

k=0 |t−zk |
2

(see [29,37], [47, Section 6.1]). Moreover, for ϕ ∈ R[α, β] an operator treatment

of the relation of the polynomials Pj to orthogonal rational functions was presented in [23]
(see [17, Section 9.5], where this relation is also discussed). It should be also remarked that
some orthogonality relations for polynomials and rational functions related to general continued
fractions of type (2.6) were obtained in [34,50] (see also [51], where biorthogonality properties of
rational functions related to multipoint Padé approximation were studied and concrete examples
connected with generalized hypergeometric functions were constructed).

3. Tridiagonal linear pencils associated with R0-functions

In order to see linear pencils in our context, let us note that the recurrence relation (2.8) can
be renormalized to the following one:

(b j−1 − λd j−1)u j−1 + (a j − λc j )u j + (b j − λd j )u j+1 = 0, j ∈ N, (3.1)

where the numbers a j , b j , c j , d j are defined as follows:

a j = a(1)j , b j = z j b j , c j = a(2)j , d j = b j , j ∈ Z+,
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and the transformation u →u has the following form:

u0 = u0, u j =
u j

b0 · · · b j−1(z0 − λ) · · · (z j−1 − λ)
, j ∈ N. (3.2)

Thus, we have two associated sequences Pj and Q j of rational functions obtained from the
polynomial sequences Pj and Q j , respectively, by means of the transformation (3.2). In contrast
to the polynomial case, the rational functions Pj are not orthogonal with respect to the original
measure σ since∫

R
P0(t)P1(t)dσ(t) =

∫
R
P1(t)dσ(t) = 1 − a(2)0 (3.3)

and, due to (2.4), 1 − a(2)0 ≠ 0 for any z0 ∈ C+. Despite this, some orthogonality properties
remain valid (see [11, Theorem 2.10]). It should also be noted that some orthogonal proper
rational functions satisfy a relation similar to (3.1) [4, p. 541] (see also [17] for the recurrence
relations for orthogonal rational functions).

The relation (3.1) naturally leads to a linear pencil H − λJ , where

H =


a0 b0

b0 a1 b1

b1 a2
. . .

. . .
. . .

 , J =


c0 d0
d0 c1 d1

d1 c2
. . .

. . .
. . .


are Jacobi matrices. For an infinite matrix A, we denote by A[ j,k] the square sub-matrix obtained
by taking rows and columns l = j, j + 1, . . . , k ≤ ∞. For example, for finite j and k we have
that

H[ j,k] =

a j b j 0

b j
. . .

0 ak

 , J[ j,k] =

c j d j 0

d j
. . .

0 ck

 .
By J we also denote the minimal closed operator on ℓ2

[0,∞) generated by the matrix J [1].

Obviously, J is a symmetric operator. Besides, due to (2.2), we have the relation c j = 1 + d2
j ,

which gives us the following factorization of J :

J = L∗L =


1 d0
0 1 d1

0 1
. . .

. . .
. . .




1 0
d0 1 0

d1 1
. . .

. . .
. . .

 . (3.4)

The factorization of J allows us to say a bit more about J .

Proposition 3.1. The operator J is self-adjoint and positive, that is,

(J x, x) > 0, x ∈ dom J \ {0}.

In particular, ker J = {0}.
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Proof. Let us consider the Hermitian form (Jξ, ξ) on finitely supported sequences ξ , that is,
ξ = (ξ0, ξ1, . . . , ξn, 0, 0, . . .)⊤. By virtue of (3.4), we have that

(Jξ, ξ) = (Lξ, Lξ) ≥ 0.

Further, let us prove that ker J ∗
= {0}. Suppose the converse, that is, there exists η ∈ ℓ2 such

that J ∗η = 0 and η ≠ 0. Taking into account the structure of J we get the equality

0 = (J ∗η, η) = |η0|
2
+ |d0η0 + η1|

2
+ · · · + |dn−1ηn−1 + ηn|

2
+ · · · ,

which implies η = 0. So, ker J = ker J ∗
= {0}. This contradiction also shows that

∞−
k=0

|pk(0)|2 = ∞, (3.5)

where p j are polynomials of the first kind associated with J . Since the relation (3.5) doesn’t
hold true for Jacobi operators with deficiency indices (1, 1) (see [12,42]), we obtain that J
is self-adjoint. The statement of the proposition also immediately follows from [12, Theorem
VII.1.4]. �

Remark 3.2. It has been recently proved [11] that if ϕ ∈ R[α, β] and zk → ∞ then

(J x, x) ≥ δ(x, x), x ∈ ℓ2,

for some δ > 0. Furthermore, in this case the operator J is a compact perturbation of I and, in
fact, the linear pencil H − λJ is a compact perturbation of the classical pencil H0 − λI (which
corresponds to the limiting case zk = ∞ for k = 0, 1, 2, . . .). It should be noted that for the case
of orthogonal Laurent polynomials a similar tridiagonal pencil was considered in [18]. Roughly
speaking, the case of orthogonal Laurent polynomials corresponds to the multiple interpolation
at 0 and ∞, which is known as the strong moment problem on the real line [35]. An operator
approach to the strong moment problem was given in [31]. It is also worth noting that, in the
matrix case, Jacobi type symmetric operators related to the matrix strong moment problems were
presented and studied in [44,45].

Since ker J = {0} and J is self-adjoint, we can consider the self-adjoint operator J−
1
2 , which

is not necessarily bounded. However, the following statement holds true.

Proposition 3.3. We have that

e j ∈ dom J−
1
2 , j ∈ Z+, (3.6)

where the vectors e0 = (1, 0, 0, . . .)⊤, e1 = (0, 1, 0, . . .)⊤, . . . form the standard basis in ℓ2.

Proof. It is the basic spectral theory that for the positive operator J there exists a resolution of
the identity Et such that

J f =

∫
∞

0
tdEt f, f ∈ dom J,

and f ∈ dom J if and only if


∞

0 t2d(Et f, f ) < ∞ [2, Section 66]. Moreover, we also have that

J−
1
2 f =

∫
∞

0

1
√

t
dEt f, f ∈ dom J−

1
2 ,
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and f ∈ dom J−
1
2 if and only if


∞

0
1
t d(Et f, f ) < ∞. Now, (3.6) is equivalent to∫

∞

0

1
t

d(Et e j , e j ) < ∞, j ∈ Z+.

First we will prove that∫
∞

0

1
t

d(Et e0, e0) < ∞. (3.7)

For simplicity, let us define ν = (E·e0, e0) and introduce the similar measures νn = (E (n)· e0, e0)

for the truncations J[0,n], where E (n)· is such that

J[0,n] =

∫
∞

0
tdE (n)t , n ∈ Z+.

Next, it is a standard fact of theory of moment problems [1] that∫
∞

0
ψ(t)dνn(t) →

∫
∞

0
ψ(t)dν(t), n → ∞,

for any simple function ψ (that is, ψ is measurable and assumes only a finite number of values).
Now, recall that in [23, Lemma 6.1] it was proved that∫

∞

0

1
t

dνn(t) =


J−1
[0,n]

e0, e0


≤ 1, n ∈ Z+. (3.8)

Thus, Fatou’s lemma for varying measures [41, Proposition 17, p. 231] and (3.8) yield∫
∞

0

1
t

dν(t) ≤ lim inf
n→∞

∫
∞

0

1
t

dνn(t) ≤ 1. (3.9)

The rest is a consequence of (3.7). Indeed, it is well known that for any λ from the resolvent set
ρ(J ) of the operator J we have the following formula for the diagonal Green function:

(J − λ)−1e j , e j


= p j (λ)


p j (λ)


(J − λ)−1e0, e0


+ q j (λ)


, j ∈ Z+, (3.10)

where p j and q j are polynomials of the first and second kinds, respectively, associated with
the Jacobi matrix J (see for example [10, Theorem 2.10], [28, Proposition 2.2]). Putting
λ = −x, x > 0, into formula (3.10), it can be rewritten as follows:∫

∞

0

1
t + x

d(Et e j , e j ) = p j (−x)


p j (−x)

∫
∞

0

1
t + x

dν(t)+ q j (−x)


, j ∈ N,

where p j (−x) =
det(J[0, j−1]+x)

d0···d j−1
> 0 for x ≥ 0. Now, it remains to apply the Fatou lemma to

∞

0
1

t+x d(Et e j , e j ) as x → 0 and to use (3.7). �

Remark 3.4. The main ingredient in the proof was obtaining (3.7). Another way to prove it is
through the Darboux transformations. Namely, let us consider a Jacobi matrix J1 = L L∗ and let
ν∗ be a corresponding probability measure associated with J1. Then it follows from [16, Theorem
3.4] that

dν(t) = ctdν∗(t), c > 0.

The latter relation immediately implies (3.7).
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To end this section, note that we can now say more about the sequence


J−1
[0,n]

e0, e0


. Namely,

the following relation holds true:
J−1
[0,n]

e0, e0


→ 1, as n → ∞. (3.11)

Indeed, by applying [28, Formula (2.15)] we see that


J−1
[0,n]

e0, e0


, n ∈ Z+, are convergents of

the continued fraction

1
c0

−
d0

c1
−

d1

c2
− · · · .

For as long as c j = 1 + d2
j , applying the remark to the Śleszyński–Pringsheim theorem given

on [35, p. 93] implies (3.11).

4. Relations between Nevanlinna–Pick problems and linear pencils

In this section we show that there exists a one-to-one correspondence between the linear
pencils under consideration and the Nevanlinna–Pick problems in question. We also re-examine
some facts for the polynomials Pj and Q j which are well known for orthogonal polynomials.

We begin with the following connection between the polynomials of the first and second kinds
Pj , Q j and the truncated linear pencils λJ[0, j] − H[0, j], which in the classical case can be found
in [12, Section 7.1.2] and [4, Section 6.1].

Proposition 4.1. The polynomials Pj and Q j , j ∈ N, can be found by using the formulas

Pj (λ) = det(λJ[0, j−1] − H[0, j−1]), Q j (λ) = det(λJ[1, j−1] − H[1, j−1]). (4.1)

The zeros of the polynomials Pj and Q j are real. Moreover, the polynomials Pj and Q j do not
have common zeros.

Proof. Formula (4.1) immediately follows from the definition of Pj and Q j by using the Laplace
expansions of the determinants in terms of the last row. Since J[0, j−1] is strictly positive, one can
rewrite the first relation in (4.1) as follows:

Pj (λ) = det J 1/2
[0, j−1]

det

λ− J−1/2

[0, j−1]
H[0, j−1] J−1/2

[0, j−1]


det J 1/2

[0, j−1]
.

Clearly, J−1/2
[0, j−1]

H[0, j−1] J−1/2
[0, j−1]

is a self-adjoint matrix. Thus, the latter relation yields the
fact that the zeros of Pj are real. Similarly, one can show that the zeros of Q j are real. The
last statement follows by induction via applying the Laplace expansion of the determinant
det(λJ[0, j−1] − H[0, j−1]) in terms of the first row. �

By induction, one easily gets from (3.1) the Liouville–Ostrogradsky formula

Qn+1(λ)Pn(λ)− Qn(λ)Pn+1(λ) =

n−1∏
k=0

b2
k (λ− zk)(λ− zk), (4.2)

for every n ∈ Z+ (see [11]). Going further in this direction, we should note that, sometimes, it is
very useful to have (3.1) in the following matrix form:

(H − λJ )π[0, j](λ) = −(b j − λd j )Pj+1(λ)e j + (b j − λd j )Pj (λ)e j+1, (4.3)

(H − λJ )ξ[0, j](λ) = −(b j − λd j )Q j+1(λ)e j + (b j − λd j )Q j (λ)e j+1 + e0, (4.4)

where the vectors π[0, j](λ) and ξ[0, j](λ) are defined as follows:
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π[0, j](λ) =
P0(λ), P1(λ), . . . , Pj (λ), 0, 0, . . .

⊤
,

ξ[0, j](λ) =
Q0(λ), Q1(λ), . . . , Q j (λ), 0, 0, . . .

⊤
.

For example, by virtue of (4.3) we get the following generalization of the Christoffel–Darboux
formula.

Proposition 4.2. We have that for j ∈ Z+

(λ− ζ )

j−
k=0

(Pk(λ)+ dk−1Pk−1(λ))(Pk(ζ )+ dk−1Pk−1(ζ ))

=
Pj+1(λ)Pj (ζ )− Pj+1(ζ )Pj (λ)

j−1∏
k=0

b2
k (λ− zk)(ζ − zk)

, (4.5)

where d−1 = 0 for convenience and λ, ζ ∈ C+ \ {zk}
j
k=0.

Proof. It clearly follows from (4.3) that
(H − λJ )π[0, j](λ), π[0, j](ζ )


= −(b j − λd j )Pj+1(λ)Pj (ζ ), (4.6)

(H − ζ J )π[0, j](λ), π[0, j](ζ )


= −(b j − ζd j )Pj+1(ζ )Pj (λ). (4.7)

Subtracting (4.6) from (4.7) and using (3.2) we get the following relation:

(λ− ζ )

Jπ[0, j](λ), π[0, j](ζ )


=

Pj+1(λ)Pj (ζ )− Pj+1(ζ )Pj (λ)

j−1∏
k=0

b2
k (λ− zk)(ζ − zk)

. (4.8)

Now, observe that due to (3.4) we have
Jπ[0, j](λ), π[0, j](ζ )


=

Lπ[0, j](λ), Lπ[0, j](ζ )


and, so, from (4.8) we obtain (4.5). �

Remark 4.3. To see how it is related to the classical Christoffel–Darboux relation [1] let us
note that, according to (2.4) and (2.2), we have that dk → 0 and b2

k/|zk |
2

→ b2
k ≠ 0 as

zk → ∞, k = 0, . . . , j , provided that the numbers

R tkdσ(t) are finite for k = 0, . . . , j .

Consequently, the classical Christoffel–Darboux formula is the limiting case of (4.5). Moreover,
it is shown in [23, Theorem 2.2] (see also [11, Section 4]) that the sequence {Pk +dk−1Pk−1}

∞

k=0
is a sequence of rational functions orthogonal with respect to the original measure σ (see [17]
for further information on orthogonal rational functions).

In what follows we will also need the following relation:
j−

k=0

|ω(Pk(λ)+ dk−1Pk−1(λ))+ Qk(λ)+ dk−1Qk−1(λ)|
2
−
ω − ω

λ− λ

=

J (ωπ[0, j](λ)+ ξ[0, j](λ)), (ωπ[0, j](λ)+ ξ[0, j](λ))


−
ω − ω

λ− λ

=
1

Im λ

|ωPj (λ)+ Q j (λ)|
2

j−1∏
k=0

b2
k |λ− zk |

2

Im
ωPj+1(λ)+ Q j+1(λ)

ωPj (λ)+ Q j (λ)
, (4.9)
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where ω ∈ C+ and λ ∈ C+ \ {zk}
j
k=0. Formula (4.9) can be easily obtained by straightforward

manipulations with (4.3) and (4.4) (for the classical case see [1, Section I.2.1]).
Next, by following [28], let us introduce m-functions of the truncated linear pencils.

Definition 4.4. Let j and n be nonnegative integers such that j ≤ n. The function

m[ j,n](λ) =


(H[ j,n] − λJ[ j,n])

−1e j , e j


(4.10)

will be called the m-function of the linear pencil H[ j,n] − λJ[ j,n].

To see the correctness of the above given definition it is sufficient to recall that J[ j,n] is positive
definite in view of Proposition 3.1 and to rewrite (4.10) in the following form:

m[ j,n](λ) =


J

−
1
2

[ j,n]
H[ j,n] J

−
1
2

[ j,n]
− λ

−1

J
−

1
2

[ j,n]
e j , J

−
1
2

[ j,n]
e j


. (4.11)

Literally as in the classical case (see for instance [28]), one obtains that m-functions satisfy the
Riccati equation.

Proposition 4.5 ([23]). The m-functions m[ j,n] and m[ j+1,n] are related by the equality

m[ j,n] = −
1

a(2)j λ− a(1)j + b2
j (λ− z j )(λ− z j )m[ j+1,n](λ)

. (4.12)

The latter statement allows us to see the relation of m-functions to multipoint diagonal Padé
approximants.

Proposition 4.6. Let θn = det J[0,n]/ det J[1,n] and ηn = det J[0,n]/ det J[0,n−1]. Then the
function θnm[0,n] is an R0-function and

m[0,n](λ) = −
Qn+1(λ)

Pn+1(λ)
, (4.13)

that is, m[0,n] is the (n + 1)th multipoint diagonal Padé approximant for ϕ. Moreover, we have
that −ηn Pn/Pn+1 ∈ R0.

Proof. Formula (4.13) is implied by the relation (4.12). Now, from Proposition 2.3 we see that
m[0,n] is the (n + 1)th multipoint diagonal Padé approximant for ϕ. To see that θnm[0,n] ∈ R0, it
is enough to recall that Φ ∈ R0 if and only if

Im Φ(λ)
Im λ

> 0, λ ∈ C \ R,

and supy>0 |yΦ(iy)| = 1 [1, Section III.1.1]. The first condition is easily verified by means of
(4.11) and the second one follows from (4.13). In the same way, by noticing that

−
Pn(λ)

Pn+1(λ)
= −

det(λJ[0,n−1] − H[0,n−1])

det(λJ[0,n] − H[0,n])
=


(H[0,n] − λJ[0,n])

−1en, en


one can check that −ηn Pn/Pn+1 ∈ R0 since ηn > 0. �

Due to −θn Qn+1/Pn+1 ∈ R0 and −ηn Pn/Pn+1 ∈ R0, we get the following.
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Corollary 4.7. We have that:

(i) The zeros of Qn+1 and Pn+1 interlace.
(ii) The zeros of Pn and Pn+1 interlace.

Summing up Propositions 2.1 and 4.6, we conclude the following.

Theorem 4.8. There is a one-to-one correspondence between the linear pencils in question and
the data {zk}

∞

k=0, {wk}
∞

k=0 of the Nevanlinna–Pick problems.

Proof. It follows from formulas (2.2) and (2.4) that the data {zk}
∞

k=0, {wk}
∞

k=0 uniquely determine
the linear pencil, that is, the following numbers:

a j = a(1)j , b j = z j b j , c j = a(2)j , d j = b j , j ∈ Z+, (4.14)

where a(1)j ∈ R, a(2)j > 0, b j > 0, z j ∈ C+, and c j = 1 + d2
j . Let us suppose that we are given

a set of numbers that can be represented as above. Then we see from (4.14) that z j = b j/d j .
Finally, by virtue of Proposition 4.6 we get that the numbers w j are uniquely determined by the
formula

w j = −
Qn(z j )

Pn(z j )

for large enough n. It remains to note that in view of the precompactness of the family −Qn/Pn
(see Proposition 8.1) and (3.11) there exists a function ϕ ∈ R0 which satisfies the underlying
interpolation relation ϕ(z j ) = w j , j ∈ Z+. �

5. The Weyl circles

The classical Weyl circles approach to Nevanlinna–Pick problems can be found in [27, Section
IV.6]. In this section, following [1, Section I.2.3], we adapt the notion of the Weyl circles to the
linear pencil case.

Let us begin by considering the function

ω j (λ, τ ) = −
Q j (λ)− τQ j−1(λ)

Pj (λ)− τ Pj−1(λ)
, (5.1)

where λ ∈ C \ R, τ ∈ R ∪ {∞}, and j ∈ N. Obviously, from the definition we have that

ω j (λ,∞) = ω j−1(λ, 0).

Moreover, in view of (2.7) we have that ω j (zk, τ ) = wk and ω j (zk, τ ) = wk for j =

k + 2, k + 3, . . . . So, formula (5.1) gives a parametrization of [ j − 1/j] rational solutions to the
truncated Nevanlinna–Pick problems. Another such a parametrization is given in [17, Theorem
6.1.3] in terms of orthogonal rational functions of the first and second kinds.

Due to Proposition 4.6, the number −
Pj−1(λ)

Pj (λ)
is not real for any λ ∈ C \ R and, therefore, we

see that the set

K j (λ) = {ω j (λ, τ ) : τ ∈ R ∪ {∞}}

is a circle. In addition, we have that K j (λ) = K j (λ). So, we can consider only the case when
λ ∈ C+. The following statement contains a characterization of the circle K j (λ).
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Theorem 5.1. Let λ ∈ C+ \ {zk}
j−1
k=0 be a fixed number. Then the center of K j (λ) is

−
Q j (λ)Pj−1(λ)− Q j−1(λ)Pj (λ)

Pj (λ)Pj−1(λ)− Pj−1(λ)Pj (λ)
, (5.2)

and the radius of K j (λ) is

1

|λ− λ|

1
j−1∑
k=0

|Pk(λ)+ dk−1Pk−1(λ)|2

. (5.3)

Besides, the equation of K j (λ) can be represented as follows (setting d−1 = 0):

j−1−
k=0

|ω(Pk(λ)+ dk−1Pk−1(λ))+ Qk(λ)+ dk−1Qk−1(λ)|
2
−
ω − ω

λ− λ
= 0. (5.4)

Proof. By the same reasoning as in the proof of [1, Theorem 1.2.3] we conclude that

ω j (λ, τ ) = −
Q j (λ)Pj−1(λ)− Q j−1(λ)Pj (λ)

Pj (λ)Pj−1(λ)− Pj−1(λ)Pj (λ)
+

Q j (λ)Pj−1(λ)− Q j−1(λ)Pj (λ)

Pj (λ)Pj−1(λ)− Pj−1(λ)Pj (λ)

 eiθ ,

where θ = θ(τ ) is real. The latter relation immediately gives us (5.2) and the formula for the
radius of K j (λ)Q j (λ)Pj−1(λ)− Q j−1(λ)Pj (λ)

Pj (λ)Pj−1(λ)− Pj−1(λ)Pj (λ)

 ,
which by means of (4.2) and (4.5) can be reduced to (5.3).

The rest of the proof is identical to the proof of [1, Theorem 1.2.3]. �

Denote by K j (λ) the closure of the interior of K j (λ). Then the following statement holds
true.

Corollary 5.2. Let λ ∈ C+ \ {zk}
j−1
k=0 be a fixed number. Then the set K j (λ) is a set of numbers

ω ∈ C satisfying the inequality

j−1−
k=0

|ω(Pk(λ)+ dk−1Pk−1(λ))+ Qk(λ)+ dk−1Qk−1(λ)|
2

≤
ω − ω

λ− λ
. (5.5)

Furthermore, we can get a relation between the discs K j+1(λ) and K j (λ).

Corollary 5.3. We have that

K j+1(λ) ⊆ K j (λ), j ∈ N.

Besides this, the circles K j+1(λ) and K j (λ) have at least one common point.

Proof. The proof of the both corollaries is in line with the proof of the analogous statements
given in [1, Section 2.3]. �

Now, we see that there are two options for the sequence K j (λ). Namely, we can have a limit
point or a limit circle.
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Theorem 5.4. Let λ ∈ C+ \ {zk}
∞

k=0 be a fixed number. Then the sequence K j (λ) converges to a
point iff

∞−
k=0

|Pk(λ)+ dk−1Pk−1(λ)|
2

= ∞.

Proof. The proof is immediate from Corollary 5.3 and (5.3). �

Next, we obtain the existence of the Weyl solution.

Theorem 5.5. For every λ ∈ C+ \ {zk}
∞

k=0 there exists a number ω = ω(λ) ∈ C+ such that

∞−
k=0

|ω(Pk(λ)+ dk−1Pk−1(λ))+ Qk(λ)+ dk−1Qk−1(λ)|
2

≤
ω − ω

λ− λ
. (5.6)

Proof. The statement is a straightforward consequence of Corollary 5.3 and the inequality
(5.5). �

Finally, it should be noticed that the above-mentioned parametrization from [17] leads to
a slightly different but very similar theory of nested disks [17, Section 10]. That theory is
equivalent to the presented one in the sense that the underlying Nevanlinna–Pick problems are
the same.

6. The underlying symmetric operators

In this section we reduce the linear pencil in question to an operator generated by the formal

matrix expression J−
1
2 H J−

1
2 . Namely, we show that this operator is a densely defined symmetric

operator.

Since e j ∈ dom J ⊂ dom J
1
2 the vectors f j := J

1
2 e j , j ∈ Z+, belong to ℓ2. The relation

ker J
1
2 = {0} implies that the linear span

F = span{ f j }
∞

j=0 =


n−

k=0

ck fk : ck ∈ C, n ∈ Z+



is dense in ℓ2. In view of (3.6), we can also introduce the vectors g j := J−
1
2 e j , j ∈ Z+, which

lie in ℓ2. Moreover, the linear span G = span{g j }
∞

j=0 is dense in ℓ2. Besides, we have that the
systems { f j }

∞

j=0 and {g j }
∞

j=0 are biorthogonal, i.e.

( f j , gk) =


0, j ≠ k,
1, j = k.

As a consequence, we get that there is a one-to-one correspondence between h ∈ ℓ2 and the
formal series

∞−
k=0

(h, gk) fk,

∞−
k=0

(h, fk)gk .
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In this case, we will write h ∼
∑

∞

k=0(h, gk) fk or h ∼
∑

∞

k=0(h, fk)gk . Next, we see that (setting
b−1 = 0 for convenience)

J−
1
2 H J−

1
2 f j = b j−1g j−1 + a j g j + b j g j+1, j ∈ Z+.

So, we have that J−
1
2 H J−

1
2 : F → G. Thus the domain of the matrix expression J−

1
2 H J−

1
2 is

dense in ℓ2.

Proposition 6.1. The formal matrix expression J−
1
2 H J−

1
2 generates a densely defined

symmetric operator with the deficiency indices either (1, 1) or (0, 0).

Proof. It is easy to see that
J−

1
2 H J−

1
2 f j , fk


=


f j , J−

1
2 H J−

1
2 fk


, j, k ∈ Z+,

that is, J−
1
2 H J−

1
2 is symmetric in ℓ2. Thus, the operator is closable and, in what follows,

by J−
1
2 H J−

1
2 we denote the minimal closed operator defined by the matrix expression

J−
1
2 H J−

1
2 . Let


J−

1
2 H J−

1
2

∗

be adjoint to J−
1
2 H J−

1
2 in ℓ2. By the definition, a vector

h ∈ dom


J−
1
2 H J−

1
2

∗

if and only if there exists a vector h∗
∈ ℓ2 such that

J−
1
2 H J−

1
2 fk, h


= ( fk, h∗), f ∈ k ∈ Z+.

Further, it can be rewritten as follows:

(bk−1gk−1 + ak gk + bk gk+1, h) = ( fk, h∗), k ∈ Z+,

which actually implies that

yk = bk−1xk−1 + ak xk + bk xk+1, k ∈ Z+,

where h ∼
∑

∞

k=0 xk fk and h∗
∼
∑

∞

k=0 yk gk . Thus, h ∈ dom


J−
1
2 H J−

1
2

∗

if and only if there

exists h∗
∈ ℓ2 such that

h∗
∼

∞−
k=0

(bk−1xk−1 + ak xk + bk xk+1)gk .

The next step is to determine the deficiency indices. In order to do that we should find nontrivial
solutions of the equation

J−
1
2 H J−

1
2

∗

− λ


h = 0, Im λ ≠ 0. (6.1)

Let h ∼
∑

∞

k=0 xk fk be a solution to (6.1). Then we obviously have that
fk,


J−
1
2 H J−

1
2

∗

− λ


h


= 0, k ∈ Z+,

which reduces to the following:

bk−1xk−1 + ak xk + bk xk+1 = λ( fk, h), k ∈ Z+.

Observing that ( fk, h) = dk−1xk−1 + ck xk + dk xk+1, we arrive at

(bk−1 − λdk−1)xk−1 + (ak − λck)xk + (bk − λdk+1)xk+1 = 0, k ∈ Z+.
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In view of (3.1), (3.2) and (2.9), we conclude that xk = cPk(λ). So, the linear space Nλ of the
solutions to (6.1) has dimension 1 if there exists an element h ∈ ℓ2 such that

h ∼

∞−
k=0

Pk(λ) fk . (6.2)

Otherwise, the linear space Nλ has dimension 0.
Let us find the condition for h from (6.2) to belong to ℓ2. First, we should check the

weak convergence of the sequence hn =
∑n

k=0
Pk(λ) fk . Obviously, we have that (hn, gk) →

(h, gk) = Pk(λ) as n → ∞. Furthermore, G = span{g j }
∞

j=0 = ℓ2. Consequently, according
to the criterion of the weak convergence we get that the convergence of (6.2) is implied by the
uniform boundedness of the following sequence: n−

k=0

Pk(λ) fk

 = (Jπ[0,n](λ), π[0,n](λ))

= (Lπ[0,n](λ), Lπ[0,n](λ)) =

n−
k=0

|Pk(λ)+ dk−1Pk−1(λ)|
2. (6.3)

From (6.3) we see that the condition

∞−
k=0

|Pk(λ)+ dk−1Pk−1(λ)|
2 < ∞ (6.4)

guarantees the existence of h satisfying (6.2). It turns out that this condition is also necessary.
Indeed, let us suppose the converse, that

∑
∞

k=0 |Pk(λ) + dk−1Pk−1(λ)|
2

= ∞ and there exists

h ∈ ℓ2 having the representation (6.2). Then it follows from (6.1) that h ∈ ran J−
1
2 and, therefore,

h = J
1
2 h0 for some h0 ∈ ℓ2. The latter means that

‖h‖ = ‖J
1
2 h0‖ = ‖Lh0‖ =

∞−
k=0

|Pk(λ)+ dk−1Pk−1(λ)|
2

= ∞,

which yields the contradiction. So, dim Nλ = 1 if and only if (6.4) holds true.
It is well known that for symmetric operators the deficiency index dλ = dim Nλ is the same

for each λ ∈ C+ as well as for each λ ∈ C−. Further, it follows from (5.3) that

n−1−
k=0

|Pk(λ)+ dk−1Pk−1(λ)|
2

=

n−1−
k=0

|Pk(λ)+ dk−1Pk−1(λ)|
2

since the radii of Kn(λ) and Kn(λ) are equal. The latter relation implies that dλ = dλ. �

Now we are in a position to formulate criteria for J−
1
2 H J−

1
2 to be self-adjoint (for the

classical case see [1,12,42]).

Theorem 6.2. The following statements are equivalent:

(i) The operator J−
1
2 H J−

1
2 is self-adjoint.

(ii) The sequence K j (λ) converges to a point for some λ ∈ C+ \ {zk}
∞

k=0.
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(iii) We have that
∞−

k=0

|Pk(λ)+ dk−1Pk−1(λ)|
2

= ∞ (6.5)

for some λ ∈ C+ \ {zk}
∞

k=0.

Proof. The equivalence of (ii) and (iii) is established in Theorem 5.4. The equivalence of (i) and
(iii) is actually proved in the proof of Proposition 6.1 by showing that the defect vector (6.2)
belongs to ℓ2 if and only if (6.5) holds true. �

Remark 6.3. It is well known that for symmetric operators the dimension of the defect space Nλ

remains the same for all λ ∈ C+. Thus, if (6.5) holds for some λ0 ∈ C+ \ {zk}
∞

k=0 then it holds
for all λ ∈ C+ \ {zk}

∞

k=0. The same is true for the limit point case.

We should emphasize that in our approach the operator J−
1
2 H J−

1
2 plays exactly the same

role as the Jacobi matrix for a moment problem. We should also stress here that if the original
measure has finite moments of all nonnegative orders and we have a collection of interpolation
sequences {z(n)k }

∞

k=0 such that for every k ∈ Z+

z(n)k → ∞, as n → ∞,

then the corresponding matrices J (n) converge to the identity I , as n → ∞, elementwise

(see (2.2) and (2.4)). So, roughly speaking, in this case, the operator (J (n))−
1
2 H (n)(J (n))−

1
2

approaches the classical Jacobi matrix (see also [11]).
To complete this section, it should be remarked that, in recent years, a lot of attention has

been paid to the study of orthogonal polynomials on the unit circle via the spectral theory of
CMV matrices (see [43] and references therein). Roughly speaking, orthogonal polynomials on
the unit circle correspond to the multiple interpolation problem at 0 and ∞ for the Schur class
(actually, there is only one interpolation point since ∞ is symmetric to 0 with respect to the
unit circle). The multiple interpolation at two points is, in some sense, the limiting case of the
case under consideration. Also note that an operator approach to orthogonal rational functions
on the unit circle via CMV matrices can be found in [48]. It is also worth mentioning that Jacobi
type normal matrices associated with complex moment problems were introduced and studied in
[13,14].

7. The uniqueness of Nevanlinna–Pick problems

In this section, by mimicking the proofs of [42, Theorem 2.10] and [42, Theorem 2.11], we
characterize the determinacy of the Nevanlinna–Pick problems in question in terms of the self-

adjointness of J−
1
2 H J−

1
2 .

Let ϕ ∈ R0 and let a sequence of distinct numbers {zk}
∞

k=0 ⊂ C+ be given. According to (2.3)
and (2.2), the pencil H − λJ in question is uniquely determined by the sequences {zk}

∞

k=0 and
wk := ϕ(zk), k ∈ Z+. So, as we already mentioned, the following question naturally arises.

Nevanlinna–Pick problem. Is the function ϕ ∈ R0 satisfying the interpolation relation

ϕ(zk) = wk, k ∈ Z+, (7.1)

uniquely determined by the data {zk}
∞

k=0, {wk}
∞

k=0?
More details about Nevanlinna–Pick problems can be found in [1,27,36].
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Remark 7.1. Recall that an R-function is a function which is holomorphic in the open upper
half-plane C+ and maps C+ onto C+. For convenience, it is supposed that every ϕ ∈ R is

extended to the lower half-plane C− by the symmetry relation ϕ(λ) = ϕ(λ), λ ∈ C−. Clearly,
R0 is a subclass of R. In fact, the condition ϕ ∈ R0 means that ϕ is an R-function and satisfies
the following tangential interpolation condition:

ϕ(λ) = −
1
λ

+ o


1
λ


, λ→∞. (7.2)

Roughly speaking, (7.2) can be interpreted as the interpolation conditions ϕ(∞) = 0, ϕ′(∞) =

−1. So, the Nevanlinna–Pick problem in question is a subclass of Nevanlinna–Pick problems
in R.

Before answering the question of the Nevanlinna–Pick problem we will prove the following
auxiliary statement.

Lemma 7.2. We have that for j ∈ Z+

e0 = (H − z j J )(ξ[0, j](z j )+ m[0, j](z j )π[0, j](z j ))

= (H[0, j] − z j J[0, j])(ξ[0, j](z j )+ m[0, j](z j )π[0, j](z j )). (7.3)

Moreover, if J−
1
2 H J−

1
2 is self-adjoint in ℓ2 then the systems {(J−

1
2 H J−

1
2 − z j )

−1 J−
1
2

e0}
∞

j=0 and {J
1
2 e j }

∞

j=0 are equivalent, that is,

span


J−
1
2 H J−

1
2 − z0

−1
, . . . ,


J−

1
2 H J−

1
2 − zk

−1
e0


= span


J

1
2 e0, . . . , J

1
2 ek


for every k ∈ Z+.

Proof. Notice that b j − z jd j = 0. Then it follows from (4.3) and (4.4) that

(H − z j J )π[0, j](z j ) = (H[0, j] − z j J[0, j])π[0, j](z j ) = −(b j − z jd j )Pj+1(z j )e j ,

(H − z j J )ξ[0, j](z j ) = (H[0, j] − z j J[0, j])ξ[0, j](z j ) = −(b j − z jd j )Q j+1(z j )e j + e0.
(7.4)

Now, (7.3) is immediate from (7.4) on taking into account

m[0, j](z j ) = −
Q j+1(z j )

Pj+1(z j )
= −

Q j+1(z j )Pj+1(z j )
.

If J−
1
2 H J−

1
2 is a self-adjoint operator in ℓ2 then (7.3) implies that

J−
1
2 H J−

1
2 − z j

−1
J−

1
2 e0 = J

1
2 (ξ[0, j](z j )+ m[0, j](z j )π[0, j](z j )). (7.5)

Now, the equivalence follows from (7.5) for j = 0, . . . , k and the fact that Q j (z j ) +

m[0, j](z j )Pj (z j ) ≠ 0 for j = 0, . . . , k. The latter fact immediately follows from (3.2) and
(4.13), and the Liouville–Ostrogradsky formula (4.2). �

Proposition 7.3. If the operator J−
1
2 H J−

1
2 is self-adjoint in ℓ2 then the corresponding

Nevanlinna–Pick problem (7.1) has the unique solution

ϕ(λ) = m(λ) :=


J−

1
2 H J−

1
2 − λI

−1
J−

1
2 e0, J−

1
2 e0


.
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Proof. Clearly, for every λ ∈ C+ ∪ C− there exists a sequence rn(λ) ∈ span


J
1
2 e0, . . . , J

1
2 en


⊂ dom


J

1
2 H J

1
2


such thatJ−

1
2 H J−

1
2 − λ


rn(λ)− J−

1
2 e0

 → 0, n → ∞. (7.6)

It follows from Lemma 7.2 that

rn(λ) =

n−
k=0

ck(λ)


J−
1
2 H J−

1
2 − zk

−1
J−

1
2 e0. (7.7)

Further, let H J−1
=

R tdEt be a spectral decomposition of J−

1
2 H J−

1
2 . Then the function

m(λ) =

∫
R

d(Et e0, e0)

t − λ
=


J−

1
2 H J−

1
2 − λ

−1
J−

1
2 e0, J−

1
2 e0


is a solution of the Nevanlinna–Pick problem (7.1). In fact, according to (7.3) we have

m(z j ) =


J−

1
2 H J−

1
2 − z j

−1
J−

1
2 e0, J−

1
2 e0


ℓ2

= m[0, j](z j ).

Further, due to (2.7) and (4.13) one easily gets that m(z j ) = w j for j ∈ Z+. Suppose that there
is another solution ϕρ(λ) =


R

dρ(t)
t−λ . Then we have∫

R

(t − λ)

n−
k=0

ck(λ)

t − z j
− 1


2

dρ(t)

=

∫
R

(t − λ)

n−
k=0

ck(λ)

t − z j
− 1


2

d(Et e0, e0)

=

J−
1
2 H J−

1
2 − λ

 n−
k=0

ck(λ)


J−
1
2 H J−

1
2 − z j

−1
J−

1
2 e0 − J−

1
2 e0

 → 0,

as n → ∞. Now, 1/(t − λ) is bounded for t ∈ R since λ ∈ C+ ∪ C−. Thus∫
R

 n−
k=0

ck(λ)

t − zk
−

1
t − λ


2

dρ(t) → 0, n → ∞.

Finally, it follows that

ϕρ(λ) = lim
n→∞

∫
R

n−
k=0

ck(λ)

t − zk
dρ(t)

is independent of ρ. Since ϕρ determines ρ (see for instance [1, Chapter III]), all ρ’s must be the
same. �

Proposition 7.4. If the operator J−
1
2 H J−

1
2 is not self-adjoint in ℓ2 then the corresponding

Nevanlinna–Pick problem (7.1) has an infinite number of solutions.

Proof. Since the deficiency indices of J−
1
2 H J−

1
2 are equal it has self-adjoint extensions in ℓ2.

Let H1 and H2 be two different self-adjoint extensions of J−
1
2 H J−

1
2 in ℓ2. Then the following
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two functions:

ϕ1(λ) =


(H1 − λ)−1 J−

1
2 e0, J−

1
2 e0


, ϕ2(λ) =


(H2 − λ)−1 J−

1
2 e0, J−

1
2 e0


are solutions of (7.1). In fact, according to Lemma 7.2 we have

ϕk(z j ) =


(Hk − z j )

−1 J−
1
2 e0, J−

1
2 e0


= ((H[0, j] − z j J[0, j])

−1e0, e0) = w j

for every j ∈ Z+ and k = 1, 2. Since ϕk ∈ R0, one also has ϕk(z j ) = w j .

Further, let λ ∈ C+ \ {z j }
∞

j=0. Note that g0 = J−
1
2 e0 ∉ ran


J−

1
2 H J−

1
2 − λ


. To

see this, suppose the contrary: that there exists x ∈ dom


J−
1
2 H J−

1
2 − λ


such that g0 =

J−
1
2 H J−

1
2 − λ


x and that


J−

1
2 H J−

1
2

∗

− λ


y = 0. Then

(g0, y) =


J−

1
2 H J−

1
2 − λ


x, y


=


x,


J−
1
2 H J−

1
2

∗

− λ


y


= 0.

We thus see that (g0, y) = 0 and


J−
1
2 H J−

1
2

∗

− λ


y = 0. As a consequence, the

coefficients uk = (gk, y) of the vector y ∼
∑

∞

k=0uk fk solve (3.1) with the initial conditionsu−1 = u0 = 0. Therefore, y = 0, that is, J−
1
2 H J−

1
2 is self-adjoint in ℓ2. By hypothesis, this is

false, so J−
1
2 e0 ∉ ran


J−

1
2 H J−

1
2 − λ


. Thus (H1 − λ)−1 J−

1
2 e0 and (H2 − λ)−1 J−

1
2 e0 are in

dom


J−
1
2 H J−

1
2

∗
\dom


J−

1
2 H J−

1
2


. So, we have (H1−λ)−1 J−

1
2 e0 ≠ (H2−λ)−1 J−

1
2 e0

because otherwise, according to the fact that J−
1
2 H J−

1
2 has deficiency indices (1, 1) and the von

Neumann formulas, we would have H1 = H2.

Let η = (H1 − λ)−1 J−
1
2 e0 − (H2 − λ)−1 J−

1
2 e0. Then one has


J−

1
2 H J−

1
2

∗

− λ

η = 0

and, so, the coefficientsηk = (gk, η) of the vector η ∼
∑

∞

k=0ηk fk give a solution of (3.1) with
the initial conditions

η−1 = 0, η0 = (g0, η).

Since η ≠ 0 we get (g0, η) ≠ 0. As a consequence, we have ϕ1 ≢ ϕ2. To complete the proof it
remains to observe that the function

ϕα(λ) = αϕ1(λ)+ (1 − α)ϕ2(λ)

is also a solution of (7.1) for every α ∈ (0, 1). �

Remark 7.5. It follows from the proof that every self-adjoint extension of the symmetric

operator J−
1
2 H J−

1
2 generates a solution of the corresponding Nevanlinna–Pick problem.

Moreover, by using the standard technique of theory of extensions of symmetric operators (see [1,
24,39]), one can get the description of all solutions of the Nevanlinna–Pick problem and this will
be done elsewhere. The description of all solutions can be found, for instance, in [27].

The following theorem immediately follows from Propositions 7.3 and 7.4.

Theorem 7.6. The Nevanlinna–Pick problem (7.1) has a unique solution iff the corresponding

operator J−
1
2 H J−

1
2 is self-adjoint in ℓ2.
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Remark 7.7. Other criteria for the Nevanlinna–Pick problems to be determinate can be
found in [27,36]. It is worth noting that, in the matrix case, the Stieltjes type criteria for
Nevanlinna–Pick problems to be completely indeterminate were obtained by Yu.M. Dyukarev
in his second doctorate thesis (see [25,26]).

8. Convergence of multipoint Padé approximants

In this section we prove a Markov type result on convergence of multipoint diagonal Padé
approximants for R0-functions.

First, let us recall that for the symmetric matrix J
−

1
2

[0, j] H[0, j] J
−

1
2

[0, j] the following estimate holds
true: 


J

−
1
2

[0, j] H[0, j] J
−

1
2

[0, j] − λ

−1
 ≤

1
|Im λ|

, j ∈ Z+. (8.1)

Before showing the convergence result, it is natural to obtain the precompactness.

Proposition 8.1. The family {m[0, j]}
∞

j=0 is precompact in the topology of locally uniform
convergence in C \ R.

Proof. Let us rewrite the function m[0, j] as follows:

m[0, j](λ) =


J

−
1
2

[0, j] H[0, j] J
−

1
2

[0, j] − λ

−1

J
−

1
2

[0, j]e0, J
−

1
2

[0, j]e0


.

It follows from the Cauchy–Schwarz inequality and (3.8) that

|m[0, j](λ)| =
(J−1

[0, j]e0, e0)

|Im λ|
≤

1
|Im λ|

, (8.2)

which, in view of the Montel theorem, implies the precompactness of {m[0, j]}
∞

j=0. �

Now we are ready to prove the main result of this section.

Theorem 8.2. Let a sequence of distinct numbers {z j }
∞

j=0 ⊂ C+ be given and let ϕ be a
unique solution of the Nevanlinna–Pick problem (7.1). Then all the multipoint diagonal Padé
approximants for ϕ at {z0, z0, . . . , z j , z j , . . .} exist and converge to ϕ locally uniformly in C\R.

Proof. Eq. (4.13) says that the rational function m[0, j] is the ( j + 1)th multipoint diagonal

Padé approximant. Further, according to Theorem 7.6, one obviously has that J−
1
2 H J−

1
2 is

self-adjoint in ℓ2 and, therefore,


J−
1
2 H J−

1
2 − λ

−1
is bounded for λ ∈ C\R. Let ψ be a finite

sequence, that is, ψ = (ψ1, . . . , ψk, 0, 0, . . .)⊤. Then

(H − λJ )ψ = (H[0, j] − λJ[0, j])ψ = φ

for sufficiently large j ∈ Z+ and φ is also a finite sequence. Further, one obviously has
J−

1
2 H J−

1
2 − λ

−1
J−

1
2φ, J−

1
2 e0



= lim
j→∞


J

−
1
2

[0, j] H[0, j] J
−

1
2

[0, j] − λ

−1

J
−

1
2

[0, j]φ, J
−

1
2

[0, j]e0


. (8.3)
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In particular, formula (8.3) is valid for

φn = (H J−
1
2 − λJ

1
2 )rn(λ),

where rn is defined by (7.7). So, due to (7.6) we have that

J−
1
2φn → J−

1
2 e0 as n → ∞. (8.4)

Moreover, the vectors φn satisfy the following relation:

J
−

1
2

[0, j]φn → J
−

1
2

[0, j]e0 as n → ∞ (8.5)

for j ∈ Z+. To see the latter relation, note that (8.4) implies
J−

1
2φn, η


→


J−

1
2 e0, η


as n → ∞

for every η ∈ ℓ2. Putting η = J
1
2 J

−
1
2

[0, j]ek, k = 0, . . . , j , we get (8.5) from the fact that, in
finite-dimensional spaces, the weak convergence is equivalent to the strong one. Now, taking
into account (8.1) and (8.3)–(8.5), we obtain that (8.3) holds true for φ = e0, that is,

m[0, j](λ) → m(λ) = ϕ(λ) =


J−

1
2 H J−

1
2 − λ

−1
J−

1
2 e0, J−

1
2 e0


for any λ ∈ C \ R. Finally, the statement of the theorem follows from the precompactness and
the Vitali theorem. �

Remark 8.3. In the case when ϕ ∈ R[α, β] and the interpolation points stay away from [α, β], an
analog of the Markov theorem for multipoint diagonal Padé approximants is well known [30,47]
(see also [23] where the operator approach was presented). For the case where the interpolation
points belong to [−∞, 0), the locally uniform convergence of multipoint Padé approximants
for ϕ ∈ R[0,+∞) was proved under the Carleman type condition [37] (see also [38] where
results in this direction are reviewed). It should also be remarked that there are some results on
convergence of multipoint Padé approximants for rational perturbations of the Cauchy transforms
of some complex measures [7,8].

It is a standard fact that the following condition:

∞−
k=0

Im zk

|zk + i|2
= +∞ (8.6)

implies the determinacy of the corresponding Nevanlinna–Pick problem in R0 [27,36]. Thus, the

underlying operator J−
1
2 H J−

1
2 is self-adjoint in ℓ2.

Corollary 8.4. If the given sequence {z j }
∞

j=0 satisfies (8.6) then for every ϕ ∈ R0 all the
multipoint diagonal Padé approximants for ϕ at {z0, z0, . . . , z j , z j , . . .} exist and converge to
ϕ locally uniformly in C \ R.

Remark 8.5. First, note that (8.6) is sufficient for the Nevanlinna–Pick problem in R0 to be
determinate but not necessary (see [27, Chapter IV, Example 4.2]). It should also be noted that,
under the Szegö condition and the negation of the Blashcke type condition, the locally uniform
convergence of multipoint diagonal Padé approximants for ϕ ∈ R[α, β] was proved in [46] (see
also [6]).
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Now, we are also able to adapt Theorem 5.5 for the self-adjoint case.

Theorem 8.6. If J−
1
2 H J−

1
2 is self-adjoint in ℓ2 then for every λ ∈ C+ \ {zk}

∞

k=0 there holds

∞−
k=0

|m(λ)(Pk(λ)+ dk−1Pk−1(λ))+ Qk(λ)+ dk−1Qk−1(λ)|
2

=
m(λ)− m(λ)

λ− λ
.

Proof. According to Theorem 8.2 and (5.1), we have that K j (λ) → m(λ) as j → ∞. Now, the
statement directly follows from Corollary 5.3 and the inequality (5.5). �

Acknowledgments

This work was partially done when I was visiting the University of Sciences and Technologies
of Lille as a postdoc. I would like to express my gratitude to Professor B. Beckermann for
organizing my visit, the hospitality, and many useful discussions, which stimulated me to write
this paper. I am grateful to Professor A.S. Zhedanov for numerous discussions, which improved
the paper. Besides, I am deeply indebted to A. Kostenko and K. Simonov for the careful reading
of the manuscript and giving considerable comments. Finally, I would also like to thank the
anonymous referees for helpful remarks and suggestions.

References

[1] N.I. Achiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.
[2] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, in: Two Volumes Bound as One, Dover

Publications, Inc., New York, 1993, Translated from the Russian and with a preface by Merlynd Nestell, Reprint of
the 1961 and 1963 translations.

[3] D. Alpay, A. Dijksma, H. Langer, The transformation of Issai Schur and related topics in an indefinite setting,
in: Oper. Theory: Adv. Appl., vol. 176, Birkhäuser Verlag, Basel, 2007, pp. 1–98.
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related interpolation problems, SIAM J. Math. Anal. 19 (3) (1988) 718–735.

[20] M. Derevyagin, Generalized Jacobi operators in Krein spaces, J. Math. Anal. Appl. 349 (2009) 568–582.
[21] M. Derevyagin, V. Derkach, On the convergence of Padé approximations for generalized Nevanlinna functions,
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