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TheLaplacian-energy like invariantLEL(G)andthe incidenceenergy
IE(G) of a graph are recently proposed quantities, equal, respec-

tively, to the sum of the square roots of the Laplacian eigenvalues,

and the sum of the singular values of the incidence matrix of the

graphG.However, IE(G) is closely relatedwith theeigenvaluesof the

Laplacian and signless Laplacianmatrices of G. For bipartite graphs,

IE = LEL.We nowpoint out some further relations for IE and LEL: IE

can be expressed in terms of eigenvalues of the line graph, whereas

LEL in terms of singular values of the incidence matrix of a directed

graph. Several lowerandupperbounds for IE areobtained, including

those that pertain to the line graph of G. In addition, Nordhaus–

Gaddum-type results for IE are established.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

LetG bea simple graphonnvertices. The eigenvalues ofG are the eigenvalues of its adjacencymatrix

A(G) [2]. These eigenvalues, arranged in a non-increasing order, will be denoted as λ1(G), λ2(G), . . . ,
λn(G). Then the energy of the graph G is defined as
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E(G) =
n∑

i=1

|λi(G)|.

Various properties of graph energy may be found in [4,5,8].

The concept of graph energywas extended to anymatrix by Nikiforov [16] in the followingmanner.

The singular values of a real (not necessarily square) matrixM are the square roots of the eigenvalues

of the (square) matrix MMt , where Mt denotes the transpose of M. The energy E(M) of the matrix M

is then defined [16] as the sum of its singular values. Obviously, E(G) = E(A(G)).
Let I(G) be the (vertex–edge) incidence matrix of the graph G. For a graph G with vertex set

{v1, v2, . . . , vn} and edge set {e1, e2, . . . , em}, the (i, j)-entry of I(G) is 1 if vi is incident with ej and

0 otherwise. (In what follows, the unit matrix of order p will be denoted by Ip, and it should not be

confused with the incidence matrix.)

Motivated by Nikiforov’s idea, Jooyandeh et al. [10] introduced the concept of incidence energy

IE(G) of a graph G, defining it as the sum of the singular values of the incidence matrix I(G). Some

basic properties of this quantity were established in [7,10].

If the singular values of I(G) are σ1, σ2, . . . , σn, then, by definition [10],

IE(G) :=
n∑

i=1

σi.

Let D(G) be the diagonal matrix of order n whose (i, i)-entry is the degree of the vertex vi of the

graph G. Then the matrix L(G) = D(G) − A(G) is the Laplacian matrix of the graph G, for details see

[13,14]. The matrix L+(G) = D(G) + A(G) is the signless Laplacian matrix, for details see [3].

Denote byμ1,μ2, . . . ,μn the eigenvalues of the Laplacianmatrix L(G) and byμ+
1 ,μ+

2 , . . . ,μ+
n the

eigenvalues of the signless Laplacian matrix L+(G). All eigenvalues of both L(G) and L+(G) are real

and non-negative. Inwhat follows it is assumed that both eigenvalues are arranged in a non-increasing

order.

If the graph G is connected, then μi > 0 for i = 1, 2, . . . , n − 1 and μn = 0 [13,14]. If G is a

connected non-bipartite graph, then μ+
i > 0 for i = 1, 2, . . . , n [3].

The following result is well known [3,13,14]:

Lemma 1.1. The spectra of L(G) and L+(G) coincide if and only if the graph G is bipartite.

Another well known fact is the identity [13,14]:

I(G) I(G)t = A(G) + D(G) i.e., I(G) I(G)t = L+(G). (1)

Its immediate consequence is that σi =
√

μ+
i and therefore,

IE(G) =
n∑

i=1

√
μ+

i . (2)

Short time ago, Liu and Liu [11] introduced the so-called Laplacian-energy like invariant, LEL(G) of
a graph G, as the sum of the square roots of the eigenvalues of the Laplacian matrix of G, i.e.,

LEL(G) :=
n∑

i=1

√
μi. (3)

In [11] and in the subsequent papers [12,19,20] a number of properties of LEL were established.

Comparing Eqs. (2) and (3), we see that there is an intimate relation between incidence energy and

the Laplacian-energy like invariant. In particular, in view of Lemma 1.1, if the graph G is bipartite, then

IE(G) = LEL(G). (4)
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2. Some more relations for IE and LEL

In addition to the identity (1), for the incidencematrix of a graph Gwith n vertices andm� 1 edges

we have

I(G)t I(G) = 2 Im + A(L(G)),

whereL(G) is the line graph ofG, andwhere Im stands for the unitmatrix of orderm. From this identity

we immediately get

IE(G) =
m∑
i=1

√
2 + λi(L(G)). (5)

The following result holds for anygraphG [13,14]. If anyedgeofG is givenanorientation (in arbitrary

direction), then an oriented graph
−→
G is obtained. The (i, j)-entry of the incidence matrix I(

−→
G ) of

−→
G

is +1 if the vertex vi is the head of the oriented edge ej , −1 if the vertex vi is the tail of the oriented

edge ej , and 0 otherwise. Then, no matter how the edges are oriented, I(
−→
G ) satisfies the identity

I(
−→
G ) I(

−→
G )

t = D(G) − A(G) that is I(
−→
G ) I(

−→
G )

t = L(G).

As a consequence of the above identity, the energy of the the matrix I(
−→
G ) is equal to the sum of

the square roots of the ordinary Laplacian eigenvalues of the (undirected) graph G, i.e.,

IE(
−→
G ) =

n∑
i=1

√
μi,

i.e.,

LEL(G) = IE(
−→
G ). (6)

Eq. (6) provides a new interpretation of the Laplacian–energy like invariant of Liu and Liu [11], and

offers a new insight into its possible physical or chemical meaning.

As a final relation for the incidence energy we mention:

IE(G) = 1

2
E(S(G)), (7)

where S(G) be the subdivision graph of the graph G, obtained by inserting an additional vertex into

each edge of G. Eq. (7) was first reported in [10], and represents a direct extension of a result from [25].

3. Bounds for incidence energy

In [10] the following fundamental properties of the incidence energy were established:

Theorem 3.1. (i) IE(G) � 0, and equality holds if and only if m = 0.
(ii) If the graph G has components G1, . . . , Gp, then IE(G) = ∑p

i=1 IE(Gi).

(iii) Let G be a graph of order n with m edges. Then
√

2m� IE(G) �
√

2mn. The left equality holds if

and only if m� 1, whereas the right equality holds if and only if m = 0.

A similar upper bound is known for LEL [11], namely LEL(G) �
√

2m(n − p), where p is the number

of components of the graph G. In the general case, IE does not satisfy the analogous inequality. For

instance, the inequality IE(G) �
√

2m(n − p) is violated by the complete graph Kn if n� 3. On the

other hand, in view of Eq. (4), it is satisfied by all bipartite graphs.

Theorem 3.2. Let G be a graph with m edges. Then

IE(G) �
√

2m

with equality if and only if G consists of m copies of K2 and possibly isolated vertices.
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Proof. The case m = 0 is trivial. Suppose that m� 1. By Eq. (5) and the Cauchy–Schwarz inequality,

IE(G) =
m∑
i=1

√
2 + λi(L(G)) �

√√√√m

m∑
i=1

[2 + λi(L(G))] =
√√√√m

m∑
i=1

2 = √
2m,

with equality if and only if 2 + λi(L(G)) is a constant for all i, i.e., L(G) = Km, i.e., G consists of m

copies of K2 and possibly isolated vertices. �

Let Pn be the pathwith n vertices and Kn the complete graphwith n vertices. Let Kr,s be the bipartite

graph with r and s vertices in its two partite sets. Let G be the complement of the graph G.

Note that

IE(Kn) = √
2n − 2 + (n − 1)

√
n − 2� IE(

−→
Kn ) = (n − 1)

√
n,

with equality if and only if n = 1, 2.

For a graph Gwith at least one edge, G − e denotes the graph obtained from G by deleting the edge

e of G. In [10] it was shown that IE(G − e) < IE(G). This immediately implies that for a graph G with

n vertices,

0� IE(G) �
√
2(n − 1) + (n − 1)

√
n − 2,

with left (resp. right) equality if and only if G ∼= Kn (resp. G ∼= Kn). Moreover, if G is a bipartite graph

with r and s vertices in its two partite sets, then

0� IE(G) �
√

r + s + (r − 1)
√

s + (s − 1)
√

r,

with left (resp. right) equality if and only if G ∼= Kn (resp. G ∼= Kr,s). In particular, if G is a bipartite

graph with n� 2 vertices, then as a function of r with 1� r ��n/2�, (r − 1)
√

n − r + (n − r − 1)
√

r

is increasing for r, and thus

IE(G) �
√

n +
(⌊

n

2

⌋
− 1

)√⌈
n

2

⌉
+

(⌈
n

2

⌉
− 1

)√⌊
n

2

⌋
,

with equality if and only if G ∼= K�n/2�,�n/2	.
In what follows we establish further bounds for the incidence energy. First we consider upper

bounds.

Theorem 3.3. Let G be a connected graph with n vertices and m edges. Then

IE(G) � IE(Pn) + √
2(m − n + 1),

with equality if and only if G ∼= Pn.

Proof. In [10], it was shown that IE(G) � IE(G − e) + √
2 for any edge e of G. A repeated application

of this inequality yields

IE(G) � IE(T) + √
2(m − n + 1)

for a spanning tree T of G. In [7] it was shown that IE(T) � IE(Pn), with equality if and only if T ∼= Pn.

This implies the result. �

Denote by di the degree of the vertex vi of the graph G. We now introduce an auxiliary quantity α,

defined as

α = 2

√√√√1

n

n∑
i=1

d2i .

Recall that the so-called first Zagreb index Zg(G) of a graph G is defined as the sum of squares of vertex

degrees of the graph G. This quantity found many applications in chemistry [6,21]. Thus, in the above

notation, Zg = nα2/4.
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Fig. 1. Examples showing that inequalities (8) and (10) are incompatible.

In order to demonstrate the validity of the next Theorem 3.5 we need:

Lemma 3.4 [9]. Let G be a connected graph on n vertices,with vertex degrees d1, d2, . . . , dn. Thenμ+
1 � α,

with equality if and only if G is a connected regular graph.

Theorem 3.5. Let G be a connected graph of order n , n� 3, with m edges. Then

IE(G) �
√

α +
√

(n − 1)(2m − α). (8)

Moreover, equality holds if and only if G ∼= Kn.

Proof. Wefirstobserve that
∑n

i=2 μ+
i = 2m − μ+

1 . Byusing theCauchy–Schwarz inequalityweobtain

from Eq. (2)

IE(G) �
√

μ+
1 +

√
(n − 1)(2m − μ+

1 ). (9)

Inequality (8) follows fromthe fact that the function f (x)=√
x + √

(n − 1)(2m − x)decreaseson x >

2m/n, and that by Lemma 3.4 and by using the Cauchy–Schwarz inequality, 2m/n < 4m/n�α�μ+
1 .

It is easy to show that if G ∼= Kn, then equality holds. Conversely, if the equality holds in (8), then

μ+
1 = α and μ+

2 = · · · = μ+
n . Therefore Lemma 3.4 implies that G is an r-regular graph and that

L+(G) has two distinct eigenvalues. Because L+(G) = r In + A(G), it follows that G is a regular graph

with two distinct eigenvalues (of the adjacencymatrix), equal to λ and r withmultiplicities n − 1 and

1, respectively, where λ = μ+
2 − r. Then by Smith’s theorem [18], G must be the complete graph. �

Denote by Δ the greatest vertex degree of the graph G. Let Sn be the n-vertex star.

Theorem 3.6. Let G be a connected graph of order n , n� 3, with m edges. Then

IE(G) <
√

1 + Δ +
√

(n − 1)(2m − 1 − Δ). (10)

Proof. We use the recently obtained results [22] that if G has at least one edge, then μ+
1 (G) � 1 + Δ,

and that if G is connected, μ+
1 (G) = 1 + Δ if and only if G ∼= Sn. Recall that for Sn, μ+

n = 0 /= μ+
2 .

The rest of the proof is then fully analogous to the proof of Theorem 3.5, bearing inmind that 1 + Δ >
Δ � 2m/n. �

Note that the inequalities (8) and (10) are incomparable. Let G1 and G2 be the two graphs shown in

Fig. 1. For G1 the upper bounds (8) is better than (10), whereas for G2 the upper bounds (10) is better

than (8).

Theorem 3.5 can be slightly improved. For the graph G and its vertex u, let tu be the sum of the

degrees of the first neighbors of u in G. If G is graph that is not empty, then define

T(G) :=
√√√√∑

u∈V(G)(d
2
u + tu)2∑

u∈V(G) d
2
u

.
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Theorem 3.7. Let G be a graph with n vertices and m > 0 edges. Then

IE(G) �
√
T(G) +

√
(n − 1)[2m − T(G)] (11)

with equality if and only if either G ∼= K2 ∪ Kn−2 or G ∼= Kn.

Proof. By (9), IE(G) � f (μ+
1 ), where f (x) = √

x + √
(n − 1)(2m − x).

Recall that for an n × n nonnegative matrixM, its largest eigenvalue is greater than or equal to

xt Mx

xt x

for x being any non-zero n-dimensional real column vector (see, e.g. [15]). Because (μ+
1 )2 is equal to

the largest eigenvalue of thematrix L+(G)2, for x = (d1, d2, . . . , dn)
t weget L+(G) x = (d21 + t1, d

2
2 +

t2, . . . , d
2
n + tn)

t , and therefore

μ+
1 �

√
xt

(
L+(G)2

)
x

xt x
=

√(
L+(G) x

)t (
L+(G) x

)
xt x

≡ T(G).

Note that [6]∑
u∈V(G)

tu = ∑
u∈V(G)

d2u = Zg(G).

By the Cauchy–Schwarz inequality,

μ+
1 � T(G) �

√√√√√
⎡
⎣ ∑
u∈V(G)

(d2u + tu)

⎤
⎦2 ⎡

⎣n ∑
u∈V(G)

d2u

⎤
⎦−1

= 2

√
Zg(G)

n
≡ α �

4m

n
.

Thus, IE(G) � f (T(G)), from which (11) follows.

Suppose that equality holds in (11). Then either μ+
1 = μ+

2 = · · · = μ+
n or μ+

1 > μ+
2 = · · · =

μ+
n . The former case is impossible, because then it would be μ+

1 = 2m/n < 4m/n� α, which is a

contradiction. Consider the latter case. The number of distinct signless Laplacian eigenvalues of a

connected graph with diameter d is at least d + 1 [3]. This implies that if G has exactly two distinct

signless Laplacianeigenvaluesandμ+
2 = 0, thenG consistsofK2 andn − 2 isolatedvertices. Ifμ+

2 > 0,

then by the Perron–Frobenius theorem, L+(G) is irreducible, i.e., G is a connected graph, and thus

G ∼= Kn.

Conversely, if G consists of one K2 and n − 2 isolated vertices or G ∼= Kn, then it is evident that (11)

is an equality. �

By Theorem 3.7, for any graph with n� 3 vertices, m edges, and the first Zagreb index Zg, we also

have (8) with equality if and only if G ∼= Kn or G ∼= Kn. If we would use finer lower bounds for μ+
1 ,

then we would arrive at additionally improved (but still more complicated) upper bounds for IE(G).
Now we consider lower bounds for the incidence energy.

Theorem 3.8. Let G be a connected graph on n vertices. Then IE(G) �
√

n + n − 2. Equality holds if and

only if G ∼= Sn.

Proof. The graphG has at least one spanning tree T as its subgraph. In [10] it was shown that ifH is any

proper subgraph of the graphG, then IE(G) > IE(H). Therefore, IE(G) � IE(T), and equality holds if and

only if G ∼= T . In [7] it was shown that among n-vertex trees, the star (and only the star) has minimal

incidence energy. Thus, IE(T) � IE(Sn) = √
n + n − 2, and equality holds if and only if G ∼= Sn. �
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Let a1, a2, . . . , as be positive integers. By Hölder’s inequality, we have

s∑
i=1

a2i =
s∑

i=1

a
4/3
i a

2/3
i

�

⎡
⎣ s∑
i=1

(
a
4/3
i

)3⎤⎦1/3 ⎡⎣ s∑
i=1

(
a
2/3
i

)3/2⎤⎦2/3

=
⎛
⎝ s∑

i=1

a4i

⎞
⎠1/3 ⎛⎝ s∑

i=1

ai

⎞
⎠2/3

i.e.,

s∑
i=1

ai �

√√√√√
(∑s

i=1 a
2
i

)3
∑s

i=1 a
4
i

, (12)

with equality if and only if a1 = a2 = · · · = as. Note that (12) is a particular case of an inequality in

[26].

Theorem 3.9. Let G be a graph with n vertices and m edges. Then

IE(G) �
2m√
n
, (13)

with equality if and only if G ∼= Kn or G ∼= K2.

Proof. Ifm = 0, then IE(G) = 0. Suppose thatm� 1. Note that Zg(G) �(n − 1)
∑

u∈V(G) du = 2m(n −
1), with equality if and only if du = n − 1 for all u ∈ V(G), i.e., G ∼= Kn. (The other case, namely

that du = 0 for all u ∈ V(G) cannot happen since m� 1.) By (12) and using
∑n

i=1 μ+
i = 2m and∑n

i=1(μ
+
i )2 = Zg(G) + 2m, we have

IE(G) =
n∑

i=1

√
μ+

i
�

√√√√ (2m)3

Zg(G) + 2m
�

√√√√ (2m)3

2m(n − 1) + 2m
= 2m√

n
,

with equalities if and only if all nonzero signless Laplacian eigenvalues are equal, and G ∼= Kn, i.e.,

G ∼= K2. Inequality (13) follows, with equality if and only if G ∼= Kn or G ∼= K2. �

Theorem 3.10. Let G be a Kr+1-free graph with n vertices and m edges, where 2� r � n. Then

IE(G) �
2m√

r−1
r

n + 1
,

with equality if and only if G ∼= Kn or r = 2 and G ∼= K2.

Proof. If m = 0, then IE(G) = 0. Suppose that m� 1. Note that Zg(G) � 2r−2
r

nm with equality if and

only if G is a complete bipartite graph for r = 2 and a regular complete r-partite graph for r � 3 [23].

As above,

IE(G) �

√√√√ (2m)3

Zg(G) + 2m
�

√√√√ (2m)3

2r−2
r

nm + 2m
= 2m√

r−1
r

n + 1
,

with equalities if and only if all nonzero signless Laplacian eigenvalues are equal, G is a complete

bipartite graph for r = 2 and a regular complete r-partite graph for r � 3, i.e., r = 2 and G ∼= K2. This

is because the number of distinct signless Laplacian eigenvalues of a connected graph with diameter

d is at least d + 1 [3]. It follows that
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IE(G) �
2m√

r−1
r

n + 1
,

with equality if and only if G ∼= Kn or r = 2 and G ∼= K2. �

By Theorem3.10 (r = n), we have Theorem3.9. IfG is a bipartite graphwith n vertices andm edges,

then by Theorem 3.10 (r = 2), we have

IE(G) �
2
√

2m√
n + 2

,

with equality if and only if G ∼= Kn or G ∼= K2. An equivalent result for E(S(G)) was noted in [24].

LetG beagraphwithnvertices andm� 1edges.Note that
∑n−1

i=1 μi = 2m and
∑n−1

i=1 μ2
i = Zg(G) +

2m. Then by (12),

LEL(G) =
n−1∑
i=1

√
μi �

√√√√ (2m)3

Zg(G) + 2m

with equality if and only if all nonzero Laplacian eigenvalues are equal. We note that by similar

arguments as above, the lower bounds in Theorems 3.9 and 3.10 are also lower bounds for LEL, the

former is attained if and only if G ∼= Kn or G ∼= Kn, while the latter is attained if and only if G ∼= Kn, or

r = n and G ∼= Kn.

4. On incidence energy of line graphs

If G is a graph and L(G) = L1(G) is its line graph, then Lk(G), k = 2, 3, . . ., defined recursively

via Lk(G) = L(Lk−1(G)), are the iterated line graphs of G. It is both consistent and convenient to set

G = L0(G).
If G is regular, then its line graph is also regular. In particular, the line graph of a regular graph

G of order n0 and of degree r0 is a regular graph of order n1 = r0 n0/2 and of degree r1 = 2 r0 − 2.

Therefore, the order and degree of Lk(G) are nk = rk−1 nk−1/2 and rk = 2 rk−1 − 2, where nk−1 and

rk−1 are, respectively, the order and degree of Lk−1(G).
If the eigenvalues of the adjacency matrix of the graph G are λi(G) , i = 1, . . . , n0 (arranged in

non-increasing order), then the respective eigenvalues of L(G) are −2 with multiplicity n1 − n0 and

λi(G) + r0 − 2 for i = 1, . . . , n0 [2]. Since L+(L(G)) = A(L(G)) + r1 In1 and μ+
i (G) = λi(G) + r0, it

follows that the eigenvalues of the matrix L+(L(G)) are:(
2r0 − 4 μ+

1 (G) + 2r0 − 4 · · · μ+
n (G) + 2r0 − 4

n1 − n0 1 · · · 1

)
.

Analogously, the eigenvalues of the matrix L+(Lk+1(G)) are:(
2rk − 4 μ+

1 (Lk(G)) + 2rk − 4 · · · μ+
n (Lk(G)) + 2rk − 4

nk+1 − nk 1 · · · 1

)
.

Theorem 4.1. Let G be a regular graph on n vertices and of degree r. Then

IE(L(G)) �
n(r − 2)

2

√
2r − 4 + √

4r − 4 +
√

(2r − 4)(n − 1)2 + r(n − 1)(n − 2).

(14)

Equality holds if and only if G ∼= Kn.
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Proof. Recalling that [1,2] λ1(G) = r, we have

IE(L(G))= n(r − 2)

2

√
2r − 4 +

n∑
i=1

√
λi(G) + 3r − 4

= n(r − 2)

2

√
2r − 4 + √

4r − 4 +
n∑

i=2

√
λi(G) + 3r − 4

�
n(r − 2)

2

√
2r − 4 + √

4r − 4 +
√√√√(n − 1)

n∑
i=2

[λi(G) + 3r − 4].

Inequality (14) follows now by observing that
∑n

i=2 λi(G) = −r.

Equality in (14) holds if andonly ifλ2(G) = · · · = λn(G). Because a connected graphwithn vertices

and diameter d has at least d + 1 distinct eigenvalues [1,2], G must be the complete graph. �

Corollary 4.2. Let G be same as in Theorem 4.1. Then

IE(Lk+1(G)) �
nk(rk − 2)

2

√
2rk − 4 + √

4rk − 4 +
√

(nk − 1)[(3rk − 4)(nk − 1) − rk].
Equality holds if and only if Lk(G) ∼= Kn.

Theorem 4.3. Let G be a non-bipartite connected regular graph on n vertices and of degree r � 2. Then

IE(L(G)) >
n(r − 2)

2

√
2r − 4 + √

4r − 4 + (n − 1)
√

2r − 4.

Proof

IE(L(G)) = n(r − 2)

2

√
2r − 4 + √

4r − 4 +
n∑

i=2

√
μ+

i (G) + 2r − 4.

Since for connected non-bipartite graphs μ+
n (G) > 0 (see [3]), we have

n∑
i=2

√
μ+

i (G) + 2r − 4�
n∑

i=2

√
0 + 2r − 4 = (n − 1)

√
2r − 4. �

5. Nordhaus–Gaddum-type results for incidence energy

Nordhaus and Gaddum [17] gave bounds for the sum of the chromatic numbers of a graph and

its complement. Nordhaus–Gaddum-type results for many graph invariants are known. Here we give

Nordhaus–Gaddum-type results for the incidence energy.

Theorem 5.1. Let G be a graph with n� 2 vertices. Then
√

n(n − 1) � IE(G) + IE(G) < 2
√

n − 1 + (n − 1)
√
2(n − 2),

with left equality if and only if n = 2.

Proof. Letm andm be, respectively, the number of edges of G and G. By Theorem 3.9,

IE(G) + IE(G) �
2m + 2m√

n
= √

n(n − 1), (15)

with equality if and only if m,m = 0, 1, i.e., n = 2 for n� 2.
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Let μ+
1 be the largest signless Laplacian eigenvalue of G. By the Cauchy–Schwarz inequality,

IE(G) + IE(G) �
√

μ+
1 +

√
μ+

1 +
√

(n − 1)(2m − μ+
1 ) +

√
(n − 1)(2m − μ+

1 )

�
√
2(μ+

1 + μ+
1 ) +

√
2(n − 1)

[
n(n − 1) − (μ+

1 + μ+
1 )

]

and if equalities are attained, then μ+
1 = μ+

1 and μ+
2 = · · · = μ+

n . Consider the function g(x) =√
2x + √

2(n − 1)[n(n − 1) − x]. It is decreasing for x � n − 1. Note that (from the proof of Theorem

3.7)

μ+
1 + μ+

1 �
4m

n
+ 4m

n
= 2(n − 1),

with equality if and only if G is regular. Now

IE(G) + IE(G) � g (2(n − 1)) = 2
√

n − 1 + (n − 1)
√
2(n − 2)

and the equality can not be attained, otherwise, λ2(G) = · · · = λn(G) = − 1
2
, which is impossible,

because by the interlacing theorem, λn(G) = 0 or λn(G) � −1. �

We now give two examples. For the complete graph Kn,

IE (Kn) + IE
(
Kn

) = IE (Kn) = √
2n − 2 + (n − 1)

√
n − 2.

For the complete bipartite graph Kn/2,/2, with n even,

IE
(
Kn/2,/2

) = √
n +

√
2

2
(n − 1)

√
n

and

IE
(
Kn/2,n/2

) = 2
√

n − 2 +
√

2

2
(n − 2)

√
n − 4.

Thus,

IE
(
Kn/2,/2

) + IE
(
Kn/2,/2

) = √
n + 2

√
n − 2 +

√
2

2
(n − 1)

√
n +

√
2

2
(n − 2)

√
n − 4.

These examples and the Theorem 5.1 imply:

Theorem 5.2. Let min IENG(n) and max IENG(n) be respectively the minimum and maximum values of

IE(G) + IE(G) over all graphs with n vertices. Then

lim
n→∞

min IENG(n)

n3/2
= 1 and lim

n→∞
max IENG(n)

n3/2
= √

2.

By using structural parameters other than the number of vertices, the upper bound in Theorem 5.1

can be improved as follows. Let

κ = 2√
n

[√
Zg(G) +

√
n(n − 1)2 − 4m(n − 1) + Zg(G)

]
.

Theorem 5.3. Under the same conditions as in Theorem 5.1,

IE(G) + IE(G) <
√

2κ +
√
2(n − 1)[n(n − 1) − κ]. (16)
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Proof. Repeat the reasoning in the proof of Theorem 5.1 until (15). From the proof of Theorem 3.9) we

get

μ+
1 + μ+

1 � α(G) + α(G)

= 2√
n

⎡
⎣
√√√√ n∑

i=1

di(G)2 +
√√√√ n∑

i=1

di(G)2

⎤
⎦

= 2√
n

⎡
⎣
√√√√ n∑

i=1

di(G)2 +
√√√√ n∑

i=1

(n − 1 − di(G))2

⎤
⎦

= 2√
n

[√
Zg(G) +

√
n(n − 1)2 − 4m(n − 1) + Zg(G)

]
,

with equality if and only if G is regular. As explained in the proof of Theorem 5.1 we now have IE(G) +
IE(G) � g(κ) which immediately implies (16). �
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