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Mitochondrial dysfunction is an early pathological feature of Alzheimer’s disease (AD). The underlying mecha-
nisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences
and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial
dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD
and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we
observed that AD cybrid cells had significant changes in morphology and function; such changes associate
with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment
with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activa-
tion andmitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aber-
rant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance.
These effects suggest a role of oxidative stress-mediated ERK signal transduction inmodulation of mitochondrial
fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation
with a dominant negative DLP1 (DLP1K38A), its expression with siRNA-DLP1, or inhibition of mitochondrial
division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results
provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1)
machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on mainte-
nance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy
for AD.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease (AD) is the most common form of dementia
characterized clinically progressive cognitive decline and neuronal loss.
Pathologically, AD-affected brain shows accumulation of amyloid beta
peptide (Aβ) and neurofibrillary tangleswith tau hyperphosphorylation.
Recent studies indicate that mitochondrial dysfunction, an early
pathological feature in AD, plays a central role in its pathogenesis of
AD [1–6]. Perturbed bioenergetic function, especially mitochondrial
dysfunction, is seen in brain and peripheral tissues of subjects with AD
[7,8]. Cytochrome c oxidase (CcO) activity is lower in human AD platelet
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mitochondria [8–10]. Neurons are especially vulnerable tomitochondrial
dysfunction due to inherent high energy demands and dependence on
respiration for ATP generation [3,11]. Thus, mitochondrial dysfunction
may drive or mediate various AD pathologies.

Mitochondria are dynamic organelles that undergo continuous fis-
sion and fusion. These processes are regulated by the large dynamin-
related GTPases mitofusin 1 and 2 (Mfn1 and 2), and optic atrophy1
(OPA1) for fusion and dynamin-like protein (DLP1) for fission [12,13].
Mitochondrial dynamics play an essential role in ensuring appropriate
distribution of mitochondria within cells, a function that is particularly
critical for morphologically complex cells such as neurons [14].
Alterations in mitochondrial dynamics significantly impact almost all
aspects of mitochondrial function including energy metabolism,
calcium buffering, reactive oxygen species (ROS) generation and
apoptosis regulation [12,15]. Imbalance of mitochondrial fission and
fusion is an important mechanism in neurodegenerative diseases
including Parkinson disease (PD), Huntington disease (HD), and AD.
Although it has been demonstrated that altered mitochondrial fission
or fusion is involved in Aβ-mediated mitochondrial morphological
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changes leading to neuronal and synaptic dysfunction in a transgenic
AD mouse model and in vitro cell culture [15–17], the direct conse-
quences andmechanisms underlying AD-derivedmitochondrial defects
onmitochondrial dynamics and associatedmitochondrial function have
not been fully elucidated. The following questions arise: Do AD-derived
mitochondria show changes inmitochondrialfission and fusion events?
If so, are these altered mitochondrial dynamics associated with
mitochondrial dysfunction? Does inhibition of abnormal mitochondrial
fusion and fission rescue aberrant mitochondrial morphology and
function? Thus, it is essential to uncover the mechanism by which AD
mitochondria modulate this vital mitochondrial process.

To explore themechanisms associatedwithAD-specificmitochondri-
al defects, we used cybrid cells with incorporated platelet mitochondria
from AD or age-matched non-AD human subjects into mitochondrial
DNA (mtDNA)-depleted neuronal cells (SH-SY5Y). The resulting cell
lines, referred to as AD or non-AD cybrids, have been demonstrated to
have different bioenergetic profiles [7]. AD cybrids recapitulatemany po-
tential pathogenic features of AD, such as decreased activity associated
with respiratory chain key enzyme, increased free radical production
rates, and other functional changes that likely arise as a consequence of
perturbed respiratory chain function typically observed in AD brain mi-
tochondria [18,19].

Using AD cybrids, we comprehensively evaluated the consequences
of changes in AD-specific mitochondria onmitochondrial dynamics and
mitochondrial function.We further delineated themechanismbywhich
AD mitochondria regulate mitochondrial fission/fusion events. Our
investigation provides new insight into the role of mitochondrial
dynamics in AD pathogenesis, highlighting the potential diagnostic
and therapeutic application for AD.

2. Materials and methods

2.1. Human subjects and creation of cybrid cell lines

Individuals for this study were recruited from the University of
Kansas Alzheimer's Disease Center. AD subjects met the National Insti-
tute of Neurological and Communicative Disorders and Stroke and the
Alzheimer's Disease and Related Disorders Association criteria [20].
Non-AD subjects were cognitively normal and age-matched to AD
subjects. This study was approved by the University of Kansas Medical
Center (KUMC) Institutional Review Board. All subjects provided writ-
ten informed consent to participate in the study. The ages of AD and
non-AD subject platelet donors were 73.3 ± 2.6 and 74 ± 2.9 years,
respectively. Gender, age and disease status of donor patients are
presented in supplemental Table. S1.

Cybrid cell lines were created on the human neuroblastoma cell
(SH-SY5Y) nuclear background (by the KU ADC Mitochondrial Geno-
mics and Metabolism Core) [21]. To create the cybrid cell lines used
for this study, SH-SY5Y cells that were previously depleted of endoge-
nous mtDNA (Rho0 cells) were fused with the platelet cytoplasm and
repopulated with mitochondria containing mtDNA from patients or
controls as previously described [22]. Briefly, Rho0 cells were incubated
with donor platelets in a DMEM-polyethylene glycol solution. Immedi-
ately after this, cells were initially placed in Dulbecco's Modified Eagle
Medium (DMEM) supplemented with 10% non-dialyzed fetal bovine
serum (FBS), 200 μg/ml sodium pyruvate, 150 μg/ml uridine, and 1%
penicillin–streptomycin solution to recover. Seven days after the fusion
event, cells were switched to a selection medium containing 10%
dialyzed fetal calf serum but lacking pyruvate and uridine. These condi-
tions resulted in selection against Rho0 cells that were not repopulated
with donor mitochondria. Only cells containing patient's platelet
mtDNA can regain aerobic competence and survive the subsequent
selection processes. Following selection, each cybrid cell linewasmain-
tained in medium containing DMEM supplemented with 10% non-
dialyzed FBS and 1% penicillin-streptomycin solution in a humidified
95% air/5% CO2 incubator at 37 °C for over 2 months. The quantitative
real-time PCR showed that the intact mtDNA copies were present in
all cybrids without detectable large scale deletion after many passages
of cell proliferation (Fig. S1).

Cells were treated with probucol (10 μM) (Sigma), ERK1/2 inhibitor
PD98058 (10 μM) (Sigma), or mitochondrial division inhibitor mdivi-1
(10 μM) (Sigma) for 24 h prior to biochemical and molecular assays.
2.2. Measurement of enzyme activities associated with respiratory chain
complexes

Briefly, cybrid cells were washed with ice-cold PBS, and then har-
vested, centrifuged, and suspended in 50 μL of isolation buffer contain-
ing 250 mM sucrose, 20 mM HEPES, and 1 mM EDTA. Cell suspensions
(containing ~3–4 mg of protein/ml) were added to a cuvette containing
0.95 mL of 1× assay buffer (10 mMTris–HCl, and 120 mMKCl), and the
reaction volume was brought to 1.05 mL with the addition of 1× en-
zyme dilution buffer (10 mM Tris–HCl, pH 7.0). The reaction was then
initiated by addition of 50 μL of ferrocytochrome substrate solution
(0.22 mM), and the change in absorbance of cytochrome c at 550 nm
was measured using a Shimadzu (Kyoto, Japan) UV1200 spectropho-
tometer. Activity is expressed as micromoles of cytochrome
oxidized per min−1 mg−1 protein using an extinction coefficient of
27.84 mM−1 cm−1. Enzyme activities in complex I (NADH-ubiquinone
reductase), complex II (succinate dehydrogenase), complex III
(ubiquinol-cytochrome c reductase), complex IV (cytochrome c oxi-
dase, CcO) and citrate synthase activity were determined as described
previously [23,24].
2.3. Measurement of ATP levels

ATP levelswere determined using anATP Bioluminescence Assay Kit
(Roche) following the manufacturer’s instructions [2,25]. Briefly, cells
were harvested using the provided lysis buffer, incubated on ice for
15 min, and centrifuged at 13,000g for 10 min. ATP levels were mea-
sured using a Luminescence plate reader (Molecular Devices) with an
integration time of 10 s.
2.4. Functional imaging

Cybrid cells were harvested from 75 cm2
flasks and replated at low

density onto Lab-Tek eight-well chamber slides. Mitochondrial ROS
generation was determined using Mitosox Red (Molecular Probes), a
unique fluorogenic dye highly selective for detection of superoxide pro-
duction in live cell mitochondria. Cells were incubated with fresh
growth medium containing 2.5 μM Mitosox for 30 min. For mitochon-
drial membrane potential determination, cells were co-stained with
Mitotracker Green (MTGreen) (100 nM; Molecular Probes) and
TMRM (100 nM; Molecular Probes) for 30 min. Fluorescence from
MTGreen is independent of membrane potential, whereas TMRM is
sensitive to membrane potential. Mitochondria were labeled with
Mitotracker Red (Molecular Probes, incubated in 100 nM Mitotracker
Red for 30 min at 37 °C before fixation) to visualize morphology.

Images were captured under a microscope (Leica TCS SPE) using a
63X1.4 NAApochromeobjective (Carl ZeissMicroImaging, Inc.). Excita-
tion wavelengths were 543 nm for Mitosox, TMRM or Mitotracker Red,
and 488 nm for MTGreen, respectively. Fluorescent signals were
quantified using NIH Image J software. Post-acquisition processing
was performed with MetaMorph (Molecular Devices) and NIH Image J
software for quantification and measurement of fluorescent signals of
mitochondrial length and occupied area. Mitochondrial size, shape,
density, and fluorescent intensity were quantified by an investigator
blinded to experimental groups. More than 100 clearly identifiable
mitochondria from randomly selected 10–15 cells per experiment
were measured in 3 independent experiments.
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2.5. Isolation of mitochondria and immunoblot analysis

Mitochondrial fraction and cytosol isolated from cybrid cells were
suspended in buffer (150 mM KCl, 5 mM HEPES, 2 mM K2HPO4,
5 mM glutamate, 5 mM malate, 150 mM potassium thiocyanate,
pH 7.2), and subjected to the immunoblotting. The rabbit anti-DLP1
(1:3000, Thermo scientific), mouse anti-Mfn2 (1:2000, Sigma), mouse
anti-Hsp60 (1:5000, Enzo), rabbit anti-phospho-ERK1/2, mouse anti-
ERK1/2 (1:2000, Cell signaling), and mouse anti-β-actin (1:8000,
Sigma) were used as primary antibodies. Binding sites of primary
antibody were visualized with horseradish peroxidase-conjugated
anti-rabbit IgG antibody (1:5000, Life Technology) or anti-mouse IgG
antibody (1:5000, Life Technology) followed by the addition of
enhanced chemiluminescence (ECL) substrate (GE Healthcare). We
quantified relative optical density of immunoreactive bands using NIH
Image J software.

2.6. Mdivi-1 treatment

Mdivi-1 was dissolved in DMSO (50 mM) and diluted with culture
medium to the working concentration. Cells were treated with mdiv-1
(10 μM) for 24–48 h, and mitochondrial density, length, morphology,
CcO activity, and ATP levels were determined as described above.

2.7. Transient transfection of mitochondrial fission construct (DLP1K38A)

Cells were transfected with plasmids containing GFP-tagged
DLP1K38A (provided by Dr. Yi-Ren Hong, Kaohsiung Medical University
Hospital, Taiwan) or GFP-tagged empty vector alone using Lipofecta-
mine 2000 (Invitrogen) according to manufacturer's instructions.
Forty-eight hours after transfection, cells were assessed for changes
in mitochondrial morphology or ATP levels as described above.
Transfected cells were visualized with green fluorescent protein (GFP)
as reported [26].

2.8. Knockdown of DLP1 expression by siRNA-DLP1

The cybrid cells were transfected with SiRNA targeting human
DLP1 (accession number NM012062) or control siRNA (ON-TARGET
Plus SMART PoolTM, Dharmacon Research) using Oligofectamine
(Invitrogen) according to the manufacturer's instructions. DLP1 silenc-
ing efficiency was evaluated by immunoblotting of DLP1 protein
expression at 48 h after siRNA transfection. In the parallel experiments,
the mitochondrial morphology was detected by immunostaining and
Mitotracker Red staining.

2.9. Statistical analysis

Data are presented as mean ± SEM. Statistical analysis was
performedusing Statview software (SAS Institute, Version 5.0.1). Differ-
ences between means were assessed by Student's t-test or one-way
analysis of variance (ANOVA) with Bonferroni/Dunn posthoc test.
P b 0.05 was considered significant.

3. Results

3.1. Mitochondrial dysfunction in AD cybrid cells

We first characterized mitochondrial function by evaluating key
enzymes associated with respiratory chain, membrane potential, and
bioenergy in newly created cybrid neuronal cells containing AD or
age-matched non-AD platelet mitochondria. Compared to non-AD
cybrids, AD neurons had a significant decrease in complex I, III, and IV
activities (Fig. 1A–C). No significant change in complex II activity was
found in AD cybrid cells (Fig. S2A). Similarly, ATP levels were reduced
by 40–50% in AD cybrid cells (Fig. 1D). Citrate synthase activity, used
as a quantitative enzyme marker for the presence of intact mitochon-
dria, was comparable between AD and non-AD cybrids (Fig. S2B).

To more carefully evaluate mitochondrial function, we measured
inner mitochondrial membrane potential (ΔmΨm). Cells were treated
with tetramethylrhodaminemethylester (TMRM) tomonitormitochon-
drial membrane potential. TMRM staining was significantly decreased
in AD cybrids by 50–60% compared to non-AD cybrids (Fig. 1E).

Given that mitochondria are a major source of ROS generation and
that ROS accumulation affects mitochondrial function, we tested
whether mitochondrial ROS generation correlates with mitochondrial
dysfunction. Indeed, the intensity of Mitosox staining, an indicator for
mitochondrial ROS, was significantly increased in AD cybrids compared
to non-AD control cybrids (Fig. 1F).

3.2. Abnormal mitochondrial morphology and mitochondrial fission/fusion
events in AD cybrid neurons

Next, we evaluated changes in mitochondrial distribution and mor-
phology.Mitochondrial density inwhole cell, cell body, and processwas
decreased in AD cybrid cells compared to non-AD cells (Fig. 2A1–A3).
Decreased mitochondrial density was more severe in processes than
in cell bodies (decreased by 40–50% in processes vs. 25–30% in cell bod-
ies of AD cybrids compared to non-AD (Fig. 2A2–A3). Morphologically,
mitochondria in non-AD cybrids were rod-like or elongated, and
regularly distributed (Fig. 2B), whereasmitochondria were fragmented,
misshapen, bleb-like, and collapsed away from the mitochondrial net-
work in AD cybrid cells (Fig. 2B). Accordingly, mitochondrial length
was significantly shorter in AD cybrids than in non-AD controls
(Fig. 2C1–C4), particularly in neuronal process regions (Fig. 2C2).

Balance of mitochondrial fission and fusion proteins is critical for
maintenance of normal mitochondrial morphology [17,27]. DLP1 is a
key player inmitochondrialfission regulation acting directly or indirect-
ly with other fission/fusion proteins, and its translocation to mitochon-
dria initiates the fission process [28]. Mitochondrial fraction and cytosol
from each cybrid cell line were isolated to assess fission and fusion pro-
tein levels (Fig. 3). DLP1 levelswere significantly increased inmitochon-
drial fraction of AD cybrids (~1.5–1.6 fold) as compared to non-AD
mitochondrial fraction. Accordingly, cytosolic DLP1 was reduced in AD
cybrids (Fig. 3A, C). Mfn2 that controls mitochondrial fusion was signif-
icantly decreased inmitochondrial and increased in cytosolic fraction of
AD cybrids (Fig. 3B, D). Thus, both fission and fusion protein levels were
altered in a direction favoring mitochondrial fission in AD-derived
mitochondria.

3.3. Effect of antioxidant treatment onmitochondrial function, morphology,
and fission/fusion proteins in AD cybrid cells

In view of increasedmitochondrial ROS in AD cybrids and an impor-
tant contributor of oxidative stress to mitochondrial dysfunction and
abnormal changes in mitochondrial structure [2,4,5], we next deter-
mined if antioxidant treatment could rescue altered mitochondrial
function,morphology andfission/fusion dynamics. Cellswere incubated
with the antioxidant probucol, which prevents lipid and protein oxida-
tion [4,5]. Probucol treatment greatly attenuated mitochondrial ROS
production/accumulation as shown by reduced Mitosox intensity com-
pared to vehicle-treated AD cybrid cells (Fig. 4A). Such treatment signif-
icantly improved mitochondrial function and energy metabolism by
increased membrane potential (as measured by TMRM staining),
complex I activity, and ATP levels in AD cybrid cells (Fig. 4B–E). The pro-
tective effect of probucol on ADmitochondria-induced dysfunction sug-
gests the involvement of oxidative stress in mitochondrial dysfunction.

We then evaluated the effect of probucol on mitochondrial density,
length, and morphology. Mitochondria density was significantly
increased in probucol treated AD cybrid cells compared to vehicle treat-
ment (Fig. 4F). Similarly, the average mitochondrial length was in-
creased in AD cybrids (Fig. 4G). Abnormal mitochondrial morphology
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Fig. 1.Mitochondrial dysfunction in AD cybrid cells. A–D) Enzymatic activity of complex I, III, and IV (CcO), and ATP levels were determined in cell lysates from indicated cell groups. E–F)
Mitochondrial membrane potential and reactive oxygen species (ROS)weremeasured by TMRM (E) andMitosox staining intensity (F), respectively. Image intensity was quantified using
NIH Image J software. Data are expressed as fold increase relative to non-AD cybrid cells. N = 7 cell lines/group. * p b 0.05 versus non-AD group.
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in AD (fragmentation) cybrids was largely reversed compared to
vehicle-treated AD cybrids (Fig. 4H), indicating the protective effect of
antioxidant treatment on abnormal mitochondrial morphology. As
shown in Fig. 4I–J, probucol treatment significantly increased Mfn2
and suppressed an increase in DLP1 expression in AD cybrids compared
to the vehicle-treated cells. These data demonstrate that antioxidant
reverses impaired mitochondrial fission and fusion dynamics in AD
mitochondria.
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3.4. Activation of ERK1/2 signal transduction is responsible formitochondrial
fission/fusion proteins translocation and defects in mitochondrial function

Oxidative stress induces activation ofMAP kinase including extracel-
lular receptor kinase (ERK) and p38 [4,29], which is linked to abnormal
mitochondrial structure and function [4,5,30]. To examine the relatively
unexplored role of ERK activation in AD-derived mitochondria, we first
analyzed ERK1/2 phosphorylation by immunoblotting. AD cybrid cells
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exhibited significantly increased ERK1/2 phosphorylation (3-4 fold in-
crease vs. non-AD neurons). Addition of PD98059, a specific ERK inhib-
itor, largely abolished ERK1/2 phosphorylation (Fig. 5A). A total ERK1/2
was not significantly changed in AD cybrids compared to non-AD
cybrids. To determine the effect of oxidative stress on ERK1/2 activation,
cells were treated with probucol and then analyzed for phospho-ERK1/
2. Compared to vehicle treatment, probucol treatment significantly
inhibited ERK1/2 phosphorylation in AD cybrid cells (Fig. 5B). The addi-
tion of PD98059 to the AD cybrid cells blocked mitochondrial ROS gen-
eration (Fig. 5C). To assess if there is a direct link of ERK1/2 activation to
mitochondrial function, we examined the effect of ERK1/2 inhibitor on
mitochondrial membrane potential. Treatment with PD98059 resulted
in a significantly higher intensity of TMRM staining in AD cybrid cells
than in vehicle-treated cells (Fig. 5D). These results demonstrate that,
in AD cybrids, ERK signaling transductionwas perturbed upon exposure
to the oxidative stress.

Given that MAP Kinase signal pathway may be involved in regulating
mitochondrial function and mitochondrial fission/fusion protein expres-
sion [31],wehypothesized that activation of the ERKpathway contributes
to abnormalmitochondrial structure and functionobserved inADcybrids.
To test this concept, we evaluated mitochondrial morphology and mito-
chondrial fission/fusion protein expression levels in cybrid cells treated
with PD98059. As shown in Fig. 5E, mitochondrial density was increased
in AD cybrid cells treated with PD98059 compared to vehicle-treated
cells. Similarly, PD98059 treatment increased mitochondrial length in
AD cybrids (Fig. 5F). Morphologically, there was a significant reduction
in mitochondrial fragmentation in AD cybrids (Fig. 5G). These data dem-
onstrate that inhibition of ERK activation effectively rescues alterations in
mitochondrial morphology in AD cybrids.
To explore the effect of ERK signal transduction on expression
levels of mitochondrial fission/fusion proteins in AD cybrids, we
immunoblotted mitochondrial fractions for DLP1 and Mfn2 expression
as described above. Consistent with the results shown in Fig. 3, DLP1
levels in AD mitochondrial fraction were significantly increased (~1.5–
1.6 fold). In contrast, PD98059 treatment reversed DLP1 expression
levels compared to vehicle-treated cells (Fig. 5H), suggesting that inhi-
bition of ERK activation rescues abnormal mitochondrial dynamics.

3.5. Treatment with mitochondrial division inhibitor mdivi-1, DLP1K38A

or siRNA-DLP1 rescues perturbations of mitochondrial function and
mitochondrial fission/fusion events in AD cybrids

Perturbed balance ofmitochondrial fission and fusion is likely an im-
portant mechanism for mitochondrial and neuronal dysfunction in AD
brain [15,17]. Results presented above raise the question of whether
such imbalance inmitochondrial fission/fusion in AD cybrids affects mi-
tochondrial function, and whether inhibition of mitochondrial division
rescues mitochondrial function defects. To address these questions,
we investigated the effect of mitochondrial division inhibitor, mdivi-1,
a selective inhibitor of GTPase activity in DLP1 [32]. Treatment with
mdivi-1 blockedmitochondrial fragmentation and improvedmitochon-
drial function induced by AD-derivedmitochondrial defects. Mitochon-
drial length and density were significantly increased in mdivi-1 treated
AD cybrid neurons, as compared to vehicle-treated cells (Fig. 6A–B).
Accordingly, abnormal mitochondrial morphology was significantly
eradicated with the treatment with mdivi-1, as shown by reduction of
mitochondrial fragmentation in AD cybrids (Fig. 6C). Next,we evaluated
mitochondrial respiration chain activity and bioenergetic ability follow-
ing treatment with mdivi-1. Deficits in complex IV activity and ATP
levels were reversed by mdivi-1 treatment (Fig. 6D–E). Consistent
with these results, AD cybrid cells showed a significant increase inmito-
chondrialmembrane potentialwhen exposed tomdivi-1 (Fig. 6F). Addi-
tion of mdivi-1 also significantly suppressed ROS production in AD
cybrids (Fig. 6G–H). Collectively, our data indicate that mdivi-1 confers
protective effects on mitochondrial structure and function relevant to
AD-derived mitochondrial toxicity.

To further validate the effect of DLP1 on abnormal mitochondrial
dynamics that result inmitochondrialmorphological changes, we intro-
duced a dominant negative protein defective in GTP binding (DLPlK38A)
to inhibit DLP1 GTPase activity or siRNA-targeted DLP1 to knockdown
DLP1 expression in AD cybrid cells. AD cybrid cells expressing
DLP1K38A rescuedmitochondrialmorphology as shownby the elongated
mitochondria and reduced mitochondrial fragmentation compared to
empty vector transfected AD cybrid neurons (Fig. 7A–C). DLP1K38A-
transfected cells increased CcO activity (Fig. 7D). Similar results were
obtained from siRNA-DLP1 treated cells (Fig. 7E–J). AD cells with re-
duced levels of DLP1 had an increase in the average of mitochondrial
length and density as well as mitochondrial membrane potential and
ATP levels compared to the control siRNA treated cells. These results in-
dicate that disruption of DLP1 expression in AD-derived mitochondria
may be responsible for abnormal mitochondrial structure and function.
We further tested whether the blockade of DLP1 by pharmaceutical
inhibitors or genetic knockdown of DLP1 affected the ERK signaling in
AD cybrids. There were no significant changes on phosphorylation and
expression levels of ERK1/2 under mdivi-1/DLP1K38A/siRNA-DLP1
experimental conditions (Fig. S4), indicating that activation of ERK sig-
naling may serve as an upstream regulator of the ERK-DLP-1 pathway.

4. Discussion

Although abnormalities in mitochondrial structure and function in
AD brain and AD mouse models are well documented [2,24,33–35],
the underlying mechanisms and the strategy to rescue mitochondrial
degeneration remain elusive. Particularly, the status of mitochondrial
fusion and fission pathway and its relationship between mitochondrial
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bioenergy and mitochondrial morphology in human AD mitochondria
have not been fully elucidated. Here, we demonstrated the functional
and metabolic differences in AD-derived mitochondria in cybrid cells
and the potential mechanisms by which AD mitochondria regulates
mitochondrial fission/fusion event through oxidative stress mediated
activation of ERK-DLP1 signal transduction.

First, we validated the consequence and impact of AD-derived mito-
chondrial defects on mitochondrial structure and function using cybrid
cell lines containingplateletmitochondria fromADandage-matched sub-
jects to repopulate mtDNA-free Rho0 neuroblastoma cells. The resulting
AD and non-AD cybrid cells have the same nuclear DNA background at
the time of experiments. Consistent with the previous report, these
human neuronal cybrids recapitulate many features observed in AD
brain including impaired mitochondrial respiratory function as shown
by decreased enzyme activity associated with respiratory chain [36,37],
decreased membrane potential and ATP levels, and increased mitochon-
drial oxidative stress [38,39]. The complex III activity was also declined
in the platelet and lymphocyte prepared from AD patients [8]. Although
therewas one report that there is no difference in the amount of complex
III between AD and non-AD control brains [40], the complex III activity
could be significantly altered. For example, complex III activitywas signif-
icantly decreased in the brain of transgenic ADmousemodel [24]. Thus, it
requires further investigation to analyze whether complex III enzyme
activity is altered in AD affected brain. Nevertheless, by using cybrid
cells generated by fusing the Rho0 cells with the AD-derived platelet
mitochondria, we observe deficits in enzymatic activity associated with
respiratory chain including complex III, which is consistent with defect
of complex III activity founded in the platelet from AD patients [8].
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DLP1 rescues the perturbation of mitochondrial morphology and function relevant to AD
mitochondrial degeneration.
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Second, we demonstrated significant changes inmitochondrialmor-
phology and fission/fusion balance in AD cybrids. Defects in mitochon-
drial structure and function observed in AD cybrid cells associate with
altered expression and distribution ofMfn2 or DLP1. Third, the structur-
al and functional defects caused by AD mitochondria are protected by
antioxidant and inhibition of ERK1/2 activation. Importantly, pharma-
cological blockade of mitochondrial division usingmdivi-1, an inhibitor
of DLP1 GTPase, and genetic restoration with dominant negative
DLP1K38A and knockdown of DLP1 expression rescue mitochondrial
morphology and function. Our current study provides new insights
into the human AD mitochondria-mediated structural and functional
changes and identifies a potential protective therapy against mitochon-
drial degeneration and improvement ofmitochondrial function relevant
to the AD pathogenesis.

Morphologically, AD cybrids had fragmented, misshaped, and bleb-
like mitochondria, which are consistent with alterations in ultrastruc-
ture observed in AD neurons from human brain and mouse models
[30,34,35]. AD cybrid cells had lower mitochondrial density compared
to non-AD cybrids. To evaluate the possible effect on autophage/
mitophagy, we have performed immunostaining and immunoblotting
of cybrid cells with autophagy marker Light Chain (LC3). There are no
significant changes in LC3 expression level or its activation (Fig. S3),
suggesting that there is no significant autophagy occurring in non-AD
or AD cybrid cells and that the mitochondrial density change may not
associate with mitophagy.

We explored the involvement of abnormal mitochondrial dynamics
by investigating changes in expression of mitochondrial fission and fu-
sion proteins. AD cybrid cells showed an increased DLP1 translocation
to mitochondria, whereas Mfn2 expression was decreased in AD cybrid
mitochondria, suggesting that abnormal balance of mitochondrial fis-
sion and fusion in AD cybrids. DLP1 exists primarily in the cytoplasm
but partially associates into foci on the outer surface of mitochondria
that coalesce at sites of mitochondrial fission [28]. Increased DLP1 re-
cruitment to mitochondria results in higher rates of DLP1-dependent
mitochondrial division and mitochondrial fragmentation [15]. There-
fore, changes in DLP1 expression levels and distribution as well as
changes in other fusion proteins, such as Mfn2, likely contribute to
enhanced mitochondrial fission, which may in turn be responsible for
fragmentation of mitochondria observed in AD cybrids.

Given that oxidative stress disrupts mitochondrial structure and
function [2,4,5], we assess whether antioxidant rescues oxidative
stress-induced aberrant mitochondrial morphology and function.
Probucol is an antioxidant preventing protein or lipid peroxidation
and has been clinically used during the past few decades for the treat-
ment and prevention of cardiovascular disease [41,42]. Further, the
addition of probucol attenuates Aβ- or AGE-induced oxidative stress
[4,5,43] and protects against ischemia-induced neuronal injury [4,44].
Indeed, treatment with probucol significantly blunted mitochondrial
ROS production, and augmented mitochondrial membrane potential,
respiratory chain complexes activities and ATP production. Although
the disruption ofmitochondrialfission and fusion status inHuntington’s
disease is associated with increased ROS [45], to our knowledge this is
the first demonstration of the contribution of mitochondrial ROS to dys-
regulation of mitochondrial fission and fusion induced by AD-derived
mitochondria. Probucol treatment rescued abnormal mitochondrial mor-
phology by controllingmitochondrial fission and fusion balance and asso-
ciated protein expression levels, indicating that increased oxidative stress
in AD mitochondria is responsible for the perturbation of mitochondrial
dynamics leading to aberrant mitochondrial structure and function.

Activation of the MAP kinases ERK is associated with increased oxi-
dative stress as well as mitochondrial and neuronal stress [29,46,47].
We found that ERK1/2 phosphorylation was significantly increased in
AD cybrid cells. The antioxidant probucol blocked ERK1/2 activation
along with attenuating mitochondrial perturbation, suggesting the
impact of oxidative stress on ERK signal transduction, leading to mito-
chondrial injury.
ERK activation correlates with increased mitochondrial fission and
DLP1 translocation in α-synuclein-mediated changes in mitochondrial
dynamics [48]. Little is known about the ERK signal-transduction path-
ways that may regulate mitochondrial fission/fusion dynamics in AD-
derivedmitochondria. Given that blockade of ERK1/2 activation rescues
mitochondrialmorphology by suppressingmitochondrial DLP1 levels in
AD cybrids, we propose that oxidative stress-mediated ERK activation
augments DLP1 recruitment to mitochondria and shifts mitochondrial
dynamics toward excessive fission in AD, contributing to abnormal mi-
tochondrialmorphology such as fragmentation ofmitochondria. Abnor-
malities in mitochondrial fission/fusion equilibrium precede functional
defects in AD animal models. Indeed, ERK inhibition accompanies func-
tional recovery thereby supporting a pivotal upstream role for ERK in
regulation ofmitochondrial function through influence onmitochondri-
al dynamics. Taken together, we provide evidence that an axis of oxida-
tive stress, ERK and DLP1 signal transduction are critical to AD-related
mitochondrial dynamic imbalance and dysfunction (Fig. 8).

Inhibition of mitochondrial division using small molecule inhibitors
(i.e., mdivi-1) in PD and HD cell culture models or dominant negative
forms of DLP1 in Aβ-impaired cell culturemodels attenuates disease as-
sociated phenotypes [49–52]. Whether and how attenuation of higher
rates of mitochondrial division rescues defects associated with AD-
derived mitochondria has not yet been reported. In view of increased
mitochondrial fraction of DLP1 in AD cybrid and a key player of DLP1
in maintaining normal mitochondrial dynamics, we examined the
effect of mdivi-1, a selective inhibitor of GTPase activity in DLP1 [32],
on aberrant mitochondrial morphology and function. Treatment with
mdivi-1 protects neurons from AD mitochondria-mediated injury.
Furthermore, introduction of DLP1K38A, or siRNA-DLP1 attenuated
abnormal mitochondrial morphology and improved mitochondrial
function, as shown by resultant inhibition of mitochondrial fragmenta-
tion, and improved mitochondrial respiratory function and bioenergy.
These data suggest that blockade of DLP1 by pharmaceutical inhibitors
or genetic knockdown of DLP1 can rescue perturbation ofmitochondrial
defects. Taken together, our data support that DLP1 plays a critical role
inmitochondrial dynamic imbalance insulted by AD-derivedmitochon-
dria. The protective effect of DLP1 on mitochondrial toxicity in human
AD-derivedmitochondria suggests DLP1 as a potential and novel thera-
peutic target for AD.
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In summary, our data offer new insights into structural and function-
al defects of human ADmitochondria and the associated ERK-DLP1 sig-
naling pathway.We provide substantial evidence that the ERK pathway
is involved in oxidative stress-induced DLP1 translocation to mitochon-
dria in AD cybrids.We hypothesize that increased oxidative stress in AD
mitochondria activates ERK signal transduction, disrupts mitochondrial
fission and fusion balance, and promotes translocation of DLP1 to mito-
chondria, leading to mitochondrial fragmentation in AD. Most impor-
tantly, suppression of ERK signaling and inhibition of mitochondrial
fission pathways restore mitochondrial morphology and function
induced by AD mitochondrial defects (Fig. 8). Thus, small molecule
targeting to mitochondrial fission (i.e., mdivi-1) may be a significant
novel therapeutic strategy for AD treatment.
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