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Kinetic and Thermodynamic Aspects of Lipid Translocation in
Biological Membranes

Stephan Frickenhaus and Reinhart Heinrich
Humboldt University Berlin, Institute of Biology and Theoretical Biophysics, D-10115 Berlin, Germany

ABSTRACT A theoretical analysis of the lipid translocation in cellular bilayer membranes is presented. We focus on an
integrative model of active and passive transport processes determining the asymmetrical distribution of the major lipid
components between the monolayers. The active translocation of the aminophospholipids phosphatidylserine and phos-
phatidylethanolamine is mathematically described by kinetic equations resulting from a realistic ATP-dependent transport
mechanism. Concerning the passive transport of the aminophospholipids as well as of phosphatidylcholine, sphingomyelin,
and cholesterol, two different approaches are used. The first treatment makes use of thermodynamic flux-force relationships.
Relevant forces are transversal concentration differences of the lipids as well as differences in the mechanical states of the
monolayers due to lateral compressions. Both forces, originating primarily from the operation of an aminophospholipid
translocase, are expressed as functions of the lipid compositions of the two monolayers. In the case of mechanical forces,
lipid-specific parameters such as different molecular surface areas and compression force constants are taken into account.
Using invariance principles, it is shown how the phenomenological coefficients depend on the total lipid amounts. In a second
approach, passive transport is analyzed in terms of kinetic mechanisms of carrier-mediated translocation, where mechanical
effects are incorporated into the translocation rate constants. The thermodynamic as well as the kinetic approach are applied
to simulate the time-dependent redistribution of the lipid components in human red blood cells. In the thermodynamic model
the steady-state asymmetrical lipid distribution of erythrocyte membranes is simulated well under certain parameter restric-
tions: 1) the time scales of uncoupled passive transbilayer movement must be different among the lipid species; 2) positive
cross-couplings of the passive lipid fluxes are needed, which, however, may be chosen lipid-unspecifically. A comparison of
the thermodynamic and the kinetic approaches reveals that antiport mechanisms for passive lipid movements may be
excluded. Simulations with kinetic symport mechanisms are in qualitative agreement with experimental data but show
discrepancies in the asymmetrical distribution for sphingomyelin.

INTRODUCTION

Plasma membranes of eukaryotic cells show a pronounced
asymmetry with respect to the distributions of the major
lipid components among the two monolayers. The amin-
ophospholipids phosphatidylserine (PS) and phosphati-
dylethanolamine (PE) are predominantly located on the
cytoplasmic leaflet, whereas the phospholipids phosphati-
dylcholine (PC) and sphingomyelin (SM) are mainly found
on the external leaflet (Bretscher, 1972; Verkleij et al.,
1973; Gordesky and Marinetti, 1973; cf. Devaux, 1991;
Zachowski, 1993). Evidence of the distribution of choles-
terol (Ch) as another membrane component is still contra-
dictory. Some authors found for cholesterol a preference for
the cytoplasmic layer of the red blood cell membrane (Bra-
saemle et al., 1988; Schroeder et al., 1991), whereas other
results indicate a rather symmetrical distribution (Blau and
Bittman, 1978; Lange and Slayton, 1982).

As has been demonstrated by Seigneuret and Devaux
(1984), the asymmetrical distribution of the aminophospho-
lipids may be understood by an ATP-dependent transloca-
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tion of these components from the external to the cytoplas-
mic layer. The response of the membrane to this directed
transport will concern not only the counter-directed move-
ment of PS and PE, but also a redistribution of PC, SM, and
Ch. Furthermore, a change in membrane curvature may
occur because of geometrical restrictions and corresponding
mechanical forces caused by the coupling of the monolayer
surfaces. This reasoning shows that the membrane asym-
metry is determined by a multitude of processes, depending
on 1) the metabolic state of the cell, 2) the mechanism of
active translocation, 3) the transmembrane concentration
differences of lipids, and 4) mechanical forces.

Obviously, the interaction of different translocation pro-
cesses may be adequately described only on the basis of
biophysical models allowing quantitative estimates for dif-
ferent experimental situations under time-independent and
time-dependent conditions. Mathematical models of molec-
ular mechanisms of lipid translocation are still rare. Previ-
ous investigations (Brumen et al., 1993; Heinrich et al.,
1997) indicated that an explanation of the asymmetrical
molecular composition of bilayers needs to consider free
energy contributions from mixing entropy as well as from
mechanical effects of lateral compressions. However, in the
work of Brumen et al. (1993), the expressions for fluxes
resulting from mechanical stress, the so-called compensa-
tory fluxes, are not well defined in their physical meaning.
A drawback of the paper of Heinrich et al. (1997) is that the
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use of monolayer mixing entropy is not fully justified for
two coupled monolayers. Furthermore, the latter analysis
assumes that the mechanical properties of the lipids are
species independent, which is an oversimplification, at least
for cholesterol.

Correct theoretical investigations of the membrane on a
microscopic level are crucial for understanding macroscopic
cellular phenomena such as shapes of cells. In the latter field
of research much theoretical work has been done using
methods of elasticity theory (see Svetina and Zeks, 1989;
Seifert et al., 1991; Heinrich et al., 1993). Membrane prop-
erties such as spontaneous curvature and relative area
changes of the monolayers, which enter the shape-determin-
ing energy functional, should be directly related to the
asymmetrical composition of the bilayer.

This study is intended to gain a more complete under-
standing of the phenomena of transbilayer lipid movement
by finding an appropriate phenomenological description of
the lipid fluxes. The steady-state asymmetrical lipid distri-
bution is governed by dynamics equations. A reference
simulation with a minimal set of phenomenological param-
eters yields qualitative restrictions to the many possible
translocation mechanisms. Relations between phenomeno-
logical and kinetic model parameters serve, furthermore, as
guidelines for the selection of kinetic constants in a quan-
titative way. It is shown how the mechanical driving forces
of the phenomenological model are to be incorporated into
a kinetic model of lipid translocation.

BASIC MODEL ASSUMPTIONS

Let us consider a bilayer membrane of one cell composed of
s different lipids, which are subject to translocation pro-
cesses between the cytoplasmic monolayer ¢ and the exter-
nal monolayer e. The amounts, in units of moles per cell, of
the lipids i, i = 1, .. ., s, on the monolayers are denoted by
N; and N;. They are related to the differences n; = N{ — N}
and to the total amounts of lipids N, = N; + N; as follows:

N + n; N; = n;
M=o, N=—5— (1)

The time-dependent changes of the composition of the
monolayers are governed by the differential equations

dny dnz;

i i

d ~  dr

= S @)

where J°* and JP** denote the fluxes of active and passive
transport, respectively. Fluxes have positive sign if lipid
amounts on the cytoplasmic side are increased. In this
equation it is assumed that the total amount /N, is constant,
that is, the model does neither include insertions of the
lipids into the membrane or extractions of the lipids from
the membrane. Lipids are considered to be distributed ho-
mogeneously in lateral directions. Furthermore, there is no
intermediate state at the transport of the lipids from one
leaflet to the other.
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For the fluxes J{* we use an ATP-dependent carrier
mechanism as described previously (Heinrich et al., 1997;
cf. also Simulations). Passive fluxes are described first in
the framework of linear irreversible thermodynamics, and
second on the basis of kinetic translocation models.

In the thermodynamic approach we apply linear flux-
force relationships,

I = X L, 3)
i

where X; denotes thermodynamic forces. The coefficients
L;; are referred to as phenomenological coefficients and are
assumed to be state independent, i.e., they have constant
values in time. They may depend, however, on system
parameters such as total lipid amounts and lipid-specific
molecular parameters. For the forces X; we analyze in the
following sections entropic effects and mechanical effects
within lipid bilayers. Both types of forces may be expressed
as functions of the variables N or Ni and of lipid-specific
parameters. Gradients in temperature are neglected, that is,
the solvent on both sides of the membrane acts as a heat
bath.

In the kinetic approach it is assumed that passive diffu-
sion fluxes of lipids are mediated by a protein carrier. Two
different mechanisms are analyzed: first, an antiport mech-
anism, and second, a symport mechanism. Near equilibrium
the linearized kinetic equations may be directly compared to
the phenomenological equations of the thermodynamic ap-
proach. In this way the coupling coefficients may be ex-
pressed in terms of the kinetic parameters of the carrier.

PHENOMENOLOGICAL FORCES OF THE
LATERAL IDEALLY MIXING BILAYER

Entropic forces

The free energy F of the bilayer can be derived from
combinatorial considerations under the following assump-
tions: 1) ideal mixing of the lipids within both monolayers
(i.e., non-lipid-specific interactions), 2) negligible molecu-
lar transbilayer interactions, and 3) no internal degrees of
freedom for the conformation of the lipid molecules. Hence
F is related to a configurational partition function Z by F =
—kgT In Z, where kg is Boltzmann’s constant. The partition
function may be calculated from the macroscopic configu-
rations of a bilayer, which are characterized by the numbers
of lipid molecules A{ = L,N; and A = L,N; of species i
on either monolayer, e or ¢, respectively. L, denotes Avo-
gadro’s number.

The configurational partition function of the bilayer reads

A
Z= HW 4)

i=

Z takes into account the number of microscopic distribu-
tions of A; molecules of each lipid species among the
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monolayers with a lipid number A{ and A on the two
layers.

The entropic contribution to the total free energy (in
Joules) of a single membrane reads

F=—kTInZ (6)

Using Stirling’s formula, In x! ~ x Inx — x for x >> 1, one
derives from Eqs. 4—-6

F
gfrlmmm+ymmﬁ+ﬁm@.o)
j 4

J

It is easy to see that at variations of Aj and Aj under the
constraint A; = Aj + Aj = constant, the free energy attains
its minimum for an equal distribution of each lipid species
among the two monolayers. In terms of molar amounts the
equilibrium state is, therefore, characterized by

N

N=N=75. ®)

Nonequilibrium states are characterized by the variables

N N
= N+ ©)

)’i:Nic_j

which are related to the differences n; = Ni — N; by n; =
2y;. Defining entropic forces in units of J/mol as

X = oF 10
i - ayi’ ( )
one derives
ntr o
X; RT In A (11)

1

This formula for the entropic force shows some correspon-
dence to an expression used in a previous study (Heinrich et
al., 1997). However, in the latter work entropic forces have
been expressed from differences of lateral mixing entropies
between the monolayers, which would be a correct treat-
ment if the monolayers were allowed to uncouple in their
surface areas.

For small deviations from the equilibrium state (n; << N,)
the entropic forces may be expressed in a linear approxi-
mation as

n;
X = _ZRTN' (12)

Mechanical forces

Changes in the lipid compositions of the monolayers caused
by passive or active translocation will affect the mechanical
energy of the membrane because of changes in lateral
distances between the molecules. For small deviations from
equilibrium, the lateral mechanical energies of the two
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monolayers ¢ and e may be expressed in a harmonic ap-
proximation as

ce — 1 e gc.e
Eof =3 Z%aiN? (&) 13)

1

where a; and &° denote, for lipid species i, the equilibrium
membrane surface area per molecule, and the area change
relative to the equilibrium area on the two layers, respec-
tively. y; represents the force constant per unit area. In Eq.
13 the relative area changes are assumed to be equal for all
molecules of one species i, but different in each monolayer,
that is, the tension in the monolayer is distributed homoge-
neously over the molecules of each species. Furthermore,
equilibrium areas and force constants are considered to be
layer independent.

Because the two monolayers are coupled in such a way
that there is a common closed contact surface within the
membrane, the surface area of the cytoplasmic layer and
that of the external layer cannot vary independently (cf. the
bilayer couple hypothesis of Sheetz and Singer, 1974). In
particular, one expects that the surface areas of lipids lo-
cated in the monolayer with increased amounts will be
compressed, whereas the areas of lipids within the other
monolayer will be expanded. Thus the relative changes &°
of areas will depend on the deviations #; characterizing the
nonequilibrium state of the membrane. To derive the cor-
responding relation, one may assume in a first approxima-
tion that, under deviation from equilibrium, the total surface
areas of each layer remain unchanged, that is,

AT(EPS, ) = 457, (14

where Ag® are the total equilibrium surfaces of the mono-
layers. In nonequilibrium states the two areas may be ex-
pressed as

AS(ER, m) =3 DN, £ m)a(1 + €89, (15)
j

The term a;(1 + £7°) represents the compressed (§ < 0) or
expanded (¢ > 0) area of lipid j in layer ¢ and e, respec-
tively. From Eq. 15 it follows with condition 14 that

E]Vjaj = E(]\]J * nj)aj(l + &7°). (16)

In this equation it is assumed that 4, = A5 = 4, i.e., the
membrane is symmetrical at equilibrium (for a more general
ansatz see the Discussion). In a previous study (cf. Heinrich
et al., 1997) relation 16 was used to calculate the relative
area changes under the assumption §; = —£7 = & that is,
they are identical for all lipids. Such a simplification may
not be justified for lipid species of different equilibrium
areas g; and of different force constants 7;. Accordingly,
further relations must be taken into account besides Eq. 16
to calculate the individual area changes. Such relations may
be obtained by considering the elastic energy of each mono-
layer to be at minimum. This assumption is supported by the
fact that, after perturbation of the equilibrium state, relax-
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ation of the mechanical stress on both monolayers will
occur on a much shorter time scale than transversal redis-
tribution of lipids. This mechanical relaxation will be sup-
ported, for example, by the fast lateral redistribution of
lipids. Minimization of this energy under the constraints in
Eq. 16 can be performed with two Lagrange multipliers v*
and v°. With

E* = E° 4 B v[AYE) — Ao] + v[AY(ED) — 4], (17)

the lateral elastic energy of the bilayer has an extremum if

aE*—O aE*—O 18a,b
o~ e~ (150
From Egs. 13, 15, 17, and 18 one obtains
YiaiN; €7 + % VN, £ m)a; = 0, (19)
which under consideration of Eq. 1 yields
e — (20)
i Y

By taking into account the constraints in 16 in Eq. 20, one
derives

_ (1/’}’1) Ej na;
=+ o .
Ek(Nk * noay/ Yk

For sufficiently small deviations from equilibrium, the lin-
ear approximation

& (2]

g = (1/y) 2, ma )
= S
' Ek Nead i

is valid. The total mechanical energy £ = E° + E°, obtained
by introducing relation 22 into Eq. 13, reads

1 2
E= I - 23
2 Ek Nkak/yk(jE njaj) ’ 23)
where terms higher than second order are neglected.
The mechanical forces are defined as
Xmech _ aE 2 4
i - ayl ( )

(see the definition of the entropic forces in Eq. 10). From
Eqgs. 23 and 24 one obtains with n; = 2y,

2a; Ej nia;
Ek Ny

It is worth mentioning that in the special case of unspecific
parameters (y; = v, @; = a), Egs. 22 and 25 reduce to
previously derived expressions (cf. Heinrich et al., 1997).
As expected, all mechanical forces are reduced in the pres-
ence of lipid species that are soft with respect to lateral area
changes, i.e., species that have a low <y value. Equation 25

Xmeeh — (25)
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reveals that forces are related pairwise by X?“‘“h/)(}neCh =
a;/a;. Furthermore, all forces are proportional to

Ad = Y naj, (26)
j

which may be considered as the area difference of uncou-
pled monolayers.

In the following we combine the entropic force and the
mechanical force as the total force of passive translocation:

)(i — Xientr + X{nech. (27)

The equilibrium state where the total energy F' + E has its
minimum is characterized by a symmetrical distribution of
each lipid component among the monolayers (n; = 0).

PHENOMENOLOGICAL COEFFICIENTS FOR
PASSIVE TRANSLOCATIONS

Parameterization with respect to lipid amounts

In Eq. 3 the phenomenological coefficients L;; are unknown.
A certain knowledge concerning the dependence of L;; on
molecular membrane parameters may be obtained on the
basis of special kinetic models (see below). Furthermore,
these coefficients may be fitted to experimental data. More
generally, one may apply invariance principles to derive
various restrictions for the structure of these coefficients,
particularly concerning their dependencies on the total
amounts of lipids. We use the principle that macroscopi-
cally the behavior of the system should be independent of a
decomposition of a certain lipid species into two identical
subspecies.

Let us consider an arbitrary decomposition of a certain
species k into two subspecies a and b, such that their total
amounts N, and N, and the deviations from equilibrium #,
and n,, are related to the corresponding quantities of species
k as follows:

N,=G+ N, Ny=(G-oN, (28ab)

=G+ on. m=G-an.  (@8cd)
The parameter € that quantifies the decomposition of spe-
cies k is confined by —1/2 = € = 1/2. It follows directly
from Egs. 1, 12, and 25 that the forces of species a and b are

the same as the force of species k:

For fixed £, the linear flux-force relations in Eq. 3 may be
rewritten for the original system as

Jo = LyXy + E LX;, (30a)
j#k
Sk = 2 Linj + LyXy. (30b)

j#k
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Characterizing the quantities of the decomposed system by
the superscript * gives

Jo+ o= LoX, + LipX, + LiX, + LiX,

(31a)
+ > (LE+ LY)X,
j#a,b
Jhav= 2 LEX + LEX, + LEX,. (31b)

j#ab

Obviously, the macroscopic properties of the membrane,
particularly the passive translocation fluxes, should be in-
variant with respect to the decomposition in Eq. 28, that is,

K=Tit Ty, Jiw = J?;a,b- (32a,b)
The deviations #; from equilibrium and, therefore, the forces
X, may vary independently. Thus, taking into account Eqs.
30 and 31 in Eq. 32, and using Onsager’s reciprocity rela-
tion L;; = L;;, one derives that the phenomenological coef-
ficients have to fulfill the relations

LE=1, forij+a bk (33a)
L?; + L:l;) = Lik fori # a, b, k (33b)
L;ka + L:b + ZLZ‘kb = ka. (33C)

To derive dependencies of the phenomenological coeffi-
cients on the lipid amounts, the following ansatz is used:

A
Lij=7J(N§‘Njy+Ninj‘), ij=1,...,s, (34a)

z
Ly="2(NNy + NN, ij=1,....k=1,a,b,

k+1,...,s. (34b)

The parameters A; and A, which must be components of a
symmetrical matrix, do not contain any further factors of N;
and N, but possibly factors N, with / # i, j. Constraints on
further relations for the dependencies of the parameters A;;
on the total lipid amounts are given below (see Eq. 44a,b).
The values of the exponents x and y have to be determined
from the invariance properties mentioned above. Inserting
Egs. 34a,b into Eq. 33b gives, together with the decompo-
sition 28a,b,

)\?; 1 yxy 1 ny /\ﬁ, 1 yXNy
7 §+€ NNy + 54—6 NINg +7 5_6 NN,

1 * A
+(5- e ww) = B+ wvn. )

Because species a, b, and k have the same physical proper-
ties, their parameters A will be identical:

)\;: = )\?f) = Aik- (36)
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Furthermore, Eq. 35 must be valid for any decomposition of
species k, that is, the left-hand side should be independent of
€. For x = y, Eq. 35 reads, considering Eq. 36,

Gro+d-o=1, (372)

where z = x = y. This equation is independent of € only for
z = 1. For x # y two separate conditions are obtained:

Gre+G—e =1 G+ef+G—e =1,
(37b.c)

since Eq. 35 holds for arbitrary values of both amounts N,
and N,. Obviously these two equations (37b,c) cannot be
fulfilled simultaneously for x # y and arbitrary €. Thus we
are left with the only possibility, x = 1 and y = 1. Using this
result, we obtain from Eq. 34a for the cross-coupling coef-
ficients

Lik = )\ikNiNk fori # k. (38)

To find expressions for the diagonal elements L,,, we use
relation 34a,b in Eq. 33¢ and take into account Eq. 38. This
yields

)\Zka(% + G)Hy + )\fb(% - E)X+y + 2)\:?1) % + E)(% —€) = Ay
(39)

Because AX, = Af, = A, Eq. 39 gives
MG+ € + G — @) + 205G — €) = Mg, (40)

where z = x + y. For z there are two solutions such that Eq.
40 is independent of e. The first solution reads z = 1, with
A%, = 0, and arbitrary values of A denoted in the following
Ky The second solution reads z = 2, for which Eq. 40 holds
independent of € only with A, = A¥,. Linear combination
of these two solutions yields for the diagonal elements

Ly = ki Ny + )\kkNi' 41

This expression shows that the diagonal elements L,, are
composed of a diffusion term k, NV, and a self-coupling term
AiacVi-
Combining relations 38 and 41, one obtains the following
general expression for the phenomenological coefficients:
L = 8N, + AN (42)

Uy

Concerning the parameters entering the phenomenological
coefficients in Eq. 42, we use the notation diffusion param-
eters k;, self-coupling parameters A;;, and cross-coupling
parameters A;; for i # .

Under the assumption of a lateral homogeneous mem-
brane, two general properties of the diffusion parameters «;
and coupling parameters A;; that enter Eq. 42 can be derived.
For any subsection of the bilayer characterized by Ny, = aV,
and n; = any for k =1, ..., s with a scaling parameter «,
confined to 0 < a = 1, the following relations should be

ii»
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fulfilled:
afi(Ny, ..., N, ny, ..., 0
=Ji(aNy,...,aN, an,,...,an,) (43a)
XNy, ..., Ng,ng,...,n)
= X(aN,, ..., aN,, an, ..., any), (43b)

that is, the fluxes and forces are homogeneous functions in
the amounts of lipids of first degree and degree zero, re-
spectively. Applying the linear flux-force relations to these
subsections of the membrane, one obtains that the phenom-
enological coefficients are homogeneous functions of first
degree in the lipid amounts. Taking into account expression
42, one obtains that k; is homogeneous of degree zero and
A of degree —1, respectively. Accordingly, one derives
from Euler’s theorem on homogeneous functions the fol-
lowing conditions:

aKi Nk a)\u Nk
EaNk?i =0, EaNk)Tij

k k

=—1.  (44ab)

In the most simple case, Eq. 44a is fulfilled if all diffusion
parameters are independent of the lipid amounts, whereas
Eq. 44b is fulfilled if all coupling parameters are propor-
tional to the inverse of the total lipid amount.

Taking into account result 42, the passive translocation
fluxes, defined in Eq. 3, read

]vj + I’ll’
JI = = 2(ki8V; + \gNiN)| RT In '
_ N

+ -
Ek Neayx

For the simulation of lipid translocation this flux equation
may be used in Eq. 3.

2aj Ek nyay
). (45)

Parameterization with respect to membrane
surface areas of lipids

In this subsection we show that the coupling parameters A;;
in Eq. 42 may be related to the equilibrium surface areas g;
of the lipids, which, besides the lipid amounts, are the
relevant parameters of the present model. Let us consider a
certain lipid species, say k, and a perturbation from the
equilibrium state such that

=0, > na;=0. (46a,b)

Equation 46a entails that the entropic force in Eq. 12 of
species k vanishes, whereas Eq. 46b implies that no me-
chanical forces occur (see Eq. 25). If there are no lipid-
specific interactions, one may conclude that all states ful-
filling Eq. 46a,b are characterized by a vanishing passive
flux of species k, which yields, using Egs. 3 and 12, in the
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vicinity of equilibrium,

n.
2 Ly =0. (47)
j#k J

Taking into account the general structure for the nondiago-
nal elements L,; given in Eq. 42, one derives from Eq. 47
the following condition for the cross-coupling parameters:

Nk z /\kjnj =0.

j#k

(48a)

Equation 48a states that a vector /X = (A1 Aek—1 Akt
-+ - A" is orthogonal to any vector of perturbations 7* =
(ny -+ me_y meyy - - ng)", which in vector notation reads

ik = 0. (48b)

The space of perturbations 7* restricted by Egs. 46a,b is of
dimension s — 2. Accordingly, this space is spanned by s —
2 vectors HHF i=1,...,5 — 2). In the case k = s, for
example, a special choice of these vectors reads

a, 0 0
—a as :
- 0 - —a - 0
(1,s) — (2,8) — 2 (s—2,8) —
o= o | b= 7| B =|
. X as—l
0 0 —ds—
(49)

Generally, the elements of the vector b9 are given by

bj(i’s)IOforl =j=i—landi+2=j=s— 1,and b{~®
= a,,,, b{:%) = —a,. Similar representations are obtained for
k # s.

The condition 48b of orthogonality is fulfilled if I is
orthogonal to all corresponding vectors 5%, which yields

Fpid =0 fori=1,...,s—2. (50)

It can be shown that there is one parameter v,, such that Eq.
50 is fulfilled with
Ao =

J

wa; withk,j=1,...,sand k # ;. (51)

For k = s this result may be easily verified by using Eq. 49.
The symmetry relations Ay; = A, require va; = v;ay, which
leads to

)\kj = Vajak. (52)
The combination of Egs. 42 and 52 gives

According to this equation, the s(s + 1)/2 phenomenologi-
cal coefficients ;; are fixed by only s + 1 phenomenolog-
ical parameters v and k;. Relation 53 may be used also for
the case of equal lipid area parameters, that is, for ¢; = a.

The requirement for the matrix L;; to be positive definite
(see de Groot and Mazur, 1962) sets a certain limit for the
unknown parameter v. For example, any choice of v must
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ensure that the diagonal elements L;; are positive. Thus there
is a lower limit for v depending on the values of k; > 0 and
a; > 0.

Phenomenological coefficients as derived from
kinetic models

On the phenomenological level of description, the parame-
ters k; and A;; in Eq. 42 and, similarly, the parameter v in Eq.
52 have no mechanistic interpretation. In this section we
consider the case in which lipid translocation is mediated by
a carrier protein. This allows us to express the phenomeno-
logical parameters in terms of kinetic constants.

Kinetic models without mechanical effects

Antiport mechanism. Let us assume that the translocation
carrier has only one binding site, to which the lipids bind in
a competitive way. If this binding is fast compared to
translocation, the following equilibrium relations hold:

P
Pc,e,Nic,e_ i

i=1,...,s, (54)
where P{>¢ and P*° denote the amounts of the loaded forms
and of the unloaded forms, respectively. In this equation
Ny°¢ are the amounts of free lipids, that is, lipids not bound
to the carrier. We assume that the total amount of loaded
carrier forms is much smaller compared to the individual
lipid amounts such that N, = N + N} holds true. Conser-
vation of the total amount P of carrier molecules leads with
Eq. 54 to the relation

1 1

P=P°(1 + D KN

+ Pe(l + EKJV?). (55)

A quasi-steady-state approximation for the distribution of
the carrier among the two layers yields

PP+ P =D TP+ kP (56)

1 1

where ;" and /; denote the translocation rate constants of
the loaded carrier forms, and £ and k~ denote the rate
constants of movement of the unloaded carrier forms. One
obtains with the help of Eqs. 54-56

P g P g (57ab)
AB + A°B AB*+ A°B
with
A% =1+ D KN, B =k"" + X 17 KN
i i (58a.b)

Because the time-dependent changes of the lipid amounts
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are characterized by
dN°+P°— dNe—l—Pe—lfPe P, (59
dt( i i)_ dt( i i)_i i idio ( )
one obtains from Eqgs. 54 and 57
dv;  dNY KPP NTBC — [T NBY)
=— = (60)

d  dt A°B® + A°B° ’
where again P{"° << N{°¢ is assumed (see Schultz, 1980).
To express the coupling parameters in terms of kinetic
constants, Eq. 60 has to be applied for states near equilib-
rium. In the case characterized by K = K = K, ;" = [ =
I;and k* = k= = k (symmetrical carrier), the equilibrium
amounts are N; = N; = N;/2 (symmetrical membrane). Near
equilibrium a linear expansion in #; of Eq. 60 yields, after

some algebra,

Ldn,  IKP LK.PN,
2dr - 24 T aqp 2 MmO

]

A and B correspond to the quantities defined in Eq. 58 by
inserting the equilibrium amounts of the lipids. To calculate
the phenomenological parameters, we relate the right-hand
side of Eq. 61 to the expression

J{)ass — _2RT< Kkin; + N E )\ijnj)' (62)

J

The latter formula follows from linearization of Eq. 44 as
well as from neglecting the mechanical forces. One obtains
for the phenomenological parameters

I K 1 I KK,

P, /\ijz—wgﬁ VIR

K:

i TART A (63a,0)

where k. denotes an effective rate constant of the carrier
defined as follows:

1
ke = ﬁ

kP° + D lei). (64)

P° and P; denote the total equilibrium amounts of the
unloaded carrier form and loaded carrier forms, respec-
tively, that is, P* = P/4 and P, = P°K;N/2.

Combining Eq. 42 with Eq. 63 yields for the phenome-
nological coefficients

Pl KN

LT aRn N o

1k KinNiNj]
— | (65)

2ky A

Equations 63—65 show that the phenomenological coeffi-

cients resulting from a special kinetic equation are in ac-

cordance with the general structure given in Eq. 42.

The following properties of the coupling parameters of
the antiport mechanism are worth mentioning: 1) The phe-
nomenological parameters in Egs. 63a,b are proportional to
the total amount of the carrier P. 2) The diffusion parame-

ters k; as well as the cross-coupling parameters A; (i # j)
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and the self-coupling parameters A; are proportional to the
respective rate constants /; and /; of the translocation of the
carrier. 3) All coupling parameters A;; are negative, which
reflects that a driving force X; giving rise to a diffusion flux
of species i is accompanied by a cross-coupled flux as well
as a self-coupled flux in the opposite direction. 4) The
quantity A4 in the denominators of Eqs. 63 and 65 reflects a
saturation of the carrier with lipids. For very low affinities
of the lipids for the carrier K;N; << 1, the quantity 4 tends
to unity, that is, saturation effects are negligible. 5) The
coupling parameters A;; are inversely related to the effective
rate constant kg of the carrier. In the case that the unloaded
form of the carrier moves much faster than the loaded forms
(k = 1)), the Ay tend to zero, that is, the fluxes become
uncoupled. In the opposite limit £ — 0, it follows from Eq.
65 that L; = —X;;L;;. In this case one row of the matrix of
phenomenological coefficients becomes linearly dependent
on the other rows. Such a matrix is no longer positive
definite, because at least one of its eigenvalues vanishes.
Because principles of irreversible thermodynamics require
that the matrix L;; is positive definite, vanishing unloaded
flip-flop (k = 0) is excluded. For example, in the special
case of one component (s = 1), it is easily verified that
diffusion and self-coupling coefficients cancel out in the
limit £ — 0. Because any nonequilibrium state is accompa-
nied by entropy production, such a situation of vanishing
flux is forbidden.

Similar to the scaling properties in Eq. 44a,b derived for
the phenomenological parameters of the thermodynamic
model, the parameters 63a,b of the kinetic models must be
homogeneous functions of all quantities involving units of
amounts. Rescaling of the system by a factor a necessitates
in the case of carrier mechanisms not only a change of lipid
amounts N{° — aN{¢, but also of the total amount P — P
of carrier molecules as well as of the binding constants
K, — a 'K,

Symport mechanism. A carrier with two identical lipid-
binding sites will be able to translocate single molecules of
the various lipid species as well as different pairs of mole-
cules. Making assumptions analogous to those in the case of
an antiport, one derives as a kinetic equation of such a
symport mechanism:

dN‘C de pass
a - a )
- e — v
= T aE A VB T ENE)
2P + — 7€
5+ 15 > KK NN = [;NINSEY).

i

(66)

The quantities 4 and B are defined in analogy to Eq. 58, that
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2
A% = (1 + EKJ-NJ?‘) :

J

+ 21 TKKNSNTS. (67a,b)
Lj

In the derivation of these equations, it has been assumed that
the two binding sites of the carrier have identical properties.
Furthermore, the binding constants are assumed to be layer
independent, that is, K{ = K{ = K. The factors 2 on the
right-hand side of Eq. 66 arise for combinatorial reasons. In
the first term this factor reflects that each lipid / may bind to
the unloaded carrier at two different binding sites. The
factor 2 in the second term corresponds, for i # j, to the two
different forms of the carrier loaded with lipid i and lipid j,
whereas for i = j this factor takes into account that two
molecules of lipid i are transported in one translocation step.
In Eq. 67a the exponent 2 occurs because the two identical
binding sites are assumed to be independent. Near equilib-
rium a linear approximation of Eqs. 66 and 67a,b leads for
a symmetrical parameter choice /[~ = I, l; = I, and
k™~ = kto an equation that may be directly compared with
Eq. 62. In this way the coupling parameters are identified as

P K/ 1
K= 307 4 zi+5211j1<jzvj (68a)
j
P KK, PRE L g
/\ij_mA i ﬁAzEﬁ_i"‘ik iV
(68b)
1
: (Zj + 5 > ijKka),
K
where
! 0
kegr = p kP° + D 0P+ 2 hnPin |- (69)
k k,m

A and B are obtained from Egs. 67a,b by inserting the
equilibrium amounts of the lipids. P°, Py, and Py, denote
the total equilibrium amounts of the unloaded carrier form,
the forms loaded with one lipid of species j, and the double
loaded forms of the carrier, respectively.

Compared to the parameters of the antiport, the following
features of the phenomenological parameters of the symport
are remarkable: 1) A coupling parameter A; may become
positive in case in which the corresponding double-loaded
carrier is translocated (/; # 0). The sign of the coupling
parameters depends crucially on the value of the effective
rate constant kg defined in Eq. 69. If k.4 is much higher
than all translocation rate constants /;, /;, and /;;, then one
obtains A;; > 0 for all 7, j. This can be achieved, for example,
if the translocation rate constant k of the unloaded carrier is
high enough. 2) The negative term in A; in Eq. 68b is
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closely related to the diffusion parameters k; and «;, because
it is proportional to their product.

Inclusion of mechanical effects

A translocation of lipid molecules will generally be accom-
panied by a change in the mechanical energy of both mono-
layers. This energy change will affect the free energy bar-
riers determining the rate constants of translocation of the
loaded carrier forms. As an example, we consider the ki-
netic equation (Eq. 60) of the antiport mechanism. The
energy change AE; for the translocation of Ay, moles of
species i, leading to a change of n; by 2Ay;, may be approx-
imated by (dE/dy;)Ay;. For 1 mole of translocated lipids, this
expression reduces, according to Eq. 24, to

oE N
AE; = — = =X, (70)
ay;
Assuming a linear profile of the mechanical energy along
the translocation coordinate as well as a symmetrical energy
barrier in the absence of mechanical stresses, the rate con-
stants obey the following relation:

X?*Aech
=1 exp( + 2RT>' (71)
Taking into account these expressions in the rate equation
(Eq. 60) as well as in the terms B“° defined in Eq. 58b, the
mechanical forces are included in the kinetic model.

The question arises whether this kind of kinetic descrip-
tion is consistent with the thermodynamic flux-force rela-
tionships used to obtain Eq. 45. For the comparison of the
two approaches, the kinetic rate equation, obtained by com-
bination of Egs. 60 and 71, as well as the phenomenological
flux equation (Eq. 45) must be linearized in the deviations

n;. The linearized kinetic equation reads

dM—ldnl—PKllIES i l
dt 2 dt 4RT4 i~ g Kil

i

J{.)BSS —
(72)

*(=2RTn; + NXTM).
Linearization of Eq. 45 yields
JFaSS = _E(aleJ + Ale)(zRTnJ - NjX}ﬂeCh), (73)

J

which is an extension of Eq. 62 by inclusion of mechanical
forces. A comparison of these two equations shows that near
equilibrium the kinetic model that includes mechanical
forces may be characterized by the same phenomenological
parameters as a model that does not contain any mechanical
effects (see Eq. 63).

These results support our previous assumption that in the
framework of thermodynamic flux-force relations, a unique
set of coupling parameters exists, that is, that the entropic
and mechanical forces are additive. The incorporation of
mechanical forces in the rate constants of the kinetic model
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may give, therefore, a good representation also of the non-
linear kinetic equation system in Eq. 60. The given proce-
dure has been applied also for the symport mechanism
discussed above, with the result that the coupling parame-
ters given in Egs. 68a,b remain unchanged if the mechanical
forces are included in the rate constants (Frickenhaus and
Heinrich, unpublished results).

SIMULATIONS
General remarks

The theory outlined in the previous sections is applied to the
transversal lipid distribution of the human red blood cell
membrane. Time-dependent changes as well as steady states
are calculated by means of numerical integration of the
differential equations resulting from the thermodynamic and
from the kinetic approach for passive fluxes. We take into
account the five abundant lipids, phosphatidylserine, phos-
phatidylethanolamine, phosphatidylcholine, sphingomyelin,
and cholesterol (see Zachowski, 1993). The lipid specifying
indicesi =1, ..., s withs = 5 refer to PS, PE, PC, SM, and
Ch, respectively.

For the simulations we use the system equations 2. JP***
is represented either by Eq. 45 (thermodynamic model) or
by a kinetic equation resulting from a carrier mechanism
(Eq. 60 or 66). An expression for the active fluxes J*,
which also appears in Eq. 2, is derived below. Furthermore,
we have to specify the units of the model quantities.

For the active transport we refer to the result of Sei-
gneuret and Devaux (1984), that there exists in plasma
membranes of eukaryotic cells an ATP-dependent carrier
that specifically translocates PS and PE from the external to
the cytoplasmic leaflet. A simple kinetic expression for this
process is obtained under the following assumptions: 1) fast
and competitive binding of PS and PE to the translocase on
both sides of the membrane, 2) unidirectional transport of
PS and PE to the cytoplasmic layer under consumption of
one ATP per transported aminophospholipid (Beleznay et
al., 1993), and 3) bidirectional flip-flop of the unloaded
carrier form. The kinetic equations for the active transport
of PS and PE read

lpsk™ T+ KsNps act lpgk™ T+ KpeNpg

Jact —
PS D s PE D s

(74a,b)

where
D=k (1+ KN + KieNee)
+ (k" + 13K psNps + 1K peNpp) (1 + KpsNps

+ KpeNie)- (74c¢)

In these equations 7 denotes the total translocase concen-
tration, K ps and K g are the binding constants of the lipids
to the translocase, k™ are the flip-flop rate constants of the
unloaded translocase, and /pg and [y are the effective rate
constants of the unidirectional translocations for a fixed
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ATP concentration. We leave out a detailed derivation of
Eq. 74, because it is easily done by the procedure explained
above for the passive carrier mechanisms. In fact, Eq. 74 is
formally a special case of the kinetic expression in Eq. 60.
However, in the case of active transport, the principle of
detailed balance, which would exclude irreversible steps
within a translocation cycle, is not relevant because of the
coupling to ATP consumption. For a derivation of Eq. 74,
see also Heinrich et al. (1997).

Rate constants in the kinetic equations of passive and
active carrier mechanisms have units of min~'. Binding
constants, which also enter the kinetic models, are usually
given in units of mM ', To meet this choice, the lipid
amounts must be expressed in concentration units (mM).
For that, we normalize the lipid amounts with respect to a
fixed reference volume. A convenient choice is the volume
of the red cell as a reference, because it is independent of the
cell suspension volume. Of course, the fixed reference vol-
ume could be chosen differently, e.g., the bilayer membrane
volume, which would rescale only the numerical values of
the concentration-dependent system parameters. Further-
more, we use concentration units for the quantities P and 7'
of two of the types of carriers; thus the fluxes are expressed
in mM min~'. Concerning the thermodynamic model equa-
tions, rescaling of concentrations will affect the unit of the
flux, but not the unit of the thermodynamic forces (cf. Egs.
12, 25, and 45). The diffusion parameters «; and coupling
parameters A;;, which enter the phenomenological coeffi-
cients, have, according to their original definitions, units of
min~' J~" and min~' J~" mol !, respectively. Both param-
eters may be rescaled in such a way that they have the
dimension of rate constants. This leads to k{ = 4RTk; for the
diffusion parameters and to Aj; = 4NRTA;; for the coupling
parameters, where N denotes the total concentration of
lipids, i.e., N = X;N;. In both expressions the factor 4 arises
from the linearization of the system equations (Eq. 45) in
the vicinity of equilibrium.

Simulations with a reference set of parameters

As a reference model, a set of differential equations (Eq. 2)
with passive fluxes from the thermodynamic model (Eq. 45)
is considered. The whole set of parameters is reduced in
such a way that the model is still able to reproduce certain
experimental data for human erythrocytes. In Eq. 45 the
area parameters ¢; are assumed to be equal, that is, ¢; = a.
For the phenomenological coefficients Eq. 53 is applied,
where the coupling parameters are unspecific (A; = A =
va®). Simulations with a more detailed parameter specifica-
tion are given in the next sections.

Fig. 1 shows time-dependent changes in the lipid concen-
tration ratios N{/N; as well as the fraction of the total lipid
concentration N°/N in the cytoplasmic layer. The curves are
obtained by numerical integration of the system equations,
using the parameter values listed in Table 1. The initial state
at t = 0 is symmetrical, that is, N/N; = 1/2. For t < 10,000
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FIGURE 1 Time-dependent changes of the cytoplasmic concentration

ratios of the five membrane components for active aminophospholipid
translocase (0 < ¢ < 10,000 min) and for inactive translocase (¢ > 10,000
min). Initial and final distributions correspond to the symmetrical equilib-
rium state of the model. The curves are obtained by numerical integration
of system equations 2 by taking into account Egs. 46 and 76a—c and using
parameter values given in Table 1.

min, active translocation for PS and PE takes place, whereas
for + > 10,000 min this translocation is fully inhibited. In
the first time interval the lipid concentrations tend toward a
steady state, which shows a pronounced asymmetry be-
tween the two monolayers. After inhibition of the translo-

TABLE 1 Parameters for the simulation of the reference
model
Total lipid concentrations®* (mM)

Nps 0.55
Npp 1.12
Npc 1.24
Nem 1.04
Nen, 3.5
Aminophospholipid translocase*
Ips = g 2.0 X 10* min~!
kKt =k 4.0 X 10* min™!
(Kps) ™' = (Kpp) ' 1.0 X 10° mM
(K3e) ! 0.5 mM
(Kps) ™! 5.0 mM
T 55X 107°mM
Phenomenological parameters, molecular

areas, and mechanical force constants
4N RT A 1/670 min™~ 'S
4 RT Kpg 1/600 min~'#
4 RT kpg 1/600 min~'#
4 RT Kkpc 1/1000 min~ '
4 RT ke 1/4000 min~'*
4 RT K¢y, 1 min~'#
/LA 025 Jm™2
a; 0.6 nm?1

i

*From Luly (1989), with a reference volume of erythrocytes of 107 um?>;
cf. Heinrich et al. (1997).

#See Heinrich et al. (1997). (a) Lyso-PS: Bergmann et al. (1984). (b)
Middelkoop et al. (1986).

§See text and Fig. 2.

IFor determination from experimental data, see text.
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case at = 10,000 min, the membrane relaxes to equilib-
rium, which is characterized by symmetric distributions of
its components.

The concentration ratios within the asymmetrical steady
state and the corresponding experimental data are given in
Table 2. It is seen that the model explains rather well the
experimentally observed state of the membrane. In particu-
lar, it predicts an accumulation of PS and PE on the cyto-
plasmic layer and a compensating displacement of the other
lipids to the external layer. Moreover, the model correctly
describes SM as displaced to a greater extent than PC.
Taking into account the parameter values from Table 1, it is
observed that the slowest diffusing component SM reaches
the most pronounced asymmetry, whereas cholesterol
shows a nearly symmetrical distribution due to its fast
passive translocation.

Fig. 1 and Table 2 show that within the whole time range,
the sum of lipid concentrations is well balanced between the
two monolayers (N =~ N°€), despite strong changes in the
concentrations of the individual membrane components. In
an initial phase (for ~100 min) the inward translocation of
PS and PE is mainly compensated by the displacement of
cholesterol. Within the subsequent phase there are also
significant displacements of PC and SM.

The results of the simulation depend crucially on the
value of the coupling parameter A. This is demonstrated in
Fig. 2, where the normalized steady-state concentrations are
plotted as functions of A. Simulations are possible only for
such values of A, for which L;; is a positive definite matrix,
that is, for A > A, (see text below Eq. 53). Using the shift
A — A — A, allows for a logarithmic display of the abscissa
in Fig. 2. It is observed that at A = 0 the steady-state ratios
N;/N; are the same for those species that are translocated
only passively. This property can be derived analytically by
taking into account that for vanishing cross-couplings the
steady-state condition for the species PC, SM, and Ch, that
is, for i = 3, 4, and 5, simplifies to X" + XMt = 0,
Because for a; = a the mechanical forces X" are inde-
pendent of i, it follows directly from Eq. 45 that the steady-
state ratios N;/N; become species independent as well.
Crossing the value A = 0 leads to a qualitative change in the
lipid distribution. For A < 0 one obtains N ¢/Ng, < Np/
Npe < N§u/Nsm, whereas A > 0 leads to the reverse

TABLE 2 Steady-state lipid distribution of the reference
model compared to experimental data

Lipid Concentration Ratios

Experimental Data

Theoretical
a b c d e (Fig. 1)
Nps/Nps 1.0 0.81 0.92 1.0 — 0.98
N 5i/Npg 0.95 — 0.79 0.80 0.82 0.89
N5c/Npe 0.45 0.30 0.28 0.24 0.44 0.35
N $m/Nsm 0.15 — 0.21 0.18 — 0.12
N&n/Nen — — — — — 0.47

a, Dressler et al. (1984); b, Haest et al. (1978); ¢, VanMeer et al. (1981);
d, Verkleij et al. (1973); e, Williamson et al. (1982).
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FIGURE 2 Steady-state concentration ratios of the five lipids (——) and
their total normalized cytoplasmic concentration (———) as functions of
scaled cross-coupling parameter A. A, denotes the lower bound of A for
positive definiteness of the matrix of phenomenological coefficients (L),
using the parameters from Table 1 (4NRTA, = —1.163 X 1072 min').
The arrow points to the crossing point of the curves for PC, SM, and Ch,
obtained for A = 0. The vertical dotted line indicates the value of A used
for the simulations shown in Fig. 1 with the corresponding steady-state
concentrations listed in Table 2.

situation, N§y/Nop < Npce/Npe < Ngn/Nep- The experi-
mental data (Table 2) are strongly in favor of the latter case,
which means that a positive coupling parameter A is realis-
tic. The point A = A* in Fig. 2 indicates the reference
parameter choice used in Table 1 with the corresponding
simulation in Fig. 1. In view of the scattering of the exper-
imental data, one may conclude from Fig. 2 that A-values
higher than the reference value could be justified as well.

Simulation with different force constants and
equilibrium areas

It has been demonstrated for stearoyloleoylphosphatidyl-
choline (SOPC) bilayer vesicles and for extracts of red
blood cell membranes that an increasing cholesterol mole
fraction is accompanied by an increase in the elastic area
compressibility modulus K (Needham and Nunn, 1990). To
analyze the composition-dependent effects on mechanical
properties, it is necessary to choose lipid-specific compres-
sion force constants y; in the present model.
Defining an effective force constant as

2i N

Ek Nkak/yk’ (73)

Vetr =

the mechanical energy from Eq. 23 may be rewritten as

1 a4y
E =3 Yer T4y (76)
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where the definition of A4 in Eq. 26 is used. 4, = %E] Nia;
denotes the total equilibrium bilayer area. Formula 76 may
be directly compared with the expression

k. (A4\?

b= 2AO( i ) ’

which has been used previously to define the nonlocal
bending modulus k, (cf. Svetina and Zeks, 1992); & denotes
the distance between the two monolayer neutral surfaces
and is approximately half the bilayer thickness (Waugh et

al., 1992). Note that in Eq. 77 the energy unit is Joule and
not Joule mol~'. From Egs. 76 and 77 one obtains

(77

kr
Vet = 2ﬁ Ly. (78)
k. and 7.y are related to the experimentally accessible
compressibility modulus K by k, = h*K/4 (cf. Svetina and
7eks, 1992; Waugh et al., 1992) for a symmetrical planar
bilayer, and thus 7y = LA K/2.

Expression 75 may be simplified by taking into account
the experimental fact that variations in the mole fractions of
different phospholipid components have a minor influence
on K (Evans and Needham, 1987). This suggests consider-
ing the force constants and the surface areas of the phos-
pholipids PS, PE, PC, and SM as unspecific parameters yp;.
and ap, respectively. Then the effective force constant
defined in Eq. 75 may be expressed as a function of the
cholesterol mole fraction x = N,/N as follows:

xacy, + (1 — x)apy

xXacy/Yen (1- x)aPL/'YPL.

Yetr = (79)
A similar formula has been taken into account for SOPC
vesicle membranes (Needham and Nunn, 1990) for the
dependence of K on the fraction of lipid-cholesterol com-
plexes and the uncomplexed lipids. Equation 79 may be
rewritten in terms of the molecular area ratio r, = ap /acy,
and the force constant ratio ., = Yp/Vcp:

3 x+ (1 —=xr, B %0
Verr = VrL P (s Yo flx). (80)

S(x) increases monotonically with x for 7, < 1 and decreases
monotonically for 7, > 1. Obviously . reduces to yp,, for
x = 0 and to g, for x = 1.

The bilayer elastic modulus K has been measured for red
blood cell membrane extracts for x = 0.4 and x = 0.8
(Needham and Nunn, 1990). The ratio of the two moduli
K(0.8)/K(0.4) = 783/423 = 1.85 may be used to determine
the ratio of the force constants. With the lipid areas ap; =
0.65 nm? and ac, = 0.37 nm? (cf. Needham and Nunn,
1990), that is, », = 1.76, one obtains with Eq. 80 a ratio
r,, = 0.16. This combination of parameters corresponds to
the thick solid line for f{x) in Fig. 3 (curve a). The thin solid
lines (b, ¢, and d) represent f{x) for r, = 1.76 and different
r,, values. The dashed line (e) represents the hypothetical
case r, < 1.
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With r, = 1.76 and r,, = 0.16, the value of yp; may be
determined from the experimental value K = 423 dyn cm ™!
for x = 0.4, using again Eq. 80 and the relation 7. =
L,K/2. This yields yp /L, = 0.163 J m™ 2, which corre-
sponds to a modulus of K = 325 dyn cm ™' for the choles-
terol-free membrane. The latter parameter is a factor 2.2
above the measured value for dimyristoylphosphatidylcho-
line (DMPC) (cf. Evans and Needham, 1987). It is note-
worthy that the parameter fit leading to curve a in Fig. 3
qualitatively reproduces the very recent measurements of
the cholesterol dependence of the bending modulus &, of
phospholipid bilayers (Chen and Rand, 1997). The experi-
mental values of k.,(0.3)/k.,(0) ~ 1.15 for dioleoylphos-
phatidylethanolamine and k,(0.5)/k.,(0.2) ~ 1.22 for dio-
leoylphosphatidylcholine (see Figure 10 in Chen and Rand,
1997) are roughly in agreement with f{0.3)//{0) = 1.19 and
£0.5)/f10.2) = 1.28, respectively. From these considerations
and the experimental value for the intact red blood cell K =
500 dyn cm ™' (Katnik and Waugh, 1990), the parameter
Yer/La = 0.25 T m~? is derived, corresponding to a nonlo-
cal bending modulus k, = 2 X 10~ '® J (for 4 = 4 nm). The
values, presented in Table 3, for Vg, apr, acp, and ., lead
via Eq. 75 to yp /Ly = 0.18 T m 2 and yo /Ly = 1.12]
m~ 2. These area and force constant ratios are used for the
simulation of the time-dependent transbilayer lipid distribu-
tion shown in Fig. 4. The coupling parameters A; = va;q;
are calculated with 4NRTva®> = 1.49 X 10> min~ !, where
a is the arithmetical mean of the area parameters. With the
values of a¢, and ap . for PS, PE, PC, and SM, mentioned
above, one obtains a = 0.594 nm?, which corresponds to the
areas a; used in the reference simulation (see Table 1 and
Fig. 1).

The time-dependent changes shown in the inset of Fig. 4
are very similar to the corresponding curves in Fig. 1. In

10

f(x)
[§)]

FIGURE 3 f= vy./vpL as a function of cholesterol mole fraction x for
different parameters. (a) r, = 1.76, 7, = 0.16. (b) r, = 1.76,r,, = 0.01. (c)
r, = 1.76,r,=10.(d) r, = 1.76, 7, = 10.0. (¢) r, = 1/1.76, r,, = 0.16.
The thick solid line a is for model parameters ac,, = 0.37 nm? and ap; =
0.65 nm?, which lead to r,, = 0.16 to fit the indicated experimental points
for x = 0.4 and x = 0.8 (Needham and Nunn, 1990).
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TABLE 3 Parameters for simulations using the
symport model

Ips = Ipg 70 min~!

Ipc 30 min~!

Ismt 10 min~*

len 3 X 10* min~!
L 250 min ™!

k 4 X 10* min~'
Kol = ke 50 mM

P 6 X 107* mM
Yer/Ln 025 m™2
app 0.65 nm?

acy, 0.37 nm®

r 0.16

particular, this concerns the extent of asymmetry of the lipid
distributions in the steady state. There are, however, slight
modifications brought about by the differentiation between
the areas of cholesterol and those of the other lipids. This is
indicated by the differences A; = N{/N; — (N{/N,),.s and the
corresponding difference A for the total cytoplasmic lipid
concentrations shown in Fig. 4. It is observed that, in the
lipid-specific case, cholesterol remains, shortly after activa-
tion of PS- and PE-transport, closer to its equilibrium dis-
tribution, that is, A, > 0, whereas PC and SM exhibit a
stronger asymmetry (Apc < 0, Agy < 0). This effect of
parameter changes for the molecular areas is easily under-
stood by the facts that 1) smaller a, values decrease the
cross-coupling parameters for cholesterol, and 2) the me-
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FIGURE 4 Time-dependent changes of lipid concentration ratio differ-
ences for a set of parameters with lipid-specific areas and lipid-specific
force constants. A; and A denote the deviations of cytoplasmic concentra-
tion ratios N;/N; and N°/N, respectively, between this simulation and the
reference simulation (Fig. 1). The molecular surface areas are ap; = 0.65
nm? and a¢,, = 0.37 nm>. The force constants are yp; /L, = 0.18 Jm™~2 and
Yen/La = 1.123 I m ™2, yielding with Eq. 77 /L, = 0.25 J m~2, which
corresponds to the lipid-unspecific y-value in Table 1. For the cross-
coupling parameters A;;, the area-dependent expression 52 has been used
with v > 0 (see text). The inset shows the time-dependent changes of the
cytoplasmic concentrations of the five membrane components (scaling of
the axes as in Fig. 1).
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chanical forces are lowered for cholesterol because X" o
a;. In a similar way it can be understood that PC and SM
show a more pronounced response if their area parameters
are increased. Reducing the area parameter of cholesterol
means that in the outer layer more phospholipids are present
for balancing the total areas of both of the leaflets. This
explains why N/N decreases compared to the reference
model (A < 0; Fig. 4).

Simulation with a carrier mechanism for the
passive fluxes

The calculations presented in the previous two sections have
indicated that a simulation of the experimental data con-
cerning the asymmetrical steady state of the membrane
requires positive coupling parameters. For that reason we
use in the following the symport mechanism introduced
above, which, in contrast to the antiport mechanism, may
give rise to A; > 0 for certain parameter combinations.
Concerning the inclusion of mechanical forces, we use Eq.
71 for the rate constants of the singly loaded carrier forms.
For the double loaded forms the expression

. _Xgnech +ijech
Iy = Ljexp| + —oRT (81)
is applied by considering the energy differences of a simul-
taneous translocation of two lipid molecules i and ;.

Figs. 5 and 6 show the time-dependent changes simulated
on the basis of the symport carrier. The curves are obtained
by integration of the system 2 of differential equations by

PS \
(' NPE
0.8
N¢/ N
o |z 06 -_______/____\
=1 ,Ch N
F|Z 77
I 0.4 PC sM
0.2
3000 6000 9000
time [min]

FIGURE 5 Time-dependent changes of the cytoplasmic concentration
ratios of the five membrane components for active aminophospholipid
translocase (0 < ¢ < 10,000 min) and for inactive translocase (¢ > 10,000
min). The curves are obtained by numerical integration of the system
equations 2, using for passive translocation a symport carrier as explained
in the text, excluding mechanical forces, and for active translocation Egs.
74a—c. Parameter values for total lipid concentrations and for active
translocase are given in Table 1. For the parameter values of the symport
carrier, see Table 3.
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3000

FIGURE 6 Time-dependent changes of the cytoplasmic concentration
ratios of the five membrane components for active aminophospholipid
translocase (0 < ¢ < 10,000 min) and for inactive translocase (1 > 10,000
min). The curves are obtained by numerical integration of the same
equations and parameters used for Fig. 5, with the exception that the effect
of mechanical forces on the rate constants of the symport carrier are
included (see text and Egs. 71 and 81). The values for ap;, acp, Vpr, and
Yen are given in the legend to Fig. 4.

taking into account Eq. 66 for the passive transport and Eq.
74 for the active transport.

For Fig. 6, Egs. 71 and 81 for the rate constants have been
applied. As parameters of the passive carrier the values
listed in Table 3 were used. The total amounts of the lipids
as well as the parameters of the active translocase are taken
from Table 1. It is seen from Fig. 5 that neglecting the
mechanical forces yields a stationary distribution of lipids
that deviates strongly from the experimental result. In par-
ticular, the species PC and SM, which are translocated only
passively, show in these simulations an almost negligible
asymmetry. As a consequence, the total lipid amounts are
not well balanced (see the dashed line in Fig. 5). An
inclusion of mechanical forces leads to a considerable im-
provement of the simulation results, as demonstrated in Fig.
6. In particular, the pattern of asymmetry is qualitatively
correct, and the total lipid amounts are well balanced. How-
ever, the asymmetry of sphingomyelin is too low compared
to the experimental outcome (see Table 2).

The parameter values in Table 3 have been adjusted in
such a way that they give diffusion parameters k;, according
to Eq. 68a, on the same order of magnitude as the values
that have been applied for the reference simulation (see
Table 1). The question arises whether the predicted value
for the steady-state asymmetry of SM may be improved
compared to the result shown in Fig. 6, for example, by
decreasing the rate constants associated with translocation
of SM, which would lower the corresponding kg, value
(see discussion of Fig. 1). However, this possibility is ruled
out, as can be seen from inspection of Eq. 68b. Lower /gy, ;
values yield, by necessity, smaller cross-coupling parame-
ters Agyy ;- This does not allow for a pronounced asymmetry
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of SM, as has been shown in Fig. 2 for the reference model.
In this way the parameter choice for the rate constants
involving SM (Table 3) represents a compromise allowing
for a rather slow carrier-mediated diffusion by keeping the
cross-coupling strong enough.

Fig. 7 shows the time course of the ratios L'/l =
exp(—X ™M RT) during the response of the system depicted
in Fig. 6. The curves illustrate that the effects of the me-
chanical forces on the carrier kinetics are strongest in the
initial phase after activation of the translocase where PS and
PE are accumulated in the inner leaflet. It is observed that
the subsequent redistribution of the other membrane com-
ponents diminishes these effects to a certain level. The
activity of the translocase results in nonvanishing mechan-
ical forces in the stationary state, such that the ratio of the
rate constants /;” and /; amounts to 2.0 for phospholipids
and 1.5 for cholesterol. The difference between these two
numbers is due to the different molecular surface areas (see
Table 3). The effect of mechanical forces on the rate con-
stants of cholesterol translocation is smaller because its area
parameter is reduced by a factor of 0.57 compared to the
phospholipids. The ratio /;/I; equal to unity is obtained
only after relaxation toward equilibrium if the translocase is
fully inhibited. Similar results are obtained for the effect of
mechanical forces on the ratios li}r /I of the rate constants of
the doubly loaded forms of the carrier.

DISCUSSION

The present paper gives a theoretical investigation of the
dynamic state of cellular membranes, particularly of the
transversal distribution of lipid components. The asymmet-
rical state of the bilayer arises primarily from the activity of

A

PS,PE,PC,SM
/

3000 6000 9000
time [min]
FIGURE 7 Time-dependent changes of the ratios '/, of kinetic con-
stants of the symport model after activation (0 < ¢ < 10,000 min) and
inhibition (¢ > 10,000 min) of the translocase. The curves reflect the effect

of mechanical forces on the kinetics of the symport carrier during the time
course displayed in Fig. 6.
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an ATP-dependent aminophospholipid transporter. Focus-
ing the analysis on the passive response to this active
transport, it is shown that a sufficient mathematical descrip-
tion necessitates a detailed analysis of different forces aris-
ing in states of nonequilibrium distribution of the membrane
components. Two different approaches are presented for the
modeling of passive transversal movements. The first
makes use of linear flux-force relations of near-equilibrium
thermodynamics and includes entropic and mechanical ef-
fects. The second approach is based on kinetic models.

Simulations with the thermodynamic approach yield a
rather good quantitative agreement with experimental data
for the distribution of the five main lipid components of
erythrocyte plasma membrane, provided that a positive
cross-coupling of lipid-specific fluxes is taken into account.
In the framework of kinetic modeling we have used a
symport mechanism of passive translocation, because anti-
port mechanisms do not provide positive cross-coupling
parameters.

In the kinetic models the mechanical forces are taken into
account, for the first time, by their effects on the activation
barriers of the passive translocation step. Neglecting me-
chanical effects leads to strong imbalances in the total lipid
amounts between the monolayers. However, the simulations
with a symport agree only qualitatively with the experi-
ments, even after inclusion of mechanical effects. Discrep-
ancies, mainly with respect to the transversal distribution of
sphingomyelin in erythrocytes, may not be removed within
the assumed symport mechanism by a simple adjustment of
the model parameters, as has been shown by inspection of
the interrelation between cross-coupling parameters and dif-
fusion parameters (cf. discussion of Eq. 68). From this one
may conclude that the detailed kinetic mechanism of pas-
sive translocation deserves further theoretical investigation.
For example, it is attractive to analyze kinetic models of
diffusion through narrow pores or inverted micelles. Pre-
liminary results of corresponding kinetic models show that
a sequential ordering of lipids along the translocation coor-
dinate (and thus sequential lipid translocation) should also
yield positive cross-couplings, whose values may be suffi-
ciently high, even with low diffusion parameters (S. Frick-
enhaus and R. Heinrich, unpublished results).

In the present work the model is used primarily for
simulation of steady-state lipid asymmetries. Our conclu-
sion that a positive cross-coupling of passive lipid fluxes
occurs should be also tested in transient states, for example,
by modeling the time-dependent redistribution of fluores-
cence/spin-labeled lipids. Bitbol and Devaux (1988) and
Connor et al. (1992) measured an ATP dependence of the
rate constants of passive outward movement of labeled
lipids. Both investigations indicated that the aminophospho-
lipid translocase operation enhances the outward motion of
phospholipids. Our model is able to explain such an effect
on the basis of a positive coupling: The active inward
translocation of PS and PE is accompanied by their passive
movement in the counterdirection. Consequently, the out-
ward movement of other phospholipids is enhanced by a
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positive coupling to the passive outward movement of PS
and PE. Simulations of experimental protocols of labeled
lipid experiments thus may be used to go beyond the steady-
state test of our model by quantifying the mediated ATP
dependence of outward passive movement.

Active transport has been modeled on the basis of a
kinetic scheme, involving competitive binding of phospha-
tidylserine and phosphatidylethanolamine. It is clear that
besides the kinetic parameters of passive translocation,
those of the active transport are affected by mechanical
forces. However, the presented mechanism of the active
transport is not detailed enough to allow for a proper treat-
ment of mechanical effects, because ATP binding, ATP
hydrolysis, ADP release, and lipid translocation are lumped
into single irreversible translocation steps for PS and PE.
Despite its simplicity, the proposed equations for active
translocation are compatible with the present knowledge
about the kinetic properties of active lipid translocation in
erythrocytes. This concerns, in particular, the competition
of PS and PE for the same binding site, with a 10-fold
higher affinity of PS on the external monolayer (Zachowski
et al.,, 1986). The latter property results in a pronounced
difference in the time constants of active transport of these
two lipids (Bitbol and Devaux, 1988). Of course, one could
develop more elaborate models of active translocation. For
example, the inclusion of an ATP-dependent compensatory
lipid movement from the cytoplasmic to the external side,
which has been proposed by Bitbol and Devaux (1988) and
Connor et al. (1992), would be an interesting extension of
the presented work.

The present analysis not only gives a model for simula-
tion of experimental data, concerning the transmembrane
exchange of lipids, but also yielded new theoretical insights,
which are of relevance to the description of other membrane
transport systems. We could give, for example, a profound
derivation of the structure of the expressions for coupling
coefficients of passive membrane transport, mainly with
respect to their dependence on the total amounts of the
transported substances. It may be of general theoretical
importance that we were able to give quantitative cross-
relations between a thermodynamic model and a kinetic
description. In this way we could take advantage of two
kinds of theoretical approaches, which are usually consid-
ered to be rather distinct.

The phenomenological coefficients, which appear in the
thermodynamic approach, may result from different kinetic
mechanisms operating independently. As an example, be-
sides carrier mediated transport, one could take into account
in the kinetic description a protein independent lipid flip-
flop (Kornberg and McConnell, 1971). The corresponding
phenomenological coefficients of each mechanism are then
additive quantities, and the contribution of each mechanism
can be analyzed separately.

It is worth mentioning that the phenomenological coeffi-
cients derived by linearization of the kinetic equations of
lipid transport do not contain terms involving molecular
area parameters. In particular, terms proportional to a;a;,
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which appear in the coefficients derived from mechanism
independent thermodynamic arguments (see Eq. 53), are not
present in the corresponding expressions resulting from the
kinetic description of translocation. This may be seen by
comparison of Eq. 53 with Eq. 65 for the antiport mecha-
nism, taking into account that the latter equation for the
phenomenological coefficients also holds true after inclu-
sion of mechanical effects. It remains an open question
whether a mechanistic interpretation may be given for the
terms proportional to a;a; appearing in the phenomenolog-
ical model.

The effect of proteins on membrane asymmetry has been
taken into account in the mechanism of active translocation
and, in the kinetic approach, in the mechanism of facilitated
lipid transport. However, possible effects of the mechanical
properties of the membrane proteins have not been analyzed
in detail. This may be an oversimplification in view of the
fact that a rather high portion of the membrane surface
(~50% for erythrocytes) is occupied by proteins. It would
be straightforward to extend expression 13 for the mechan-
ical energy of the monolayers by incorporating compress-
ible protein components. This would lead to a modified
formula for the mechanical forces, which contains, com-
pared to Eq. 25, additional terms proportional to N,a,/vp in
the denominator, where the index P refers to proteins.
Accordingly, expression 75 for the effective force constant
is then extended by the same terms in the denominator, and
by terms proportional to Npap in the numerator. In the
realistic case, where proteins have a higher force constant
than the effective force constant of the protein free lipid
membrane, y.s Will be increased by taking proteins into
account. For the simulations presented above we have used
for y.¢ a value derived from experimental data for the red
blood cell membrane (Needham and Nunn, 1990). Thus the
net effect of proteins on the mechanical force constants was
taken into account, at least qualitatively.

Besides mechanical forces, transmembrane electric po-
tential gradients may also affect the translocation kinetics of
lipids, depending on their ionization states under physiolog-
ical conditions. From a theoretical point of view, the cor-
responding model extensions would not be too difficult as
long as the transmembrane potential as well as the surface
potentials are considered to be fixed. A more realistic ap-
proach would necessitate the calculation of the electrical
forces as functions of the local charges, which are depen-
dent on the transversal lipid distribution, the ionic strength
on both sides of the membrane, as well as the out-of-plane
orientation of polar headgroups. In this way the present
model deserves extensions from various experimental and
theoretical approaches, including, for example, molecular
dynamics simulations. However, there are experiments in-
dicating that changes of the external surface potential as
well as of the transmembrane potential have a negligible
effect on the passive transbilayer movement of phospholip-
ids in human red blood cells (Janchen et al., 1996).

The present model neglects effects of lateral organization
of cell membranes that could result from specific lipid-lipid
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interactions, for example, the pronounced interaction of
cholesterol and sphingomyelin (Bittman et al., 1994), as
well as protein-lipid interactions. In principle, these inter-
actions would give rise to a more general expression for the
free energy of mixing. Preliminary results, based on the
Bragg-Williams approximation (cf. Hill, 1960), indicate
that no qualitative changes concerning the simulation of the
overall transversal lipid distributions occur, at least in the
limits of that approximation (Schilling et al., unpublished
results).

The expressions for the mechanical forces have been
derived under the simplifying assumption that in states of
asymmetrical composition the membrane remains planar.
The question may arise of how the model is modified by
effects of membrane curvature. In a first approach, a time-
independent area difference A4°"™ due to curvature be-
tween the two monolayers may be introduced in Eq. 14 with
AGS = Ay £ AA™/2. In the latter ansatz, the quantity 4,
represents the surface area of the planar membrane surface.
Performing analogous calculations as for the planar mem-
brane, the resulting expression 25 for the mechanical forces
is modified in a simple way: the area difference A4“"" is
subtracted from A4 = Zn;q;. Obviously, such a modifica-
tion shifts the mechanical equilibrium state of the mem-
brane from a planar to a curved shape. These considerations
may serve as a first step in developing a steady-state model
that accounts for effects of cell shape on lipid asymmetry. In
a longer perspective one could think of models describing in
a combined way time-dependent membrane shapes and
transmembrane asymmetry-generating processes, such as
active lipid transport.

We are very grateful to A. Herrmann, P. Miiller, and I. Bernhardt (Hum-
boldt University, Berlin) as well as M. Brumen (University Maribor,
Slovenia) for fruitful discussions and helpful comments on the manuscript.
An anonymous reviewer is acknowledged for very valuable hints.
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