

Appl. Math. Lett. Vol. 9, No. 1, pp. 49–53, 1996 Copyright©1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0893-9659/96 \$15.00 + 0.00

0893-9659(95)00101-8

The Liouville Equation in L^1 Spaces

H. Emamirad

Département de Mathématiques, Université de Poitiers 40, ave. du Recteur Pineau, 86022 Poitiers Cedex, France emamirad@matpts.univ-poitiers.fr

V. PROTOPOPESCU Computer Science and Mathematics Division, Oak Ridge National Laboratory Oak Ridge, TN 37831-6364, U.S.A. vvp@ornl.gov

(Received and accepted June 1995)

Abstract—We consider the first order equation $\frac{\partial u}{\partial t} = \mathbf{a} \cdot \nabla u$ in the Banach lattice $L^1(\mathbf{R}^N)$. By requiring a minimal amount of Sobolev regularity on the vector-field \mathbf{a} , we show that $\mathbf{a} \cdot \nabla$ generates a C_0 -group, thereby generalizing a result of [1]. From there, we conclude the well-posedness of Liouville equation $\frac{\partial u}{\partial t} = -\xi \cdot \nabla_x u + \nabla_x V \cdot \nabla_\xi u$, for a given potential V. The comparison between the general and force-free Liouville evolution yields the existence of the wave and scattering operators, which in turn are used to prove that the spectrum of the Liouville operator is purely residual in $L^1(\mathbf{R}^6)$.

Keywords—Liouville equation, Dunford-Pettis property, Mild solution, Scattering operator, Residual spectrum.

1. GENERAL RESULTS

Let $\mathbf{a} = (a_1, \ldots, a_N)$ be a vector-field on \mathbf{R}^N and

$$\dot{X} = \mathfrak{a}(X),$$

$$X(0) = x \in \mathbf{R}^{N}$$
(P)

the corresponding dynamical system. If we impose enough regularity on $\mathfrak{a}(X)$ (e.g., $\mathfrak{a} \in [C_b^1(\mathbb{R}^N)]^N$), then by the Cauchy-Lipschitz Theorem, there exists a unique *continuous* flow $\Phi(t)$ on \mathbb{R}^N such that $X(x,t) = \Phi(-t)x$ is the solution of (P). Now, if $f \in L^p(\mathbb{R}^N)$ $(1 \le p < \infty)$, one can define the family of operators on $L^p(\mathbb{R}^N)$, $\{U(t)\}_{t\in\mathbb{R}}$, by

$$U(t)f(x) = f(X(x,t)).$$
 (1.1)

The following result, which is an L^p -version of "Koopmanism" (see [2]), can be found in [3].

LEMMA 1.1 [3]. If $\mathbf{a} \in [C_b^1(\mathbf{R}^N)]^N$, the family $\{U(t)\}_{t \in \mathbf{R}}$ is a C_0 -group and $A = -\mathbf{a}(x) \cdot \nabla$, with $D(A) = \{u \in L^p(\mathbf{R}^N) \mid \mathbf{a}(x) \cdot \nabla u \in L^p(\mathbf{R}^N)\}$ is its infinitesimal generator in $L^p(\mathbf{R}^N)$. Moreover,

$$\|U(t)f\|_{p} \le e^{t\omega/p} \|f\|_{p}, \tag{1.2}$$

where $\omega = \|\operatorname{div} \mathbf{a}\|_{\infty}$.

In [1], DiPerna and Lions have shown that if we do not require a classical solution for $\frac{du}{dt} = Au$, the vector-field **a** needs only to belong to a Sobolev space instead of being Lipschitz continuous.

By slightly weakening their assumptions (we remove their assumptions on the asymptotic behaviour of \mathfrak{a}), we will show an analogue of Lemma 1.1, for p = 1 (see Theorem 1.3 below).

In order to prove that result, we need to define a weak solution of an abstract Cauchy problem

$$\frac{du}{dt} = Au + g(t), \qquad u(0) = f \in \mathcal{X}, \tag{1.3}$$

where $g \in C([0, T]; \mathcal{X})$, in a Banach space \mathcal{X} , in the sense of Ball [4].

A function $u \in C([0,T];\mathcal{X})$ is a weak solution for (1.3) if for any $v \in D(A^*)$ the function $\langle u(t), v \rangle$ is absolutely continuous on [0,T] and

$$\frac{d}{dt} \langle u(t), v \rangle = \langle u(t), A^* v \rangle + \langle g(t), v \rangle$$
(1.4)

for almost all $t \in [0,T]$. In (1.4), $\langle ., . \rangle$ denotes the pairing between \mathcal{X} and its dual. Related to this definition we have the following lemma.

LEMMA 1.2 [4]. A densely defined closed linear operator A is the generator of a C_0 -semigroup on \mathcal{X} iff for any $f \in \mathcal{X}$, (1.2) has a unique weak solution in \mathcal{X} , which is also a mild solution.

THEOREM 1.3. Suppose $\mathbf{a} \in [W_{\text{loc}}^{1,1}(\mathbf{R}^N)]^N$ and div $\mathbf{a} \in L^{\infty}(\mathbf{R}^N)$; then $A = -\mathbf{a}(x) \cdot \nabla$ generates a C_0 -group U(t) on $L^1(\mathbf{R}^N)$ which satisfies (1.2) for p = 1.

PROOF. As in [1], we start by regularizing the vector-field **a** by setting $\mathbf{a}_{\epsilon} = \mathbf{a} * \varphi_{\epsilon}$, where $\varphi_{\epsilon} = \epsilon^{-N} \varphi(\cdot/\epsilon), \varphi \in [C_0^{\infty}(\mathbf{R}^N)]_+$, and $\int \varphi(x) dx = 1$.

Applying Lemmas 1.1 and 1.2 for $A_{\epsilon} = -\mathfrak{a}_{\epsilon} \cdot \nabla$, we conclude that, for any $\epsilon > 0$, there exists a weak solution u_{ϵ} for

$$\frac{dw}{dt} = A_{\epsilon}w,$$

$$w(0) = f \in L^{1}(\mathbf{R}^{N}),$$

$$(P_{\epsilon})$$

which satisfies for each $v \in D(A^*)$

$$\frac{d}{dt} \langle u_{\epsilon}(t), v \rangle = \langle u_{\epsilon}(t), A_{\epsilon}^* v \rangle, \qquad (1.5)$$

where $D(A^*) = \{v \in L^{\infty}(\mathbf{R}^N) \mid \operatorname{div}(v\mathfrak{a}) \in L^{\infty}(\mathbf{R}^N) \text{ and } -\int (\mathfrak{a} \cdot \nabla u)v \, dx = \int \operatorname{div}(v\mathfrak{a})u \, dx$, for all $u \in D(A)\}$. This makes sense since $D(A^*) \subseteq D(A^*_{\epsilon})$. Let us denote by $J^{\epsilon}_t(y)$ the Jacobian of $X_{\epsilon}(\cdot, t)$ at y.

Since $\|\operatorname{div} \mathbf{a}_{\epsilon}\|_{\infty} \leq \|\operatorname{div} \mathbf{a}\|_{\infty} = \omega$,

$$\int\limits_{\mathbf{R}^N} |u_\epsilon(x,t)| \ dx = \int\limits_{\mathbf{R}^N} |f(X_\epsilon(x,t))| \ dx = \int\limits_{\mathbf{R}^N} |f(y)| \ J_t^\epsilon(y) \ dy \le e^{t\omega} \|f\|_1,$$

and since X_{ϵ} is Lipschitz continuous, for any measurable subset E of \mathbf{R}^{N} and any Lebesgue integrable function f, we have

$$\int\limits_E |u_\epsilon(x,t)| \ dx = \int\limits_{X_\epsilon(E)} |f(y)| \ J_t^\epsilon(y) \ dy \le e^{t\omega} \int\limits_{X_\epsilon(E)} |f(y)| \ dy \to 0$$

as the Lebesgue measure $\mu(E) \to 0$. For, $\mu(X_{\epsilon}(E)) \leq e^{t\omega}\mu(E)$ is ϵ -independent. This proves that the family $\{u_{\epsilon}\}$ is a bounded uniformly integrable subset of $L^{1}(\mathbb{R}^{N})$ and, consequently, relatively weakly compact. Let $u \in C^{1}(L^{1}(\mathbb{R}^{N}))$ for which (1.4) with $g \equiv 0$ is the limit of (1.5). In fact, for each $\epsilon > 0$, the map $t \to \langle u_{\epsilon}(t), v \rangle$ is absolutely continuous and converges (extracting a subsequence if necessary) to $\langle u(t), v \rangle$ as $\epsilon \to 0$. We shall prove that the uniform convergence of $\frac{d}{dt} \langle u_{\epsilon}(t), v \rangle \to \frac{d}{dt} \langle u(t), v \rangle$ as $\epsilon \to 0$, on [-T, T]. The local integrability of a_j and $\frac{\partial a_j}{\partial x_j}$ implies that

$$\int u \operatorname{div}(v \mathbf{a}_{\epsilon}) \, dx \to \int u \operatorname{div}(v \mathbf{a}) \, dx \qquad \text{as } \epsilon \to 0,$$

which means that $\langle u, A_{\epsilon}^* v \rangle \to \langle u, A^* v \rangle$, for any $u \in L^1(\mathbf{R}^N)$. Now due to the Dunford-Pettis property of L^1 , $\langle \cdot, A_{\epsilon}^* v \rangle$ converges uniformly on each weakly compact subset of $L^1(\mathbf{R}^N)$ (see [5, Chapter II, Theorem 9.7]). Since the set $\{u_{\epsilon}(t) \mid t \in [-T, T]\}$ is weakly compact, we conclude the theorem.

REMARK 1.4. In the previous theorem, the weak limit of the sequence $u_{\epsilon}(x,t)$ in $L^{1}(\mathbf{R}^{N})$ defines U(t)f. Thus we are not allowed to obtain the properties of the C_{0} -group U(t) directly from the expression (1.1). One of the consequences of our result is: $\int_{\mathbf{R}^{N}} |U(t)f(x)| dx = \lim_{\epsilon \to 0} \int_{\mathbf{R}^{N}} |f(X_{\epsilon}(x,t))| dx$ which is due to AL property [5] of L^{1} spaces.

REMARK 1.5. The argument used to prove Theorem 1.3 holds only for p = 1, since L^p does not have the Dunford-Pettis property for $p \neq 1$.

COROLLARY 1.6. If the potential $V \in W^{2,1}_{\text{loc}}(\mathbf{R}^3)$, then the Liouville operator $L = -\xi \cdot \nabla_x + \nabla_x V \cdot \nabla_\xi$ generates a C_0 -group of isometries on $L^1(\mathbf{R}^3_x \times \mathbf{R}^3_\xi)$.

PROOF. Note that $\mathbf{a}(x,\xi) = (\xi, -\nabla_x V(x))$ and $\mathbf{a}_{\epsilon}(x,\xi) = [\mathbf{a} * \varphi_{\epsilon}](x,\xi)$ are divergence free vectorfields on $\mathbf{R}_x^3 \times \mathbf{R}_{\xi}^3$. Hence by applying Remark 1.4, the operator L generates a C_0 -group S(t), which satisfies

$$\|U(t)f\|_{1} = \lim_{\epsilon \to 0} \int_{\mathbf{R}^{6}} |f(X_{\epsilon}(x,\xi,t))| \, dx \, d\xi = \lim_{\epsilon \to 0} \int_{\mathbf{R}^{6}} |f(y,\eta)| J_{t}^{\epsilon}(y,\eta) \, dy \, d\eta = \|f\|_{1},$$

for div $\mathbf{a}_{\epsilon} = 0$ implies that $J_t^{\epsilon}(y, \eta) = 1$.

2. SCATTERING OPERATOR FOR LIOUVILLE EQUATION AND THE SPECTRUM OF LIOUVILLE OPERATOR

In classical mechanics, the motion of a simple particle in an external force field F is described by the Newton equation $\ddot{x} = F(x)$. For $F \equiv 0$, we can write this equation as the following system:

$$\dot{x} = \xi, \qquad \dot{\xi} = 0,$$

 $x(0) = x_0, \qquad \xi(0) = \xi_0.$
(P₀)

Let us denote by X_0 the solution of (P_0) , which is given by the global flow Φ_0 as $X_0(x_0, \xi_0, t) = \Phi_0(-t)(x_0, \xi_0) = (x_0 - t\xi_0, \xi_0)$.

If we assume that the force is conservative, that means there exists a potential V such that $F(x) = -\nabla V(x)$. If $F \in [C_b^1(\mathbf{R}^3)]^3$, this implies that the system

$$\dot{x} = \xi, \qquad \dot{\xi} = -\nabla V(x),$$

 $x(0) = x_0, \qquad \xi(0) = \xi_0$
(P₁)

has a unique solution $X(x_0, \xi_0, t) = \Phi(-t)(x_0, \xi_0)$ for all time given by the flow $\Phi(t)(x_0, \xi_0) = (x(t), \xi(t))$.

Now let us denote $\Omega(t,s) \equiv \Phi_0(-t)\Phi(t-s)\Phi_0(s)$; then the property of asymptotic completeness [6] is equivalent with the existence of the scattering transformation defined by

$$\mathcal{S}(x,\xi) \equiv \lim_{\min\{t,-s\} \to +\infty} \Omega(t,s)(x,\xi)$$

on some subset of \mathbf{R}^6 .

To establish the existence of this limit, further restrictions on the potential V are needed (see [7]). Namely, if we denote $\langle x \rangle \equiv (1 + |x|^2)^{1/2}$, we shall assume

$$V \in \mathcal{C}^{2}(\mathbf{R}^{3}) \quad \text{and} \quad F = -\nabla V \in \left[\mathcal{C}_{b}^{1}(\mathbf{R}^{3})\right]^{3};$$
 (H1)

$$|F(x)| \le C \langle x \rangle^{-2-\epsilon}$$
 for all x and some $\epsilon > 0$; (H2)

and

$$\left|\frac{\partial F(x)}{\partial x_i}\right| \le C \langle x \rangle^{-3-\epsilon} \quad \text{for all } x, \quad i = 1, 2, 3 \text{ and some } \epsilon > 0. \tag{H3}$$

Under these hypotheses the scattering transformation S exists [6, Theorem XI.2] and we have

$$\mathcal{S}(x,\xi) \equiv \left(\Omega^{+}\right)^{-1} \Omega^{-}(x,\xi)$$

where

$$\Omega^{\pm}(x,\xi) \equiv \Omega\left(0,\mp\infty\right) = \lim_{t \to \pm\infty} \Phi(t)\Phi_0(-t)(x,\xi).$$

Based on Corollary 1.6, the Liouville operators $L_0 \equiv -\xi \cdot \nabla_x$ and $L \equiv -\xi \cdot \nabla_x + \nabla_x V \cdot \nabla_\xi$ are the infinitesimal generators of the C_0 -groups e^{tL_0} and e^{tL} of isometries on $L^1(\mathbf{R}^6)$, defined by $[e^{tL_0}f](x,\xi) = f(X_0(x,\xi,t))$ and $[e^{tL}f](x,\xi) = f(X(x,\xi,t))$, respectively.

The intertwining between the two evolutions is realized by the wave operators

$$W_{\pm}(L,L_0) \equiv s - \lim_{t \to \pm \infty} e^{-tL} e^{tL_0} \quad \text{on } L^1(\mathbf{R}^6)$$
(2.1)

and

$$W_{\pm}(L_0, L) \equiv s - \lim_{t \to \pm \infty} e^{-tL_0} e^{tL} \quad \text{on } R_{\mp} \equiv \operatorname{Im} \left(W_{\mp}(L, L_0) \right).$$
(2.2)

If the wave operators $W_{-} \equiv W_{-}(L, L_{0})$ and $W_{+} \equiv W_{+}(L_{0}, L)$ exist, respectively, on $L^{1}(\mathbb{R}^{6})$ and R_{-} , then the scattering operator is defined by $S \equiv W_{+}W_{-}$ on $L^{1}(\mathbb{R}^{6})$.

In [8], it is proved that if the flow $\Phi(t)$ exists globally in time and the hypothesis (H1) holds true, one can define the scattering operator S as the limit of the propagator $W(s,t) \equiv e^{-sL_0} \cdot e^{(s-t)L} e^{tL_0}$, as $\min\{s, -t\} \to +\infty$, and S is induced by the scattering transformation S; i.e., $[Sf](x,\xi) = f(S(x,\xi))$. This also yields the existence of the wave operators W_{\pm} .

Furthermore, the range spaces R_{\pm} are characterized by $R_{+} = R_{-} = L^{p}(\Sigma_{\text{in}}) = L^{p}(\Sigma_{\text{out}})$ for any $1 \leq p < \infty$, where $\Sigma_{\text{in}} \equiv \text{Im}(\Omega^{-})$ and $\Sigma_{\text{out}} \equiv \text{Im}(\Omega^{+})$ and $\Sigma_{\text{out}}, \Sigma_{\text{in}}$ and $\mathbf{R}^{6} \setminus \Sigma_{b}$ agree up to sets of measure 0, where $\Sigma_{b} \equiv \{(x,\xi) \mid \sup_{t} |x(t)| < \infty\}$.

LEMMA 2.1. The existence of $W_+(L_0, L)$ implies that the Liouville system e^{tL} is locally decaying in Σ_{in} . Namely, for each compact subset K of Σ_{in} ,

$$\lim_{t \to \infty} \|U(t)f\|_{1,K} = 0 \quad \text{for all } f \in \mathcal{X},$$

where $||f||_{1,K} = \int_K |f(x,\xi)| \, dx \, d\xi$.

For the proof of this lemma, we can proceed as a similar result in [9], but instead of $L^1(\mathbf{R}^6)$, we use $L^1(\Sigma_{in})$.

We will use this lemma to characterize the spectrum of the Liouville operator L. Let us denote by $\sigma(L)$ (respectively, $\sigma_r(L)$, $\sigma_p(L)$) the spectrum (respectively, residual spectrum, point spectrum) of the operator L.

The following proposition is proved independently by [10–12] in the case when $V \equiv 0$.

PROPOSITION 2.2. Under hypotheses (H1)-(H3), $\sigma(L) = \sigma_r(L) = i\mathbf{R}$ in $L^1(\mathbf{R}^6)$.

PROOF. Let us construct a function $\psi(x,\xi)$ on \mathbf{R}^6 satisfying the inhomogeneous Liouville equation

$$-L\psi = \xi \nabla_x \psi - \nabla_x V(x) \cdot \nabla_\xi \psi = 1.$$
(2.3)

For a fixed $(x_0,\xi_0) \in \mathbf{R}^6$ and a given value of $\psi(x_0,\xi_0)$, let us define ψ on the whole trajectory $(x(t),\xi(t))$ of (P_1) by

$$\psi(\Phi(t)(x_0,\xi_0)) = \psi(x_0,\xi_0) + t.$$
(2.4)

In fact, if $u(x,\xi,t) \equiv e^{tL}\psi(x,\xi) = \psi(\Phi(-t)(x,\xi)) = \psi(x,\xi) - t$, then $L\psi = L(\psi - t) = Lu = \frac{\partial u}{\partial t} = -1$. The group property of the flow Φ implies that the trajectories cannot intersect each other; hence if we ascribe the value of ψ in one point of each trajectory, the function ψ can be defined in whole \mathbf{R}^6 according to (2.4) and verifies (2.3).

According to Corollary 1.6, $||e^{tL}|| = 1$, and therefore $\sigma(L) \subset i\mathbf{R}$. It is known that if $\overline{\lambda} \in \sigma_p(L^*)$, then λ belongs either to $\sigma_p(L)$ or to $\sigma_r(L)$. Since for any real β , u_β given by $u_\beta(x,\xi) = e^{i\beta\psi(x,\xi)}$ belongs to $D(L^*)$ and satisfies $L^*u_\beta = -i\beta u_\beta$, then $i\beta$ belongs either to $\sigma_p(L)$ or to $\sigma_r(L)$. To conclude the proposition, it is enough to show that $\sigma_p(L) = \emptyset$. In fact, the converse yields to the existence of $f \in L^1(\mathbf{R}^6)$ such that $Lf = i\beta f$ or by spectral mapping theorem

$$e^{tL}f = e^{i\beta t}f. (2.5)$$

But due to Lemma 2.1, we have $||e^{tL}f||_{1,K} \to 0$ as $t \to \infty$, which contradicts (2.5), since (2.5) implies

$$\left\|e^{tL}f\right\|_{1,K} = \|f\|_{1,K} \quad \text{for all } t \in \mathbf{R}.$$

REFERENCES

- R.J. DiPerna and P.L. Lions, Ordinary differential equation, transport theory and Sobolev spaces, *Invent. Math.* 98, 511-547 (1989).
- 2. R. Abraham and J. Marsden, Foundations of Mechanics, 2nd edition, Benjamin Cummings, London, (1978).
- 3. C. Bardos, Problèmes aux limites pour les equation aux derivées partielles du premier ordre à coefficients réels; Théorèmes d'approximation; Application à l'équation de transport, Ann. Sci. Ec. Norm. Sup. 3, 185-233 (1970).
- J.M. Ball, Strongly continuous semigroup, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc. 63, 370-373 (1977).
- 5. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York, (1974).
- 6. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 3, Acad. Press, New York, (1979).
- 7. B. Simon, Wave operators for classical particle scattering, Commun. Math. Phys. 23, 37-48 (1971).
- 8. R. Prosser, On the asymptotic behavior of certain dynamical systems, J. Math. Phys. 13, 186-196 (1972).
- J. Voigt, On the existence of the scattering operators for the linear Boltzmann equation, J. Math. Anal. Appl. 58, 541-558 (1977).
- 10. H. Emamirad, On the Lax and Phillips scattering theory for transport equation, J. Funct. Analysis 62, 276-303 (1985).
- 11. J. Hejtmanek, Dynamics and spectrum of the linear multiple scattering operator in the Banach lattice $L^1(\mathbb{R}^3 \times \mathbb{R}^3)$, Transport Theory Statis. Phys. 1, 29-44 (1979).
- 12. T. Umeda, Scattering and spectral theory for the linear Boltzmann equation, J. Math. Kyoto Univ. 24, 205-218 (1984).