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A b s t r a c t - - W e  consider the first order equation -~  = a .  Vu in the Banach lattice LI(RN). By 
requiring a minimal amount of Sobolev regularity on the vector-field a, we show that a.  V generates a 
C0-group, thereby generalizing a result of [1]. From there, we conclude the well-posedness of Liouville 
equation ~ t  = -~"  Vxu + VxV • V~u, for a given potential V. The comparison between the general 
and force-free Liouville evolution yields the existence of the wave and scattering operators, which in 
turn are used to prove that the spectrum of the Liouville operator is purely residual in L 1 (R6). 

K e y w o r d s - - L i o u v i l l e  equation, Dunford-Pettis property, Mild solution, Scattering operator, 
Residual spectrum. 

1.  G E N E R A L  R E S U L T S  

Let  a = ( a l , . . .  ,aN) be a vector-f ie ld  on R y and  

2 = a (x ) ,  
x ( 0 )  = x C R N (P) 

t he  co r r e spond ing  d y n a m i c a l  sys tem.  If  we impose  enough regu la r i ty  on a(X) (e.g., a • 

[Cb 1 ( R N ) ] N ) ,  t hen  by  the  Cauchy-Lipsch i t z  Theorem,  the re  exis ts  a un ique  continuous flow ~ ( t )  

on R N such t h a t  X(x , t )  = ¢ ( - t ) x  is the  so lu t ion  of (P).  Now, if f c LP(R N) (1 < p < co),  one 

can  define t he  fami ly  of  ope ra to r s  on LP(RN), {U(t)}teR, by 

U(t)f(x) = f (X(x , t ) ) .  (1.1) 

T h e  fol lowing resul t ,  which  is a n / F - v e r s i o n  of "Koopman i sm"  (see [2]), can be found in [3]. 

LEMMA 1.1 [3]. I r a  • [C~(RN)] N, the f&mily {U(t)}tE R is a Co-group and A = -a (x ) .  V, with 
D(A) = {u • L P ( R  N) I a(x). Vu • L P ( R N ) }  is its infinitesimal generator in LP(RN). Moreover, 

IIV(t)fll ,  _< et~/"llfllp, (1.2) 

where w -= IIdiv alloo. 

In  [1], D i P e r n a  and  Lions  have shown t h a t  if we do not  require  a classical  so lu t ion  for du : AU,  

t he  vector- f ie ld  a needs  on ly  to  be long  to  a Sobolev  space ins t ead  of  be ing  Lipschi tz  cont inuous .  
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By slightly weakening their assumptions (we remove their assumptions on the asymptotic behav- 
iour of a), we will show an analogue of Lemma 1.1, for p = 1 (see Theorem 1.3 below). 

In order to prove that  result, we need to define a weak solution of an abstract Cauchy problem 

d u  
d---[ = Au + g(t), u(O) = f • x, (1.3) 

where g E C([0, T]; X), in a Banach space A', in the sense of Ball [4]. 
A function u • C([0, T] ;X)  is a weak solution for (1.3) if for any v E D(A*) the function 

(u(t), v) is absolutely continuous on [0, T] and 

d 
d~ (u(t), v> = (u(t), A ' v )  + (g(t), v) (1.4) 

for almost all t E [0, T]. In (1.4), <., .> denotes the pairing between 2¢ and its dual. Related to 
this definition we have the following lemma. 

LEMMA 1.2 [4]. A densely defined closed linear operator A is the generator o f a  Co-semigroup 
on 2( iff for any f E 2(, (1.2) has a unique weak solution in 2(, which is also a mild solution. 

THEOREM 1.3. Suppose a 6 [WIlo':(RN)] N and div a C L°o(RN), then A = - a ( x ) .  V generates 
a Co-group U(t) on L I ( R  N) which satisfies (1.2) for p = 1. 

PROOF. As in [1], we start  by regularizing the vector-field a by setting aE = a * ~e, where 
~e = e-NcP('/e), ~ E [C~°(RN)]+, and f ~(x)dx = 1. 

Applying Lemmas 1.1 and 1.2 for A~ = -a~  • ~Y, we conclude that ,  for any c > 0, there exists 
a weak solution u~ for 

dw 
- -  = A ~ w ,  
dt (P~) 

w(0) ---- f e L I ( R N ) ,  

which satisfies for each v E D(A*) 

d 
d-t (u~(t), v> = (u~(t), A'v>, (Lh) 

where D(A*) = {v e L ° ° ( R Y )  l div(va) e L°°(R N) and - f ( a .  V u ) v d x  = f d iv (va)udx ,  for 
all u c D(A)}. This makes sense since D(A*) C D(A*).  Let us denote by J[(y) the Jacobian 
of X~(-,t) at y. 

Since IIdiva~lloo < Ildiv allot = w, 

/ lu~(x,t)[ dx = / I f (X~(x, t ) l  dx = f I f ( y ) l J [ ( y )dy  <_ atOll f i l l ,  
a N R N R N 

and since X~ is Lipschitz continuous, for any measurable subset E of R N and any Lebesgue 
integrable function f ,  we have 

/lu~(x,t)fd~= / II(y)lJ[(y)dy<_e t~ / II(y)ldy--~O 
E Xe(E) X,(E) 

as the Lebesgue measure #(E)  --* 0. For, #(X~(E))  <_ et~#(E) is e-independent. This proves 
that  the family {u~} is a bounded uniformly integrable subset of L I ( R  N) and, consequently, 
relatively weakly compact. Let u e CI (L I (RN) )  for which (1.4) with g - 0 is the limit of (1.5). 
In fact, for each e > 0, the map t ---* (u~(t), v) is absolutely continuous and converges (extracting 
a subsequence if necessary) to (u(t), vl as e --~ O. We shall prove that  the uniform convergence 
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of d <u~(t),v} --+ d (u(t),v) as e -* 0, on [-T,T].  The local integrability of aj and ~ implies 
tha t  

/ u d i v ( v a e ) d x - - ~ / u d i v ( v a ) d x  ase--~O, 

which means tha t  {u,A*v) ~ (u,A*v), for any u E LI (RN) .  Now due to the Dunford-Pett is  
proper ty  of L 1, (., A~v) converges uniformly on each weakly compact  subset of L I ( R  N) (see [5, 
Chapter  II, Theorem 9.7]). Since the set {u~(t) [ t E [-T,T]} is weakly compact,  we conclude 
the theorem. | 

REMARK 1.4. In the previous theorem, the weak limit of the sequence u~(x,t) in L I ( R  N) de- 

fines U(t) f .  Thus we are not allowed to obtain the properties of the C0-group U(t) directly 
from the expression (1.1). One of the consequences of our result is: fR N IU(t)f(x)l dx = 
l i m ~ 0  fRN If(X~( x, t))l dx which is due to AL property [5] of L 1 spaces. 

REMARK 1.5. The argument used to prove Theorem 1.3 holds only for p = 1, since L p does not 
have the Dunford-Pett is  property for p ¢ 1. 

2,1 3 COROLLARY 1.6. I f  the potential V E Wlo c ( a ) ,  then the Liouville operator L = - (  • Vx + 
V x Y .  V~ generates a Co-group of isometrics on L I ( R  3 x a~) .  

PROOF. Note tha t  a(x, ~) = (~, - V x Y ( x ) )  and a~(x, ~) = [ a * ~ ] ( x ,  ~) are divergence free vector- 
fields on R~ x R~. Hence by applying Remark 1.4, the operator L generates a C0-group S(t), 
which satisfies 

/ f Ilu(t)flll  = lim r If(Xe(x,~,t)[ dxd~ = lim Pf(Y,~)I t(Y,~l)dyd~7 = I[flll, 
e 0 e ~ O  

R 6 R6 

for div a~ = 0 implies that  J[(y,r~) = 1. 

2. S C A T T E R I N G  O P E R A T O R  FOR LIOUVILLE E Q U A T I O N  
A N D  T H E  S P E C T R U M  OF LIOUVILLE O P E R A T O R  

In classical mechanics, the motion of a simple particle in an external force field F is described 
by the Newton equation ~ = F(x).  For F --- 0, we can write this equation as the following system: 

e = ~ ,  4 = 0 ,  

• (0) = z0 ,  ~(0)  = ~0. (P0) 

Let us denote by X0 the solution of (Po), which is given by the global flow (I)0 as Xo(xo, @, t) = 
• o ( - t ) ( x o ,  ~o) = (xo - t~o, ~o). 

If  we assume tha t  the force is conservative, that  means there exists a potential  V such that  
F(x)  = - V V ( x ) .  If  F E [CI(R3)] 3, this implies tha t  the system 

= ~, ~ = - v v ( x ) ,  (P1) 
x(0 )  = x0, ~(0)  = ~0 

has a unique solution X(xo,~o, t) = q~(-t)(xo, f0) for all t ime given by the flow ~( t ) (x0 ,@) = 
(x ( t ) ,  ~ ( t ) ) .  

Now let us denote f~(t, s) - ~ o ( - t ) ¢ ( t  - s)q%(s); then the property of asymptot ic  complete- 
ness [6] is equivalent with the existence of the scattering transformation defined by 

S ( x ,  ~) - l im ~ ( t ,  s ) ( x ,  ¢) 
min{t,--  s}---*+oo 

on some subset of R 6. 
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To establish the existence of this limit, further restrictions on the potential V are needed 
(see [7]). Namely, if we denote (x} - (1 + Ix12) :/2, we shall assume 

and 

VEC 2(R 3) and F = - V V 6  [C~(R3)] 3", 
IF(x)[ < C (x) -2-~ for all x and some e > 0; 

(HI) 

(H2) 

OF(x) < C ( x ) - 3 - '  for all x, i = 1, 2, 3 and some e > 0. (H3) 
CgX/ - -  

Under these hypotheses the scattering transformation S exists [6, Theorem XI.2] and we have 

S(x,~)  = (a+)  - :  n - ( x , ~ )  

where 
f~±(x,~) --= f~(0, q:oo) = lim q?(t)Oo(-t)(x,~). 

*---4-oo 

Based on Corollary 1.6, the Liouville operators L0 = - ~  • Vx and L = - ~  • Vx + V~V • V~ 
are the infinitesimal generators of the C0-groups e tL° and e tL of isometrics on LI(R6) ,  defined 

by [e*L° f] (x, ~) = f ( X o ( z ,  ~, t)) and [etL f] (z, ~) = f ( X ( z ,  ~, t) ), respectively. 
The intertwining between the two evolutions is realized by the wave operators 

and 

W± (L, L0) - s - lim e-tLe *L° on L 1 (R  6) (2.1) 
*--*±oo 

W±(Lo ,  L) -= s -  lim e-tL°e *L on R~: =-Im(W~:(L,  Lo)). (2.2) 
, - - . ± ~  

If the wave operators W_ = W_(L ,  Lo) and W+ =- W+(Lo,L)  exist, respectively, on L I ( R  6) 
and R_,  then the scattering operator is defined by S - W+W_ on LI(RS).  

In [8], it is proved that  if the flow ¢( t )  exists globally in time and the hypothesis (H1) holds 
true, one can define the scattering operator S as the limit of the propagator W(s,  t) -- e -sL° 
• e ( s - t ) L  e tL°, as min{s,-- t} --* +co, and S is induced by the scattering transformation S; i.e., 

[S f] (x, ~) = f ( S ( x ,  ~)). This also yields the existence of the wave operators W±. 
b-hrthermore, the range spaces R+ are characterized by R+ = R_ = LP(~in) = LP(~out) for 

may 1 < p < c~, where Ein -- Im(f2-) and Eout - Im(gt +) and ~-]~out, ~'~qn and R6\Eb agree up to 

sets of measure 0, where Eb --- {(x,~) [sup, Ix(t)[ < c~}. 

LEMMA 2.1. The existence of  W+(Lo, L) implies that the Liouville system e *L is locally decaying 
in El, .  Namely, for each compact subset K of Ein, 

lira IIU(t)flll K = 0 for all f e •, 

where HfllI,g = f g  If( x, ~)]dx d~. 
For the proof of this lemma, we can proceed as a similar result in [9], but instead of LI(R6) ,  

we use Ll(~in) .  
We will use this lemma to characterize the spectrum of the Liouville operator L. Let us 

denote by a(L) (respectively, a t (L) ,  Crp(L)) the spectrum (respectively, residual spectrum, point 

spectrum) of the operator L. 
The following proposition is proved independently by [10-12] in the case when V -= 0. 

PROPOSITION 2.2. Under hypotheses (H1)-(H3), ~(L) = a t (L)  = i R  in LI(R6).  
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PROOF. Let  us cons t ruc t  a funct ion ¢ ( x ,  ¢) on R 6 sa t i s fy ing the  inhomogeneous  Liouvi l le  equa-  

t ion  

- L ¢  = ~ V ~ ¢  - V x Y ( z ) .  V ¢ ¢  = 1. (2.3) 

For  a fixed (x0, ~0) E R 6 and a given value of ~b(x0, ~0), let us define ¢ on the  whole  t r a j ec -  

t o r y  (x( t ) ,  ~(t)) of (P1) by  

¢ (~(t) (z0, ~0)) = ~ (z0, ¢0) + t. (2.4) 

In  fact,  if u ( x , ~ , t )  ~_ e t L ¢ ( x , ~ )  = ¢ ( ~ ( - - t ) ( x , ~ ) )  ----- ¢ ( x , ~ )  -- t ,  t hen  L ¢  = L ( ¢  - t) = L u  = 

o~ __ - 1 .  The  group  p r o p e r t y  of t he  flow • impl ies  t h a t  the  t r a j e c to r i e s  canno t  in te rsec t  each 3 7 -  
o ther ;  hence if we ascr ibe  the  value of ~ in one po in t  of each t r a j ec to ry ,  t he  funct ion  ~ can be 

def ined in whole R 6 accord ing  to  (2.4) and  verifies (2.3). 

Accord ing  to  Coro l l a ry  1.6, IletLll = 1, and  therefore  a ( L )  c JR.  I t  is known t h a t  i f ~  E ap(L*),  

t hen  A belongs  e i ther  to  ap(L)  or to  a t (L ) .  Since for any  real  15, u~ given by  u~ (x ,~ )  = e ~¢(x'~) 

belongs  to  D(L*)  and satisfies L*u~ = - i g u z ,  t hen  i/~ belongs  e i ther  to  ap(L)  or to  ar(L) .  To 

conc lude  the  p ropos i t ion ,  i t  is enough to show t h a t  crp(L) = 0. In  fact ,  the  converse yields  to  the  

ex is tence  of f E L I ( R  6) such t h a t  L f  = i/3f or by  spec t ra l  m a p p i n g  t he o re m 

etL f = ei~t f .  (2.5) 

B u t  due  to  L e m m a  2.1, we have [letLf][1,K --+ 0 as t --+ oo, which con t r ad i c t s  (2.5), since 

(2.5) impl ies  

][etLI[ll,K = I[fH1,K for all t E R .  II 
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