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Abstract—We consider the first order equation % = & - Vu in the Banach lattice L}(R"). By
requiring a minimal amount of Sobolev regularity on the vector-field a, we show that -V generates a
Co-group, thereby generalizing a result of [1]. From there, we conclude the well-posedness of Liouville
equation %% = —§-Vzu+ VzV . Veu, for a given potential V. The comparison between the general
and force-free Liouville evolution yields the existence of the wave and scattering operators, which in

turn are used to prove that the spectrum of the Liouville operator is purely residual in L' (RS).

KeywordS—Liouville equation, Dunford-Pettis property, Mild solution, Scattering operator,
Residual spectrum.

1. GENERAL RESULTS

Let a = (a1,...,an) be a vector-field on R" and
X = a(X),
N (P)
X0 =zeR

the corresponding dynamical system. If we impose enough regularity on a(X) (e.g., a €
[CL(RN)]N), then by the Cauchy-Lipschitz Theorem, there exists a unique continuous flow ®(t)
on RV such that X(z,t) = ®(—t)z is the solution of (P). Now, if f € LP(R") (1 < p < o0), one
can define the family of operators on LP(R™), {U(t)}ier, by

U®)f(x) = f(X(z,1)). (1.1)
The following result, which is an LP-version of “Koopmanism” (see [2]), can be found in [3].

LEMMA 1.1 [3]. Ifa € [CLRM)N, the family {U(t)}icr is a Co-group and A = —~a(z) -V, with
D(A) = {u € LP(RN) | a(z) - Vu € LP(RN)} is its infinitesimal generator in LP(RN). Moreover,

IU@®Flls < 77| Flips (1.2)

where w = ||div afoo-

In {1], DiPerna and Lions have shown that if we do not require a classical solution for %‘ti = Au,
the vector-field a needs only to belong to a Sobolev space instead of being Lipschitz continuous.
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By slightly weakening their assumptions (we remove their assumptions on the asymptotic behav-
iour of a), we will show an analogue of Lemma 1.1, for p = 1 (see Theorem 1.3 below).
In order to prove that result, we need to define a weak solution of an abstract Cauchy problem

du _

o Au + g(t), u(0) = f e X, (1.3)

where g € C([0,T); X), in a Banach space X, in the sense of Ball [4].
A function u € C([0,T]; X) is a weak solution for (1.3) if for any v € D(A*) the function
(u(t),v) is absolutely continuous on [0, T] and

2 ult),v) = {u(t), 4") + (g(2),v) (1.4

for almost all £ € [0,77]. In (1.4), {.,.) denotes the pairing between X and its dual. Related to
this definition we have the following lemma.

LEMMA 1.2 [4]. A densely defined closed linear operator A is the generator of a Cy-semigroup
on X iff for any f € X, (1.2) has a unique weak solution in X', which is also a mild solution.

THEOREM 1.3. Suppose a € [WLH(RN))N and div a € L®(RVN); then A = —a(z) - V generates
a Co-group U(t) on L'(RYN) which satisfies (1.2) for p = 1.

PRrROOF. As in [1], we start by regularizing the vector-field a by setting a. = a * ¢, where
Pe = E_N(P(’/E)a pe [CSO(RN)]+7 and fQD(Z') dz = 1.
Applying Lemmas 1.1 and 1.2 for A. = —a, - V, we conclude that, for any € > 0, there exists

a weak solution u. for

dw
T Ae 3
dt v (P.)

w(0) = f € L' (RY),
which satisfies for each v € D(A*)

2 ue(t), ) = (uelt), Av) (1.5)

dt
where D(A4*) = {v € L®RY) | div(va) € L*(R"Y) and — [(a - Vu)vdz = [div(va)udz, for
all v € D(A)}. This makes sense since D(A*) C D(A}). Let us denote by Jf(y) the Jacobian
of X.(-,t) at y.
Since ||div a.|jco < ||div alloc = w,

/ ez, 1) dz = / F(Xe(z, )] dz = / F@ T dy < €| £,
RN RN RN

and since X, is Lipschitz continuous, for any measurable subset E of RN and any Lebesgue
integrable function f, we have

/ e (2, 1)) dz = / F @) T ) dy < e / F@)| dy — 0
F

X(E) X (E)

as the Lebesgue measure u(E) — 0. For, u(X(FE)) < e*“u(FE) is e-independent. This proves
that the family {u.} is a bounded uniformly integrable subset of L!(RN) and, consequently,
relatively weakly compact. Let u € C*(L!(R")) for which (1.4) with g = 0 is the limit of (1.5).
In fact, for each € > 0, the map ¢ — (u.(t),v) is absolutely continuous and converges (extracting
a subsequence if necessary) to (u(t),v) as ¢ — 0. We shall prove that the uniform convergence
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of a‘—iz (ue(t),v) — % (u(t),v) as € — 0, on [T, T]. The local integrability of a; and g—%}? implies

that
/udiv(vae)dx — /udiv(va) dzx as € — 0,

which means that (u, Av) — (u, A*v), for any u € LY(RY). Now due to the Dunford-Pettis
property of L', (-, A*v) converges uniformly on each weakly compact subset of L!(R") (see [5,
Chapter II, Theorem 9.7]). Since the set {uc(t) | t € [T, T]} is weakly compact, we conclude
the theorem. 1
REMARK 1.4. In the previous theorem, the weak limit of the sequence u.(z,t) in L*(R") de-
fines U(t)f. Thus we are not allowed to obtain the properties of the Co-group U(t) directly
from the expression (1.1). One of the consequences of our result is: [ |U(t)f(z)|dz =
lime_.o fgn |f(Xe(z,t))| dz which is due to AL property [5] of L! spaces.

REMARK 1.5. The argument used to prove Theorem 1.3 holds only for p = 1, since LP does not
have the Dunford-Pettis property for p # 1.

COROLLARY 1.6. If the potential V ¢ WZ’I(RS), then the Liouville operator L = —£ -V, +

loc

V.V - V¢ generates a Co-group of isometries on L'(R3 x R}).

PrOOF. Note that a(x,§) = (§,~V;V(z)) and a.(z,£) = [axy ] (x, &) are divergence free vector-
fields on R3 x Rg. Hence by applying Remark 1.4, the operator L generates a Co-group S(t),
which satisfies

0O = limy [ 17(Xela,&,0) dade = limg [ 170m)1J5 (v dy e = 111
RS RS

for div a. = 0 implies that Jf(y,n) = 1. ]

2. SCATTERING OPERATOR FOR LIOUVILLE EQUATION
AND THE SPECTRUM OF LIOUVILLE OPERATOR

In classical mechanics, the motion of a simple particle in an external force field F is described
by the Newton equation £ = F(z). For F = 0, we can write this equation as the following system:

:1'::67 §:Oa

F
z(0) ==z0,  £(0) = &. o)

Let us denote by Xy the solution of (Fy), which is given by the global flow ® as X¢(zo, £o,t) =

Do(—t)(z0,&0) = (2o — o, 0)-
If we assume that the force is conservative, that means there exists a potential V such that
F(z) = -VV(z). If F € [C}(R®)]°, this implies that the system

(P1)

has a unique solution X(xg,&o,t) = ®(—t)(xzo,&o) for all time given by the flow ®(t)(zo,&) =

(z(t),£(2)).
Now let us denote Q(t,s) = ®o(—t)®(t — 5)Po(s); then the property of asymptotic complete-
ness [6] is equivalent with the existence of the scattering transformation defined by

S(z,€) = lim Q(t, s){z, &)

min{t,—s}—+oo

on some subset of RS.
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To establish the existence of this limit, further restrictions on the potential V are needed
(see [7]). Namely, if we denote (z) = (1 + |z|?)}/2, we shall assume

Vec?(R}) and F=-VVelc (R (H1)
|F(z)| < C <l‘>_2_€ for all z and some € > 0; (H2)

and
‘35;5?) <c <x>—3—€ for all z, ¢=1,2,3 and some € > 0. (H3)

Under these hypotheses the scattering transformation S exists [6, Theorem XI.2| and we have

S(z,&) = (Q+)—1 Q (z,€)

where
0%(2,6) = 20, %00) = lim_2(H)Po(~1)(a:€).

Based on Corollary 1.6, the Liouville operators Ly = —§-Vgzand L = —§ -V, + V;V - V¢
are the infinitesimal generators of the Co-groups e*f° and e’ of isometries on L!(R®), defined

by [eL° f](2,€) = f(Xo(z,£,1)) and [e**](z,€) = F(X(z,£,1)), respectively.
The intertwining between the two evolutions is realized by the wave operators

Wi (L, Lo) =s— lim e~tletle  on L' (RY) (2.1)
and
Wy (Lo, L) = s — lim e tlogtl  on Ry =1Im (Wx (L, Lo)). (2.2)

If the wave operators W_ = W_(L, Ly) and W, = W, (Lo, L) exist, respectively, on L!(R?®)
and R_, then the scattering operator is defined by S = W, W_ on L}(R®).

In [8], it is proved that if the flow ®(t) exists globally in time and the hypothesis (H1) holds
true, one can define the scattering operator S as the limit of the propagator W(s,t) = e~8ko
B3~ gtlo a5 min{s, ~t} — +oo, and S is induced by the scattering transformation S; i.e.,
[S f] (z,€) = f(S(z,&)). This also yields the existence of the wave operators W.

Furthermore, the range spaces Ry are characterized by Ry = R. = LP(Z;,) = LP(Zout) for
any 1 < p < oo, where &, = Im(Q7) and oy = Im(Q%) and Loy, Lin and RS\, agree up to
sets of measure 0, where ¥, = {(z,€) | sup, |z(t)| < ©}. '

LEMMA 2.1. The existence of W, (Lg, L) implies that the Liouville system e’ is locally decaying
in ;.. Namely, for each compact subset K of iy,

tlim W@ fllixk =0 forall f € X,

where || fll1,x = [ |f(z,€)|dz d&.

For the proof of this lemma, we can proceed as a similar result in [9], but instead of L}(R?),
we use L1(Z,).

We will use this lemma to characterize the spectrum of the Liouville operator L. Let us
denote by o(L) (respectively, o(L), op(L)) the spectrum (respectively, residual spectrum, point
spectrum) of the operator L.

The following proposition is proved independently by [10-12] in the case when V = 0.

PROPOSITION 2.2. Under hypotheses (H1)-(H3), o(L) = o(L) = iR in L}(RS).
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PROOF. Let us construct a function ¢(z,¢) on RE satisfying the inhomogeneous Liouville equa-
tion

~Ly = Vo~ Vo V(2) Ve = L. (2.3)

For a fixed (z¢,£0) € R® and a given value of ¥(zg,&), let us define ¢ on the whole trajec-
tory (z(t),&(t)) of (P1) by '
P (2(t) (z0,40)) = ¥ (z0,&0) + 1. (2.4)

In fact, if u(z,&,t) = etfop(z, &) = Y(D(~t)(x,8)) = ¢(z,&) —t, then Ly = L(y —t) = Lu =
%—’t‘ = —1. The group property of the flow ® implies that the trajectories cannot intersect each
other; hence if we ascribe the value of 9 in one point of each trajectory, the function i can be
defined in whole R® according to (2.4) and verifies (2.3).

According to Corollary 1.6, ||etL|| = 1, and therefore o(L) C iR. It is known that if X € o,,(L*),
then X belongs either to (L) or to o,-(L). Since for any real 3, ug given by ug(x,&) = e#¥(=:8)
belongs to D(L*) and satisfies L*ug = —ifug, then i3 belongs either to o,(L) or to o-(L). To
conclude the proposition, it is enough to show that o,(L) = 0. In fact, the converse yields to the

existence of f € L'(R®) such that Lf = i3f or by spectral mapping theorem
etl f = ety (2.5)

But due to Lemma 2.1, we have [le""f||;x — 0 as t — oo, which contradicts (2.5), since
{(2.5) implies
Heth||1’K= 1, for all t € R. 1
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