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1. I N T R O D U C T I O N  

In this paper, we are concerned with the existence of multiple solutions for the second-order 

boundary value problem 

y"  + f ( y )  = 0, 0 < t < 1, (1.1) 

y(0 )  = 0 = y ( 1 ) ,  (1 .2)  

where f : R -~ [0, oc) is continuous. A solution y ¢ C(2)[0, 1] of (1.1),(1.2) is both nonnegative 

and concave on [0, 1]. We will impose growth conditions on f which ensure the existence of at 

least three symmetric positive solutions of (1.1),(1.2). 
There is much current attention focused on questions of positive solutions of boundary value 

problems for ordinary differential equations, as well as for for finite difference equations; s e e  

[1-11], to name a few. Much of this interest is due to the applicability of certain Krasnosel'skii 

fixed-point theorems or the Leggett-Williams multiple fixed-point theorem, or a synthesis of both 

to obtain positive solutions or multiple positive solutions which lie in a cone. The recent book 
by Agarwal, Wong and O'Regan [12] gives a good overview for much of the work which has been 

done and the methods used. 
In [13], Avery imposed conditions on f to yeild at least three positive solutions to (1.1),(1.2) 

applying the Leggett-Williams fixed-point theorem. In [14], Henderson and Thompson improved 
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these results by using the symmetry of the associated Green's function. Our results extend these 
results by applying a generalization of the Leggett-Williams fixed-point theorem [15]. 

In Section 2, we provide some background results, and we state the generalization of the 
Leggett-Williams fixed-point theorem. Then, in Section 3, we impose growth conditions on f 
which allow us to apply the generalization of the Leggett-Williams fixed-point theorem in ob- 
taining three symmetric positive solutions of (1.1),(1.2). 

2. S O M E  B A C K G R O U N D  D E F I N I T I O N S  A N D  R E S U L T S  

In this section, we provide some background material from the theory of cones in Banach 
spaces, in order that  this paper be self-contained. We also state a fixed-point theorem which is a 
genereralization of the fixed-point theorem of Leggett and Williams for multiple fixed-points of 
a cone preserving operator. 

DEFINITION 2.1. L e t  E be a real Banach space. A n o n e m p t y  closed convex  set P c E is called 

a cone i f  i t  satisf ies the  following two conditions: 

(i) x E P, A _> 0 impl ies  Ax E P;  

(ii) x E P ,  - x  E P impl ies  x = O. 

E v e r y  cone P C E induces an ordering in E given by 

x <_ y, i f  and only  i f  y - x E P. 

DEFINITION 2.2. A n  operator  is called comple t e l y  cont inuous  i f  i t  is cont inuous  and m a p s  

bounded  se ts  in to  p recompac t  sets. 

DEFINITION 2.3. A map a is said to  be a nonnegat ive  cont inuous  concave funct ional  on a cone P 

o f  a real Banach space E if 
a : P ~ [0, c~) 

is cont inuous  and 

 (tx + (1 - t )y)  > t (x) + (1 - 

for all x , y  E P and t E [0,1]. Similarly, we say  the  m a p  t3 is a nonnegat ive  cont inuous  convex  

func t ional  on a cone P o f  a real Banach space E i f  

~:  P ~ [0, eo) 

is cont inuous  and 

~ ( t x  + (1 - t )y )  <_ t ~ ( x )  + (1 - t) /~(y),  

for all x, y E P and t E [0, 1]. 

Let % 13, and 8 be nonnegative continuous convex functionals on P and a,  ¢ be nonnegative 
continuous concave functionals on P. Then for nonnegative real numbers h, a, b, d, and c we 
define the following convex sets: 

and 

P(7, c) = {x E P :  7(x) < c}, 

P ( v , a , a , c )  = { x  E P :  a ~_ a ( x ) ,  7(x) _< c}, 

Q(7, ~, d, c) = {x E P :  j3(z) < d, V(z) _< c}, 

P ( v , S , a , a , b , c )  = { x  E P : a <- a ( z ) ,  8(z )  <_ b, V(x)  <_ c}, 

Q ( 7 , ~ , ¢ , h , d , c ) - - { x E P : h < ¢ ( x ) ,  /3(x)_<d, 7(x)_~c}. 

In obtaining multiple symmetric positive solutions of (1.1), (1.2) the following fixed-point theo- 
rem due to Avery [15] which is a generalization of the Leggett-Williams fixed-point theorem will 
be fundamental. 
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THEOREM 2.4. Let P be a cone in a real Banach space E. Let a and ~ be nonnegative continuous 
concave functionals on P and let % fl, and 0 be nonnegative continuous convex functionals on P 
such that, for some positive numbers c and M,  

for all x C P(% c). Suppose 

~(x) _< Z(x) and Ilxll _~ My(x), 

A:  P(%c) ~ P(7,c) 

is completely continuous and there exists nonnegative numbers h, d, a, b with 0 < d < a such 
that: 

(i) {x E P(%O,a ,a ,b , c )  : c~(x) > a} ¢ 0 and a (Ax )  > a for x E P(7 ,0 ,  a ,a ,b ,c) ;  
(ii) {x c Q(" / , f l ,¢ ,h ,d ,c )  : ~(x) < d} ¢ !~ and f l(Ax) < d fo rx  E Q("/ , /~,¢,h,d,c);  

(iii) a ( Ax )  > a for x E P(% a, a, c) with O(Ax) > b; 
(iv) ~(Ax)  < d t'or x C Q(7, 8, d, c) with ¢ (A x )  < h. 

Then A has at least three fixed-points Xl, x2, x3 E P(7, c) such that 

fl(xl) < d, a < a(x2), and d < ?(x3), with a(x3) < a. 

3.  M U L T I P L E  S Y M M E T R I C  P O S I T I V E  S O L U T I O N S  

In this section, we will impose growth conditions on f which allow us to apply Theorem 2.4 in 
regard to obtaining three symmetric positive solutions of (1.1),(1.2). We will apply Theorem 2.4 
in conjunction with a completely continuous operator whose kernel G(t, s) is the Green's function 
for 

-u" = o, (3.1) 

satisfying (1.2). In particular, 

( t(1 S), 
G(t, s) = 4 

t s (1  - t ) ,  

O < t < s < l ,  
(3.2) 

O < s < t < l .  

We will make use of various properties of G(t, s) which include 

L 
1 t(1 - t) 

a ( t ,  s)  - 2 ' 

f 1/r ( 1 )  /11 ( 1 )  1 
G ,s d s =  G ,s  d s = - -  JO --(i/r) 4r2' 

f l /2  ( 2 )  iI-(l/r) ( 1 )  /"2--4 
G ,s ds = G ,s  ds - 

J1/r ,11/2 16r2 ' 

{ t 2  C( t l ,S )  ds + [ 1 - t ,  a ( t l , S )  ds = ti(t2 - t ,) ,  
Jt 1 Jl--t2 

G((1/2),/") 1 
max 

o<r<l G(t,/") 2t ' 

rain G(tl,/") _ tl 
0<~<1 G(t2, r) t2' 

0 < t <  1, (3.3) 

2 </", (3.4) 

2 </", (3.5) 

1 
0 < tl < t2 _< 2' (3.6) 

O < t  <-1 and (3.7) 
-- 2 ~ 

1 
0 < tl < t2 _< 2" (3.8) 

Next, for 0 < t3 _< 1/2 let 

be endowed with the maximum norm, 

z = c[0,1] 

IiyII = max [y(t)l , 0<t<l 
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and define the cone P c E b y  

P = {Y E E  

y is concave, symmetric, ] 
nonnegative valued on [0,1], / " 
and min y(t) > 2t3ilyll 

te[t3,1-tz] 

Finally, let the nonnegative continuous concave functionals a,  ¢ and the nonnegative continuous 
convex functionals f~, 8, and 7 be defined on the cone P by 

7(Y) = max y(t) = y(t3), 
te[o,t3]o[1-t3,1] 

¢ ( y ) =  min y ( t ) = y ( 1 ) ,  
telZlr,(r-1/r)] 

~ ( y ) =  max y(t) = y ( l ~ , 
tE[llr,(r-1/r)] \ z /  

= min y(t) : y(tl) ,  and 
o~(y) tE[tl,t2]u[1-t2,1-tl] 

~(y) : max y(t) : y(t2), 
tE[tl,t2]U[1--t2,1--tl] 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where tl ,  t2, and r are nonnegative numbers such that 

1 _1 _~t2 .  0 < t l < t 2 _ < ~  and r 

We observe here that,  for each y E P,  

~(y) =y(t l )< y ( 1 )  = Z(y), 

( 1 )  1 1 
llylf = y < ~ y(t~) : ~ ~(y), 

(3.14) 

(3.15) 

and also that  y E P is a solution of (1.1),(1.2) if and only if 

L 
1 

y(t) = G(t, s)f(y(s))  ds, 0 < t < 1. (3.16) 

We now present our result of the paper. 

THEOREM 3.1. Suppose there exists nonnegative numbers a, b, and c such that 

0 < a < b <  c t l  
-- t2 

and suppose f satisfies the following conditions: 

(i) f ( w )  < (8r2/(r 2 - 4))(a - (c/(r2t3(1 - t3)))) for all w E [(2a/r),a], 
(ii) f ( w )  > b/(tl(t2 - t l))  for w e [b, (t2b)/tl], 

(iii) f ( w )  ~ (2c)/(t3(1 - t3)) for w e [0,c/(2t3)]. 

Then, the second-order conjugate boundary value problem (1.1),(1.2) has three symmetric posi- 
tive solutions Yl, Y2, Y3 such that 

max yi(t) <_ c, 
te[O,ts]Lg[1-ta,1] 

min Yl(t) > b, 
tE [t 1,t2]LJ[1--t2, I--ti] 

max y~(t) < a, 
tE[1/r,(r-1)/r ]  

for i  = 1,2,3, 
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and 

rain y3(t) < b, with  max y3(t) > a. 
teltl ,t2lu[1-t2,1-t 11 tEll/r,(r- 1)/r l 

PROOF. Define the completely continuous operator A by 

/0' Au(t) = a(t, s)f(y(s)) ds. 

We seek fixed-points of A which satisfy the conclusion of the theorem. We note first, if y E P, 
then from properties of a(t, s), Ay( t )  > 0 and (Ay ) " ( t )  = - f ( y ( t ) )  <_ O, 0 < t < 1, Ay( t3 )  >_ 

2 t3Ay(1 /2 ) ,  and Ay( t )  = Ay(1  - t), 0 <_ t <_ 1/2, and consequently, A y  E P,  that  is, A : P --+ P. 
Also, for all y c P, by (3.14), we have 

~(y) ,__-" ~(y) 
and, by (3.15), we have 

1 
Ilyll-- ~ 7(Y). 

If y e P(7,  c), then IlYl] <: 1/(2t3) h'(Y) < c/(2t3) and by assumption (iii) we have, 

J0' "~(Ay) = m a x  C( t ,  s ) f ( y ( s ) )  ds te[O,ta]u[1-ta,l] 

/o' = a(t3, s)f(y(s)) ds 

< (t3 (1_2____ C 1 

-~-C. 

Therefore, A : P(',/, c) ~ P(% c). It is immediate that  

{ y c P  (7,0, a,b, bt-Atl 'c) :a(y) > b}¢0 and {y ~ O (7, Z,~,~,a,c) :3(y) < a}¢0. 
In the following claims, we verify the remaining conditions of the generalized Leggett-Williams 
fixed-point theorem, Theorem 2.4. 

CLAIM 1. I f y  E Q(%l~ ,a , c )  with ~b(Ay) < (2a) / r  then/3(Ay) < a. 

/01 l~(Ay) = max G(t,  s ) f ( y ( s ) )  ds 
t~[1/~-,(~- 1)/d 

= f./~ c f(y(~)) ds 

~01 a(l/2, S) ( 1 )  
= G ( 1 / r , s )  G ,s  f ( y ( s ) ) d s  

/ol r G , s  f ( y ( s ) ) d s  <_-~ 
r 

= -~ ¢ ( A y )  < a. 

CLAIM 2. If y C Q(% 1~, ~,  (2a)/r ,  a, c), then [J(Ay) < a. 

]21 3 ( A y )  = max  G(t ,  s ) f ( y ( s ) )  ds tE[1/r,(r--1)/r] 

/o' = G , s  f ( y ( s ) ) d s  

(1) (1) 
= 2 G ,s  f ( y ( s ) )  ds ÷ 2 G f ( y ( s ) )  ds dO J1/r ~,S 

< r2t3(1-t3) ÷ \ r 2 - 4 )  a r2t3(1 - - t3 )  \ 8r 2 ] =a.  



6 R . I .  AVERY AND J. HENDERSON 

CLAIM 3. If y • P(7, a, b, c) with 8(Ay) > (bt2)/tl, then ~(Ay) > b. 

f0 
1 

a(Ay) = min G(t, s)f(y(s)) ds 
tE[tl ,t2]U[1-t~,l-tl] 

f = a ( t l ,  s)  f ( y ( s ) )  ds 

£01 G(tl, S) 
= G(t2, s) G(t2, s)f(y(s)) ds 

> t l  ~01 
- t2 a(t2, s)f(y(s)) ds 

tl O(Ay) > b. 
t2 

CLAIM 4. If y • P(7, 8, c~, b, (bt2)/tl, c), then (~(Ay) > b. 

f0 
1 

~(Ay) = min G(t, s)f(y(s)) ds 
$6[$I ,t2]U[l--t2,1--tl] 

f = a(h,  s)/(y(s)) as 

f > a(h,  s)/(y(s)) ds + f l - t ,  a(h,  s)/(y(s)) as 
J l--t2 

b t: G(tl, s) ds 
--~ ( t l ( t 2 " - - t l ) )  / i  e(tl,S)dsq-(tl(t2b-_._tl)) / I ~ : 1  

--(tl(t2 b'- tl))(tl [(I--tl)2. -- (1--t2)2]) W Itl(t2.b._ tl))I t l  (t222 "-- t21) 1 
=b. 

Therefore, the hypotheses of the generalized Leggett-Williams fixed-point theorem are satis- 
fied and there exist three positive solutions Yl, Y2,Y3 E P(7, c) for the second-order conjugate 
boundary value problem (1.1),(1.2) such that 

a(yl)  > b, 

/~(y2) < a, 

and 
c~(y3) < b, with/3(y3)  > a. 

REMARK. We have chosen to  pe r fo rm the  analysis  when f is au tonomous .  However,  if f -- f(t, y) 
and in addit ion,  for each fixed y, f(t, y) is symmet r i c  abou t  t = 1/2, then  an analogous t heo rem 
would be valid wi th  respect  to  the  same  cone P .  
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