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Abstract—For the second-order boundary value problem, 3"’ + f(y) =0,0<t <1, y(0) =0 =
y(1), where f : R — [0, 0o), growth conditions are imposed on f which yield the existence of at least
three symmetric positive solutions. © 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, we are concerned with the existence of multiple solutions for the second-order
boundary value problem

y'+ fly) =0, 0<t<1, (1.1)
y(0) = 0 =y(1), (1.2)

where f : R — [0, 00) is continuous. A solution y € C?[0, 1] of (1.1),(1.2) is both nonnegative
and concave on [0, 1]. We will impose growth conditions on f which ensure the existence of at
least three symmetric positive solutions of (1.1),(1.2).

There is much current attention focused on questions of positive solutions of boundary value
problems for ordinary differential equations, as well as for for finite difference equations; see
[1-11], to name a few. Much of this interest is due to the applicability of certain Krasnosel’skii
fixed-point theorems or the Leggett-Williams multiple fixed-point theorem, or a synthesis of both
to obtain positive solutions or multiple positive solutions which lie in a cone. The recent book
by Agarwal, Wong and O’Regan [12] gives a good overview for much of the work which has been
done and the methods used.

In [13], Avery imposed conditions on f to yeild at least three positive solutions to (1.1),(1.2)
applying the Leggett-Williams fixed-point theorem. In [14], Henderson and Thompson improved
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these results by using the symmetry of the associated Green’s function. Our results extend these
results by applying a generalization of the Leggett-Williams fixed-point theorem [15].

In Section 2, we provide some background results, and we state the generalization of the
Leggett-Williams fixed-point theorem. Then, in Section 3, we impose growth conditions on f
which allow us to apply the generalization of the Leggett-Williams fixed-point theorem in ob-
taining three symmetric positive solutions of (1.1),(1.2).

2. SOME BACKGROUND DEFINITIONS AND RESULTS

In this section, we provide some background material from the theory of cones in Banach
spaces, in order that this paper be self-contained. We also state a fixed-point theorem which is a
genereralization of the fixed-point theorem of Leggett and Williams for multiple fixed-points of
a cone preserving operator.

DEFINITION 2.1. Let E be a real Banach space. A nonempty closed convex set P C E is called
a cone If it satisfies the following two conditions:
(i) z € P, A 2 0 implies Az € P;
(ii) z € P, —z € P impliesz = 0.
Every cone P C E induces an ordering in E given by

z <y, if and only ify —x € P.

DEFINITION 2.2. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

DEFINITION 2.3. A map a is said to be a nonnegative continuous concave functional on a cone P

of a real Banach space E if
a: P —[0,00)

is continuous and

a(tz + (1 - t)y) 2 ta(z) + (1 — t)a(y),
for all z,y € P and t € [0,1]. Similarly, we say the map (3 is a nonnegative continuous convex
functional on a cone P of a real Banach space E if

B: P —[0,00)

is continuous and

Btz + (1 - t)y) < tB(z) + (1 - t)B(y),
for all z,y € P and t € [0, 1].

Let vy, 5, and # be nonnegative continuous convex functionals on P and a, 1 be nonnegative
continuous concave functionals on P. Then for nonnegative real numbers &, a, b, d, and ¢ we
define the following convex sets:

P(y,0) ={z € P:1(z) < o},
P(v,a,a,¢) ={x € P:a <a(z), y(z) <c},
Q(y,B,d,c) ={z € P:f(z) < d, v(z) <c},
P(v,8,0,a,b,c)={xr € P:a<a(z), 8(z) <b ~(z)<c},
and
QY. B,%,h,d,c)y={z € P:h <y(z), B(z) <d, v(z)<c}
In obtaining multiple symmetric positive solutions of (1.1),(1.2) the following fixed-point theo-

rem due to Avery [15] which is a generalization of the Leggett-Williams fixed-point theorem will
be fundamental.
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THEOREM 2.4. Let P be a cone in a real Banach space E. Let o and v be nonnegative continuous
concave functionals on P and let v, 3, and # be nonnegative continuous convex functionals on P
such that, for some positive numbers ¢ and M,

a(z) <B(z) and |z| < Mr(z),

for all x € P(v,c). Suppose

A: P(v,¢) = P(v,¢)

is completely continuous and there exists nonnegative numbers h,d,a,b with 0 < d < a such
that:
(i) {z € P(7,8,ca,a,b,¢) : a(z) > a} # 0 and a(Az) > a for z € P(v,6,a,a,b,¢);
(ii) {z € Q(v,B8,%,h,d,c): B(z) < d} # 0 and B(Az) < d for z € Q(~, B,%, h,d, c);
(iii) a(Az) > a for x € P(y, o, a,c¢) with 8(Azx) > b;
(iv) B(Azx) < d for x € Q(v,B,d,c) with ¥(Azx) < h.

Then A has at least three fixed-points z1,z2,x3 € P(v,c) such that

B(z1) <d, a<afzg), and d< f(z3), with a(z3) < a.

3. MULTIPLE SYMMETRIC POSITIVE SOLUTIONS

In this section, we will impose growth conditions on f which allow us to apply Theorem 2.4 in
regard to obtaining three symmetric positive solutions of (1.1),(1.2). We will apply Theorem 2.4
in conjunction with a completely continuous operator whose kernel G(t, s) is the Green’s function
for

-y’ =0, (3.1)

satisfying (1.2). In particular,

t(l—s), 0<t<s<1,
G(t,s) = (3.2)
s(l1—t), 0<s<t<l.
We will make use of various properties of G(t, s) which include
t t(1 —t)
/ G(t,s) = 5 0<t<l, (3.3)
0
Lo e/, () ez 60
—,8) ds= —,8) ds = —, 2<r, 3.4
0 2 1-(1/r)  \2 4r?
"1/2 1 1-(1/7) 1 2_ ¢4
/ G(—,s) ds=/ G<—,s) ds =, 2<r, (3.5)
1/r 2 1/2 2 16r
123 1-t; 1
G(tl,s) ds +/ G(tl,s) ds =t1(ty — t1), O0<t; <ty < 5, (3.6)
i1 1-to
G((1/2),7)y 1 1
—————n | | — < -
Org?%cl Gl 57" 0<t< 5 and (3.7)
G(t 1
(1,7”)_t_1~ 0<t) <ty < = (3.8)

1 - L]
Orgnrgl G(tz,’l‘) to 2

Next, for 0 < t3 < 1/2 let
E =Cjo,1]

be endowed with the maximum norm,

llyll = ax, ly(t)],
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and define the cone P C E by

y is concave, symmetric,
P = { y € E| nonnegative valued on [0,1],

and min t) > 2t
i (02 2]

Finally, let the nonnegative continuous concave functionals a, 1’ and the nonnegative continuous

convex functionals 3, 8, and v be defined on the cone P by

Y(y) = et I y(t) = y(ts),
, (1
P(y) = e/ TR Y =Y <7_) ;
1
Bly) = o max s y(t) =y (§> :
a(y) = tE[tl,tz]LrJI[I}I}tg,l—t;]y(t) =y(t1), and
0(y) = (t) = y(t2),

max Y
tE[tl,tQ]U[I—tg,l—h]
where t;, t2, and r are nonnegative numbers such that

1 1
O0<ti <ty <= and ;Stg.

N

We observe here that, for each y € P,
1
ats) =v() < v (3 ) =)
1 1 1
= —_ < — = —
1= (3) < 5 4) = 52
and also that y € P is a solution of (1.1),(1.2) if and only if

1
y(t) = /0 G(t,5)f(y(s)ds, O<t<L.

We now present our result of the paper.

THEOREM 3.1. Suppose there exists nonnegative numbers a, b, and ¢ such that

ct
0<a<b< =2,
ta

and suppose f satisfies the following conditions:

(i) flw) < (8r%/(r? — 4))(a — (c/(r?*t3(1 — t3)))) for all w € [(2a/7),a),

(it) f(w) > b/(t1(t2 —t1)) for w € [b, (t2b)/t1],
(iii) f(w) <(2c)/(ta(1 —t3)) for w € [0, c/(2t3)].

(3.9)
(3.10)

(3.11)
(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

Then, the second-order conjugate boundary value problem (1.1),(1.2) has three symmetric posi-

tive solutions vy, y2, y3 such that

max
tel0,t3)ull—ta,1]

min t) > b,
te[thtz]U[l—tz,l—il]yl( )

t) < a,
te[l/rrfl(?-‘)—cl)/r]w() @

vi(t) < ¢, fori=1,2,3,
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and

min 3(t) < b, with

max t) > a.
te[tl,tzlu[l—tz,l—illy te{t/r,(r-1)/r] y3( )

ProoF. Define the completely continuous operator A by

1
Ay(t) = / G(t, s)f (y(s)) ds.

We seek fixed-points of A which satisfy the conclusion of the theorem. We note first, if y € P,

then from properties of G(t,s), Ay(t) > 0 and (Ay)"(t) = —f(y(t)) < 0,0 <t <1, Ay(ts) >

2t3Ay(1/2), and Ay(t) = Ay(l —t), 0 <t < 1/2, and consequently, Ay € P, that is, A: P — P.
Also, for all y € P, by (3.14), we have

and, by (3.15), we have

1
< — .
i)
If y € P(v,c), then |lyll < 1/(2t3) v(y) < ¢/(2t3) and by assumption (iii) we have,
1
Ay) = t
)= omax G ) ds

1
- / Gts, s) f(u(s)) ds

<t3(12—it3)> /01 G(ts, s)ds

C.

IN

I

Therefore, A : P(v,c) — P(v,c). It is immediate that

{ye P('y,l?,a,b,btt—f,c) : afy) >b} #0 and {yEQ (W,ﬂ,w,QTa,a,c> : B(y) <a} £ 0.

In the following claims, we verify the remaining conditions of the generalized Leggett-Williams
fixed-point theorem, Theorem 2.4.

Cramm 1. If y € Q(v, 8, a,c¢) with ¢(Ay) < (2a)/r then B(Ay) < a.

1
B(Ay)=  max /0 G(t, ) f(y(s)) ds

= ma.
te(l/r,(r—1)/7]

= [ & (3.5) sttsn s
/01 G 6 (18] Fluteh ds

[ o (2s) stutonas

(Ay) < a.
Cram 2. Ify € Q(v, 3,v,(2a)/7,a,c), then 8(Ay) < a.

1
sy = max [ Gl fats) ds

= [ 6(35) sn as
2 [ e (és) fu)ds+2 [ // G (%) F(y(s))ds

< c N 8r2 c r? —4
a— — = aq.
r2t3(1 — t3) r2 —4 72t3(1 — t3) 8r2

i

<

[N R B N
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Cram 3. If y € P(y,a,b,c) with 8(Ay) > (bt2)/t1, then a(Ay) > b.

1
o(dy) = . min [ Gt o)) ds

1
= /0 G (t1,8) f(y(s)) ds

1 Gty s)
- /0 G(t;s) G(ts, 5)f(y(s)) ds

1
> 2 /0 Glt2, 5)f (y(s)) ds

— 1 giay) > o,
to

CrLamM 4. If y € P(v,8,a,b, (bta)/t1,c), then a(Ay) > b.

a(Ay)

1
min / G(t,s)f(y(s)) ds
t€[t1,t2]U[1—t2,1-t1] Jo

1
/0 Gty )£ (y(s)) ds
ta 1-ty

> [ Gy, ) flu(s)) ds + / G(tr, )£ (y(s)) ds

t1 1—tg

() [ o )

b t1 [(1 - t1)? = (1 —t2)?] b t1 (83 - ¢1)
(vem) ( 2 )* (7=m) < 2 )

v

Therefore, the hypotheses of the generalized Leggett-Williams fixed-point theorem are satis-
fied and there exist three positive solutions y1,y2,ys € P(%,c) for the second-order conjugate
boundary value problem (1.1),(1.2) such that

and

a(yl) > bw

/B(y2) <a,

a(ys) < b, with B(ys3) > a.

REMARK. We have chosen to perform the analysis when f is autonomous. However, if f = f(¢,vy)
and in addition, for each fixed y, f(t,y) is symmetric about ¢ = 1/2, then an analogous theorem
would be valid with respect to the same cone P.
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