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a b s t r a c t

A homomorphism of a graph G1 = (V1, E1) to a graph G2 = (V2, E2) is a mapping from
the vertex set V1 of G1 to the vertex set V2 of G2 which preserves edges. In this paper we
provide an algorithm to determine the number of homomorphisms from an arbitrary finite
undirected path to another arbitrary finite undirected path.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We use in our paper standard notations and terminology from graph theory, see [3]. Let G1 = (V1, E1) and G2 = (V2, E2)
be simple undirected graphs. A graph homomorphism (or homomorphism) of the graph G1 into the graph G2 is a mapping
f : V1 → V2 (we sometimes write f : G1 → G2) from the vertex set V1 into the vertex set V2 which preserves edges, i. e.
{x, y} ∈ E1 implies {f (x), f (y)} ∈ E2, for all x, y ∈ V1. We denote by Hom(G1,G2), the set of all homomorphisms from the
graph G1 into the graph G2.

A path of length n, Pn, is a graph with the vertex set Vn = {0, 1, . . . , n} and edge set En = {{x, y} ⊆ Vn : |x − y| = 1}. By
P∞ we denote an infinite path defined on the set of integers Z in which {x, y} is an edge iff |x− y| = 1. Let Homi

j(Pm, Pn) and
Homi

j(Pm, P∞) be the set of homomorphisms f from Pm to Pn or P∞, respectively, which map 0 to i and m to j (that is f (0) = i
and f (m) = j, where i and j are integers). One may say that these (path) homomorphisms start with i and end with j. We also
write Homi(Pm, Pn) and Homi(Pm, P∞) for the set of those homomorphisms which start with i.

Our aim is the structure analysis of graph homomorphisms, see [2] and [4]. The present paper is a sequel of [1]. We
provide recursive formulas for the size of Homi

j(Pm, Pn) and Homi
j(Pm, P∞). These can be used to design an algorithm for

computing |Homi
j(Pm, Pn)| in O (mn) time using dynamic programming, see [5]. Further, we show that the formulas yield

that |Homi
j(Pm, P∞)| =

(
m

m−i+j
2

)
and |Homi(Pm, P∞)| = 2m.

Clearly,

Homi(Pm, Pn) =
n⋃

j=0
Homi

j(Pm, Pn) Hom(Pm, Pn) =
n⋃

i=0
Homi(Pm, Pn).

Since the sets {Homi
j(Pm, Pn)}i,j are pairwise disjoint, we can compute the number of homomorphisms Hom(Pm, Pn), using

the following
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Proposition 1.1.

|Hom(Pm, Pn)| =
n∑

i=0
|Homi(Pm, Pn)| =

n∑
i=0

n∑
j=0
|Homi

j(Pm, Pn)|

where the symbol |A| stands for the cardinality of (i.e. the number of elements in) a (finite) set A.

2. Recursive formulas

In this section we compute the numbers |Hom(Pm, P∞)| and give recursive formulas for |Hom(Pm, Pn)| with arbitrary
(m, n)’s. It is clear that

Proposition 2.1. For each m ∈ N and i, j ∈ Z

|Homi
j(P0, P∞)| =

{
1 if i = j
0 otherwise

|Homi
j(Pm+1, P∞)| = |Homi

j−1(Pm, P∞)| + |Homi
j+1(Pm, P∞)|.

Using the above recursive formulas we easily get the following table with the numbers |Hom0
j (Pm, P∞)| for m ≤ 7:

Pm \ j -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

2 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0

3 0 0 0 0 1 0 3 0 3 0 1 0 0 0 0

4 0 0 0 1 0 4 0 6 0 4 0 1 0 0 0

5 0 0 1 0 5 0 10 0 10 0 5 0 1 0 0

6 0 1 0 6 0 15 0 20 0 15 0 6 0 1 0
7 1 0 7 0 21 0 35 0 35 0 21 0 7 0 1
or

(
7
0
)

0
(

7
1
)

0
(

7
2
)

0
(

7
3
)

0
(

7
4
)

0
(

7
5
)

0
(

7
6
)

0
(

7
7
)

One should immediately recognize there Pascal’s Triangle by use of which one can compute Newton’s symbols

(
m

r

)
=


m!

r!(m− r)!
if r = 0, 1, . . . ,m

0 otherwise.

Thus, we easily get to the following general conclusion

Theorem 2.2. For each m ∈ N and i, j ∈ Z,

|Homi
j(Pm, P∞)| =

(
m

m−i+j
2

)
and |Homi(Pm, P∞)| = 2m.

Proof. We use mathematical induction. Note that |Homi
j(P0, P∞)| =

(
0
j−i
2

)
. Then, by Proposition 2.1, we also get

|Homi
j(Pm+1, P∞)| = |Homi

j−1(Pm, P∞)| + |Homi
j+1(Pm, P∞)|

=

(
m

m−i+j−1
2

)
+

(
m

m−i+j+1
2

)
=

(
m+ 1
m+1−i+j

2

)
.

Moreover,

|Homi(Pm, P∞)| =
∞∑

j=−∞

|Homi
j(Pm, P∞)| =

m∑
r=0

(
m

r

)
= 2m �

The computation of the numbers |Homi
j(Pm, Pn)| is not so easy. Clearly, without problems we get the following recursive

formulas for them.
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Proposition 2.3. For each m, n ∈ N and i, j ∈ Pn

|Homi
j(P0, Pn)| =

{
1 if i = j
0 otherwise .

|Homi
j(Pm+1, Pn)| =


|Homi

1(Pm, Pn)|, j = 0
|Homi

j−1(Pm, Pn)| + |Homi
j+1(Pm, Pn)|, 0 < j < n

|Homi
n−1(Pm, Pn)|, j = n.

They are sufficient for any practical computation of the numbers. In particular, we get the following table with
|Hom0

j (Pm, P3)| for m ≤ 7.

Example 2.4.

Pm \ j 0 1 2 3
0 1 0 0 0
1 0 1 0 0
2 1 0 1 0
3 0 2 0 1
4 2 0 3 0
5 0 5 0 3
6 5 0 8 0
7 0 13 0 8

There remains, however, to unwind the recursive formulas to get an explicit presentation of |Hom(Pm, Pn)|.

3. The number of path homomorphisms

In this section we define an explicit formula for the computation of |Hom(Pm, Pn)|, for arbitrary numbers m and n, by a
combinatorial argument. The main step in our reasoning is the following

Theorem 3.1. If 0 ≤ i ≤ n and 0 ≤ j ≤ n, then

|Homi
j(Pm, Pn)| =

m∑
t=−m

(
|Homi

2t(n+2)+j(Pm, P∞)| − |Homi
2t(n+2)−2−j(Pm, P∞)|

)
.

Proof. Let i, j ∈ Pn. For each f ∈ Homi
j(Pm, P∞), we obviously have

f ∈ Homi
j(Pm, Pn)⇔ ∀x (f (x) 6∈ {−1, n+ 1}) .

Thus, to compute |Homi
j(Pm, Pn)| it is sufficient to know |Homi

j(Pm, P∞)| and subtract from this the number of those path
homomorphisms which take as (one of) its values -1 or n + 1. Note that if m is large relatively to n then there may exist
such homomorphisms which take both numbers as their values. To make these two types of homomorphisms disjoint, let
us define

Lij =
{
f ∈ Homi

j(Pm, P∞) : ∃x0

[
f (x0) = −1 ∧ ∀x>x0 (0 ≤ f (x) ≤ n)

]}
Ri
j =

{
f ∈ Homi

j(Pm, P∞) : ∃x0

[
f (x0) = n+ 1 ∧ ∀x>x0 (0 ≤ f (x) ≤ n)

]}
.

Then it is clear that

Homi
j(Pm, P∞) = Homi

j(Pm, Pn) ∪ Lij ∪ Ri
j (1)

and the three sets on the right-hand side of the equation are disjoint. We need to compute |Ri
j| and |Lij|. To perform this task

we need, however, a recursive formula. So, for each integer t and each j′ such that t · (n+ 2) ≤ j′ ≤ t · (n+ 2)+ n, we define
subsets of Homi

j′(Pm, P∞) (assuming that f ∈ Homi
j′(Pm, P∞))

Lij′(t) =
{
f : ∃x0

[
f (x0) = t · (n+ 2)− 1 ∧ ∀x>x0 (0 ≤ f (x)− t · (n+ 2) ≤ n)

]}
Ri
j′(t) =

{
f : ∃x0

[
f (x0) = t · (n+ 2)+ n+ 1 ∧ ∀x>x0 (0 ≤ f (x)− t · (n+ 2) ≤ n)

]}
.

Note that Ri
j(0) = Ri

j and Lij(0) = Lij. Let us prove

|Ri
j′(t)| = |L

i
2[t·(n+2)+n+1]−j′(t + 1)| for each t ≥ 0. (2)
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Let f ∈ Hom(Pm, P∞) and f−1({t · (n + 2) + n + 1}) 6= ∅. Assume that xf is the greatest number in {0, . . . ,m} such that
f (xf ) = t · (n+ 2)+ n+ 1. We define T(f ) ∈ Hom(Pm, P∞) setting

T(f )(x) =
{
f (x) if x ≤ xf
2[t · (n+ 2)+ n+ 1] − f (x) if x ≥ xf .

(3)

We may assume that T(f ) = f if f−1({t · (n + 2) + n + 1}) = ∅. Thus, we define a transformation T on the set of path
homomorphisms Hom(Pm, P∞). Geometrically, T(f ) results from f by reflecting its final part (for x > xf ) along the axis
y = t · (n+ 2)+ n+ 1: p t · (n+ 2)+ n+ 1 pp t · (n+ 2)− 1

p f (xf )

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@p

�
�
�

�
�
�

�
�
�p f (m) = j′

f

f T(f )

2[t(n+ 2)+ n+ 1] − j′

One should easily notice that TT(f ) = f and hence the transformation T is one-to-one. If one restricts the transformation
to the set Ri

j′(t), assuming that 0 ≤ j′ − t · (n+ 2) ≤ n, one gets a one-to-one correspondence

T : Ri
j′(t)↔ Li2[t·(n+2)+n+1]−j′(t + 1).

Indeed, if f ∈ Ri
j′(t), then f (xf ) = t · (n + 2) + n + 1 and 0 ≤ f (x) − t · (n + 2) ≤ n for each x > xf . Thus, by (3), we get

T(f )(xf ) = (t + 1) · (n+ 2)− 1 and

0 ≤ T(f )(x)− (t + 1) · (n+ 2) ≤ n for each x > xf

which means that T(f ) ∈ Li2[t·(n+2)+n+1]−j′(t + 1). On the other hand, if we have g ∈ Li2[t·(n+2)+n+1]−j′(t + 1), then T(g) ∈ Ri
j′(t)

and hence by TT(g) = g one concludes that T establishes a one-to-one correspondence between elements of the set Ri
j′(t)

and Li2[t·(n+2)+n+1]−j′(t + 1). This completes our proof of (2).
Since 0 ≤ i ≤ n, then for each t 6= 0 and t · (n+ 2) ≤ j′ ≤ t · (n+ 2)+ n, we have

Homi
j′(Pm, P∞) = Lij′(t) ∪ Ri

j′(t) (4)

and the sets on the right-hand side of the equation are disjoint. Now, by (2), we get |Ri
j| = |R

i
j(0)| = |Li2n+2−j(1)|. Hence, using

(4),

|Ri
j| = |L

i
2n+2−j(1)| = Homi

2n+2−j(Pm, P∞)− |Ri
2n+2−j(1)|.

Again, using (2), we get |Ri
2n+2−j(1)| = |Li2[(n+2)+n+1]−2n−2+j(2)| = |Li2(n+2)+j(2)|, and hence, by (4),

|Ri
j| = Homi

2n+2−j(Pm, P∞)− |Homi
2(n+2)+j(Pm, P∞)| + |Ri

2(n+2)+j(2)|.

Repeating the above argument at infinity, we obtain (easy induction steps are omitted)

|Ri
j| = |Homi

2n+2−j(Pm, P∞)| − |Homi
2(n+2)+j(Pm, P∞)| + |Homi

4n+6−j(Pm, P∞)|

− |Homi
4(n+2)+j(Pm, P∞)| + |Homi

6n+10−j(Pm, P∞)| − |Homi
6(n+2)+j(Pm, P∞)| + · · · .

In a similar way one can compute |Lij|. First, we get (by symmetry)

|Lij′(t)| = |R
i
2[t·(n+2)−1]−j′(t − 1)|

for each t ≤ 0 and t · (n+ 2) ≤ j′ ≤ t · (n+ 2)+ n. Then, by (4),

|Lij| = |Homi
−2−j(Pm, P∞)| − |Homi

−2(n+2)+j(Pm, P∞)| + |Homi
−2n−6−j(Pm, P∞)|

− |Homi
−4(n+2)+j(Pm, P∞)| + |Homi

−4n−10−j(Pm, P∞)| − |Homi
−6(n+2)+j(Pm, P∞)| + · · · .
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Thus, by (1),

|Homi
j(Pm, Pn)| =

∞∑
t=−∞

(
|Homi

2t(n+2)+j(Pm, P∞)| − |Homi
2t(n+2)−2−j(Pm, P∞)|

)
.

To complete our proof it suffices to notice that the above sum is finite as it contains only finitely many non-zero elements.
The very rough bound is |t| ≤ m as |f (m)| ≤ i + m ≤ m + n for each f ∈ Homi(Pm, P∞), and hence Homi

2t(n+2)+j(Pm, P∞) =

Homi
2t(n+2)−2−j(Pm, P∞) = ∅ if |t| > m. �

Since, for each integer t,
∑n

j=0 |Homi
2t(n+2)−2−j| =

∑n
j=0 |Homi

(2t−1)(n+2)+j|, by the above theorem and Proposition 1.1, we
obtain

Corollary 3.2. If 0 ≤ i ≤ n, then

|Homi(Pm, Pn)| =
m∑

t=−m

(−1)t
n∑

j=0
|Homi

t·(n+2)+j(Pm, P∞)|.

The advantage to be gained from our characterization of |Homi(Pm, Pn)| is that the computation of the numbers
|Homi

j(Pm, P∞)| is easy. It suffices to match the numbers |Homi
j(Pm, P∞)| with the corresponding Newton’s symbols, see

Theorem 2.2. We obviously have

Theorem 3.3. 1. If m− i is even, then

|Homi(Pm, Pn)| =
m∑

t=−m

(−1)t
b
n
2 c∑

u=0

(
m

m−i
2 + u+ d (n+2)t

2 e

)
.

2. If m− i is odd, then

|Homi(Pm, Pn)| =
m∑

t=−m

(−1)t
d
n
2 e∑

u=1

(
m

b
m−i

2 c + u+ b (n+2)t
2 c

)
.

As it has been already mentioned one can reduce the number of elements in the first sum, if one improves the estimation
|t| ≤ m. It suffices to take into account the obvious fact that if t is big enough then Newton’s symbols occurring in the formula
take the value 0. However, if there are no limits on the number m then the ‘double-sum’ presentation of |Homi(Pm, Pn)| seems
to be unavoidable.

The situation changes if m is restricted with respect to n. The above formula reduces, for instance, if we count the number
of endomorphisms on Pn, that is End(Pn) = Hom(Pn, Pn). Since m = n in this case, we get |t| ≤ 1 and hence

Corollary 3.4. If 0 ≤ i ≤ n, then

|Endi(Pn)| =
n−d i

2 e∑
u=d n−i2 e

(
n

u

)
−

b
n−i

2 c−1∑
u=0

(
n

u

)
−

n∑
u=n−b i

2 c+1

(
n

u

)
.
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