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Abstract

This paper is concerned with the existence and uniqueness analysis of global classical
solutions of a diffusive quantum evolution equation with nonlinear coupling to the Poisson
equation. The main technical difficulty in the existence proof is to show that the quantum
Fokker–Planck term is a semigroup-generator in a weightedL2-space. The potential term
is then a Lipschitz perturbation of it.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The object of this paper is the analysis of the coupled Wigner–Poisson–
Fokker–Planck (WPFP) system in one dimension with periodic boundary condi-
tions in the spatial direction. We focus on the existence and uniqueness of global-
in-time solutions to this system.
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Wigner functions provide a kinetic description of quantum mechanics (cf. [14])
and have recently become a valuable modeling and simulation tool in fields
like semiconductor device modeling (cf. [9] and references therein), quantum
Brownian motion, and quantum optics [4,6]. The real-valued Wigner function
w(x, v, t) is a probabilistic quasi-distribution function in the position–velocity
(x, v) phase space for the considered quantum system at timet .

Its temporal evolution is governed by the Wigner–Fokker–Planck (WFP)
equation

wt + vwx +Θ[V ]w = β(vw)v + σwvv + 2γwxv + αwxx, t > 0, (1.1)

on the phase space slabx ∈ (0,2π), v ∈ R with periodic boundary conditions inx

w(0, v, t) = w(2π,v, t),

and the initial condition

w(x, v, t = 0)= wI (x, v).

With a vanishing right-hand side Eq. (1.1) would be the (diffusion-free) Wigner
equation. It describes the reversible evolution of a quantum system under the
action of a (possibly time-dependent) electrostatic potentialV = V (x, t). Its
effect enters in the equation via the pseudo-differential operatorΘ[V ]:

(
Θ[V ]w)

(x, v, t) = i

[
V

(
x + 1

2i
∇v, t

)
− V

(
x − 1

2i
∇v, t

)]
w(x, v, t)

= i√
2π

∫
R

δV (x, η, t)Fvw(x,η, t)eivη dη

= i

2π

∫
R

∫
R

δV (x, η, t)w(x, v′, t)ei(v−v′)η dv′ dη, (1.2)

whereδV (x, η, t) = V (x + η/2, t)−V (x − η/2, t) andFvw denotes the Fourier
transform ofw with respect tov:

Fvw(x,η, t) = 1√
2π

∫
R

w(x, v′, t)e−iv′η dv′.

For simplicity of the notation we have here set the Planck constant, particle mass
and charge equal to unity.

The right-hand side of (1.1) is a Fokker–Planck type model for the nonre-
versible interaction of this quantum system with an environment, e.g., the inter-
action of electrons with a phonon bath (cf. [7,13]). In (1.1),β � 0 is the friction
parameter and the parametersα, γ � 0, σ > 0 constitute the phase-space dif-
fusion matrix of the system. In the kinetic Fokker–Planck equation of classical
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mechanics (cf. [5,12]) one would haveα = γ = 0. For the WFP equation (1.1) we
have to assume(

α γ + i
4β

γ − i
4β σ

)
� 0,

which guarantees that the system isquantum mechanically correct. More
precisely, it guarantees that the corresponding von Neumann equation is in
Lindblad form and that the density matrix of the quantum system stays a positive
operator under temporal evolution (see [2] for details).

In the sequel we shall hence assume

ασ � γ 2 + β2

16
. (1.3)

However, the subsequent mathematical analysis will even hold for

ασ � γ 2.

The WFP equation (1.1) is self-consistently coupled with the Poisson equation
for the (real-valued) potentialV [w](x, t):

Vxx = n[w] −D, x ∈ (x,2π), t > 0,

V (0, t) = V (2π, t),

with the particle density

n[w](x, t) =
∫
R

w(x, v, t) dv. (1.4)

D = D(x) denotes the density of some fixed charges (“doping profile” in the
context of semiconductor modeling), which is assumed to be given.

Mathematical properties of the Wigner–Poisson equation and dissipative
Wigner systems have been intensively studied in the last decade (see [1,9] and
references therein). The (friction-free) WPFP equation in 3 dimensions was first
analyzed in [2], where unique local-in-time solutions were constructed. The
main analytical challenge of Wigner–Poisson systems lies in controlling the
particle density (1.4) in appropriateLp-spaces. Usually this is achieved by either
reformulating the Wigner equation as a Schrödinger system or a von Neumann
equation [1,9] or by exploiting the dissipative structure of the system [2]. The
1-dimensional Wigner–Poisson equation, however, allows for a “direct” analysis
(cf. [3, §5]). Hence our interest in this analytical framework.
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2. Existence and uniqueness of global-in-time solution

In this section we shall establish existence and uniqueness of global mild
and classical solutions to the WPFP system (1.1)–(1.4). This system will be
considered as an evolution problem in the weighted (real-valued)L2-space

X = L2((0,2π)× R; (1+ v2) dx dv
)
,

endowed with the scalar product

〈u,w〉X =
2π∫
0

∫
R

uw(1+ v2) dv dx.

This choice of the spaceX allows to define the particle densityn[w] of a Wigner
functionw ∈ X: a simple estimate (using Cauchy–Schwartz) yields∥∥n[w]∥∥

L2(0,2π)
� C‖w‖X. (2.1)

Here and in the sequelC denotes generic, but not necessarily equal constants.
We shall use semigroup techniques to prove existence and uniqueness of a

solution to the semilinear WPFP system (1.1)–(1.4). To this end the quadratically
nonlinear potential termΘ[V ]w will be considered as a bounded perturbation
in the kinetic Fokker–Planck equationwt + vwx = β(vw)v + σwvv + 2γwxv +
αwxx .

We first consider the unbounded linear operatorA :D(A)→ X,

Au = −v∂xu+ β∂v(vu) + σ∂2
vu+ 2γ ∂v∂xu+ α∂2

xu, (2.2)

defined on

D(A) = {
u ∈ X | vux,uvv, vuv,uxx, uxv ∈ X;

u(0, v) = u(2π,v), ux(0, v) = ux(2π,v) ∀v ∈ R
}
.

Clearly, the restriction (to(0,2π)×R) of C∞(R2)-functions that are 2π -periodic
in x and have a compact support inv are included inD(A). Hence,D(A) is dense
in X. A simple calculation shows that foru ∈ D(A), uv is also inX.

A straightforward calculation using the periodicity inx and integrations by
part yields

〈Au,w〉X = 〈u,A∗
1w〉X + 〈u,A∗

2w〉X, ∀u,w ∈ D(A),

with

A∗
1w = v∂xw − βv∂vw + σ∂2

vw + 2γ ∂v∂xw + α∂2
xw,

A∗
2w = 1

1+ v2

[
2σ(w + 2v∂vw) − 2βv2w + 4γ vwx

]
.

Hence,A∗|D(A)—the restriction of the adjoint of the operatorA to D(A)—is
given byA∗w = A∗

1w + A∗
2w, w ∈ D(A). A∗ is densely defined onD(A∗) ⊇
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D(A), and henceA is a closable operator (cf. [11, Theorem VIII.1.b]). Its closure
A satisfies(A)∗ = A∗ (cf. [11, Theorem VIII.1.c]).

Next we study the dissipation property of the operatorA, which is defined on
the Hilbert spaceX (overR) by

〈Au,u〉X � 0, ∀u ∈ D(A).

Lemma 2.1. Let the coefficients of the operatorA satisfy ασ � γ 2. Then
A− (σ + β/2)I and its closure are dissipative.

Proof. Using integrations by part we have foru ∈ D(A)

〈Au,u〉X = −
∫ ∫

vuxu+ β

∫ ∫
(vu)vu+ σ

∫ ∫
uvvu+ 2γ

∫ ∫
uxvu

+ α

∫ ∫
uxxu−

∫ ∫
v3uxu+ β

∫ ∫
v2(vu)vu

+ σ

∫ ∫
v2uvvu+ 2γ

∫ ∫
v2uxvu+ α

∫ ∫
v2uxxu

= −β

∫ ∫
uvuv − σ

∫ ∫
uvuv + 2γ

∫ ∫
uxvu− α

∫ ∫
uxux

− β

∫ ∫
(v2u)vvu − σ

∫ ∫
(v2u)vuv + 2γ

∫ ∫
(vu)xvvu

− 2γ
∫ ∫

uxvu − α

∫ ∫
v2uxux,

where
∫∫

f denotes the integral
∫ 2π

0

∫
R
f (x, v) dv dx.

For the two integrals of the right side that involve mixedx–v derivatives we
shall now use the interpolation inequality∫ ∫

uxvu � ε

2
‖ux‖2

2 + 1

2ε
‖uv‖2

2, ε > 0, (2.3)

which is immediately obtained by an integration by parts (inv) and Young’s
inequality. Withε = γ /σ we then obtain

〈Au,u〉X � β

2
‖u‖2

2 − σ‖uv‖2
2 + εγ ‖ux‖2

2 + 1

ε
γ ‖uv‖2

2

− α‖ux‖2
2 − 2β‖vu‖2

2 − β

∫ ∫
v3uvu− 2σ

∫ ∫
vuuv

−σ‖vuv‖2
2 + εγ ‖vux‖2

2 + 1

ε
γ
∥∥(vu)v∥∥2

2 − α‖vux‖2
2

= β

2
‖u‖2

2 + γ 2

σ
‖ux‖2

2 − α‖ux‖2
2 − 2β‖vu‖2

2 + 3

2
β‖vu‖2

2

+ σ‖u‖2
2 + γ 2

σ
‖vux‖2

2 − α‖vux‖2
2
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�
(
σ + β

2

)
‖u‖2

2.

Thus 〈[
A−

(
σ + β

2

)
I

]
u,u

〉
X

� −σ‖vu‖2
2 − β

2
‖vu‖2

2 � 0 (2.4)

and the operatorA − (σ + β/2)I is dissipative. By Theorem 1.4.5b of [10] its
closure,

A−
(
σ + β

2

)
I = A−

(
σ + β

2

)
I,

is also dissipative. ✷
It is easy to see that the operatorA − (β/2)I defined onD̃(A) = {u ∈

L2((0,2π) × R) | vux,uvv, vuv,uxx ∈ L2((0,2π) × R); u(0, v) = u(2π,v),
ux(0, v) = ux(2π,v), ∀v ∈ R} is dissipative inL2((0,2π) × R) and theL2-
adjoint ofA is A∗ = A∗

1 on D̃(A).
Let us now study the dissipativity of the operatorA∗ restricted toD(A).

Analogously to Lemma 2.1 we have

〈A∗u,u〉X �
(
σ + β

2

)
‖u‖2

2, ∀u ∈ D(A).

Hence the restriction of the operatorA∗ − (σ + β/2)I = [A − (σ + β/2)I ]∗ to
D(A) is dissipative.

Next we consider the dissipativity of this operator on its proper domainD(A∗),
which, however, is not known explicitly. To this end we shall use the following
technical lemma whose proof is deferred to Appendix A. Here we shall denote
by ũ the (inx) 2π -periodic extension of a functionu ∈ X to R2.

Lemma 2.2. Let P := p(v, ∂x, ∂v) be a linear operator inX, wherep is a
quadratic polynomial and

D(P) := {
u ∈ X | ũ ∈ C∞(R2) with compact support inv

} ⊂ X.

ThenP is the maximum extension ofP in the sense that

D(P ) := {
u ∈ X | the distributionPu ∈ X

}
.

We now apply Lemma 2.2 toP = A∗ − (σ + β/2)I , which is dissipative on
D(P) ⊂ D(A). SinceA∗ is closed, we haveD(A∗) = D(P ) = {u ∈ X | A∗u ∈ X}
andA∗ − (σ + β/2)I is dissipative on all ofD(A∗).

Applying Corollary 1.4.4 of [10] toA − (σ + β/2)I (with (A)∗ = A∗) then
implies thatA− (σ + β/2)I generates aC0 semigroup of contractions onX, and
theC0 semigroup generated byA satisfies∥∥etAu∥∥

X
� e(σ+β/2)t‖u‖X, u ∈ X, t � 0.
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By the same argumentsA− (β/2)I generates aC0 semigroup of contractions on
the spaceL2((0,2π)× R).

Next we shall analyze the properties of the quadratically nonlinear term
Θ[V ]w, which will later be considered as a perturbation of the generatorA.

For V ∈ L∞(R) the pseudo-differential operatorΘ[V ] from (1.2) is defined
by (

FvΘ[V ]u)
(x, η) = iδV (x, η)Fvu(x, η), u ∈ L2((0,2π)× Rv

)
.

SinceδV (x, η) ∈ R, the operatorΘ[V ] is skew-symmetric onL2((0,2π)× Rv)

and it satisfies (cf. [3,8])∥∥Θ[V ]∥∥B(L2((0,2π)×Rv))
� 2‖V ‖∞.

For V ∈ L∞(R) we define the pseudo-differential operatorΩ[V ] on
L2((0,2π)× Rv) by(

Ω[V ]u)
(x, v)

= 1

2

[
V

(
x + 1

2i
∇v

)
+ V

(
x − 1

2i
∇v

)]
u(x, v)

= 1

2
√

2π

∫
R

[
V

(
x + η

2

)
+ V

(
x − η

2

)]
Fvu(x, η)e

ivη dη. (2.5)

As for the operatorΘ[V ] we obtain∥∥Ω[V ]∥∥B(L2((0,2π)×Rv))
� ‖V ‖∞. (2.6)

Proposition 2.3. LetV ∈ W1,∞(R). Then,

Θ[V ](vw) = vΘ[V ]w +Ω[Vx]w (2.7)

holds forw ∈ X.

Proof. By partial integration we obtain

Θ[V ](vw) = i

2π

∫
R

∫
R

(
V

(
x + η

2

)
− V

(
x − η

2

))

× v′w(x, v′)ei(v−v′)η dv′ dη

= i

2π

∫
R

∫
R

[(
V

(
x + η

2

)
− V

(
x − η

2

))
w(x, v′)eivη

]

× [
v′e−iv′η]dη dv′

= 1

4π

∫
R

∫
R

(
Vx

(
x + η

2

)
+ Vx

(
x − η

2

))
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× w(x, v′)ei(v−v′)η dη dv′

+ i

2π

∫
R

∫
R

v

(
V

(
x + η

2

)
− V

(
x − η

2

))

× w(x, v′)ei(v−v′)η dη dv′

=Ω[Vx]w + vΘ[V ]w. ✷
Now, let us consider the nonlinear operatorB defined onX by

u �→ Bu := −Θ
[
V [u]]u,

whereV [u] is the 2π -periodically extended solution of the Poisson equation

Vxx = n[u] −D, x ∈ (0,2π),

V (0)= V (2π), (2.8)

with n[u](x)= ∫
R
u(x, v) dv.

Lemma 2.4. LetD ∈ L1(0,2π). Then

(a) B mapsX into itself.
(b) Moreover, the operatorB is of classC∞ in X, and satisfies

‖Bu1 −Bu2‖X � C
(‖u1‖X + ‖u2‖X + ‖D‖L1(0,2π)

)‖u1 − u2‖X,
for u1, u2 ∈ X.

For the simple proof we refer the reader to [3].

Remark 2.5. In the proof of Lemma 2.4 it is essential that‖u‖X controlsn[u] in
L1(0,2π) (see (2.1)). Hence the solution of the Poisson equation (2.8) satisfies
V [u] ∈ W1,∞(0,2π) and‖Θ[V [u]]‖B(X) � C‖V [u]‖W1,∞(R).

We rewrite the WPFP system as

wt = Aw +Bw, t > 0,

w(t = 0) = wI ∈ X. (2.9)

The main result of this paper is

Theorem 2.6. LetD ∈ L1(0,2π).

(a) For everywI ∈ X, the WPFP problem(2.9) has a unique mild solution
w ∈ C([0,∞),X).

(b) If wI ∈ D(A), w is a classical solution, i.e.,w ∈ C1([0,∞),X) andw(t) ∈
D(A) for t � 0.
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Proof. We considerB as a bounded perturbation of the generatorA. SinceB
is locally Lipschitz continuous, Theorem 6.1.4 of [10] shows that (2.9) has a
unique mild solution for everywI ∈ X on some time interval[0, tmax). Moreover,
if tmax = tmax(w

I ) < ∞ then limt↗tmax‖w‖X = ∞. SinceB is of classC∞
in X, Theorem 6.1.5 in [10] proves thatw is a classical solution on[0, tmax) for
wI ∈ D(A).

To provetmax = ∞ we shall now derive an a priori estimate for‖w(t)‖X .
Step 1.Here we shall derive this a priori estimate under the assumptionwI ∈

D(A). To this end we consider the evolution equation for‖w‖2
X . By computing

its time derivative and taking into account (2.9), we deduce

1

2

d

dt
‖w‖2

X = 〈Aw,w〉X + 〈Bw,w〉X.

Using the dissipativity ofA− (σ + β/2)I (cf. (2.4)) we conclude that

1

2

d

dt
‖w‖2

X �
(
σ + β

2

)
‖w‖2

X + 〈Bw,w〉X.

The skew-symmetry of the operatorΘ[V ] implies finally that

1

2

d

dt
‖w‖2

X �
(
σ + β

2

)
‖w‖2

X +
∫ ∫

vwΩ
[
Vx(t)

]
w. (2.10)

On the other hand, sinceA− (β/2)I is dissipative on the spaceL2((0,2π)×
R), the estimates

d

dt
‖w‖2

2 � β‖w‖2
2 and ‖w‖2

2 � ‖wI ‖2
2e

βt (2.11)

follow. From the proof of Lemma 2.4 in [3] we have for the solution of (2.8)∥∥V [w]∥∥
W1,∞(0,2π)

� C
(‖w‖X + ‖D‖L1(0,2π)

)
.

Using (2.6), (2.10) and (2.11) we hence obtain

1

2

d

dt
‖w‖2

X −
(
σ + β

2

)
‖w‖2

X

�
∫ ∫

vwΩ
[
Vx(t)

]
w �

∥∥Vx(t)
∥∥∞‖vw‖2‖w‖2

�C
(‖w‖X + ‖D‖1

)‖vw‖2‖wI‖2e
(β/2)t

�C‖wI ‖2e
(β/2)t(‖w‖2

X + ‖w‖X‖D‖1
)

�C‖wI ‖2e
(β/2)t(‖w‖2

X + ‖D‖2
1

)
.

Thus
d

dt
‖w‖2

X � a(t)‖w‖2
X + b(t),

where
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a(t) = C‖wI ‖2e
(β/2)t + β + 2σ,

b(t) = C‖wI ‖2e
(β/2)t‖D‖2

1.

Finally, applying Gronwall’s inequality yields

∥∥w(t)
∥∥2
X

� ‖wI‖2
Xe

∫ t
0 a(s) ds +

t∫
0

b(s)e
∫ t
s a(τ ) dτ ds, t � 0. (2.12)

Hencetmax = ∞ holds.
Step 2.Since (2.12) only involves‖wI ‖X this result carries over towI only

in X by the following density argument.
ForwI ∈ X let (wI

n) be a sequence inD(A) such thatwI
n → wI in X. Using

(2.12) we have for everywI
n an a priori estimate for the corresponding classical

solution:∥∥wn(t)
∥∥
X

� h(t), ∀t � 0, n ∈ N,

with h ∈ C[0,∞) independent ofn.
Let w ∈ C([0, tmax(w

I )),X) be the unique mild solution forwI , which exists
according to the first part of this theorem.

Next we assumetmax(w
I ) < ∞. Thus limt↗tmax(wI ) ‖w(t)‖X = ∞. For the

continuous, monotonously increasing functiong(t) := max{‖w(τ)‖X, 0� τ � t}
we also have limt↗tmax(wI ) g(t) = ∞.

ChooseN ∈ N with N � 2 max{h(t), t ∈ [0, tmax(w
I )]}. Then there exists a

tN < tmax(w
I ) such that

g(tN ) = N,

g(t) � N, t � tN ,

g(t) � N, tN � t < tmax(w
I ). (2.13)

We denote byLN the Lipschitz constant of the operatorB on

BN := {
u ∈ X, ‖u‖X <N

}
.

Let B̂ be a (globally) Lipschitz extension ofB outside ofBN . Thus, applying
Theorem 6.1.2 in [10] on[0, tN ] we obtain a Lipschitz dependence of the solutions
on their initial values,

‖w −wn‖C([0,tN ],X) � C(LN)
∥∥wI −wI

n

∥∥
X
.

Thus,wn → w in C([0, tN ],X), and ‖w(t)‖X � h(t) � N/2 for 0 � t � tN
follows. This contradicts the assumption (2.13).✷
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Appendix A. Proof of Lemma 2.2

To prove the assertion we shall construct for eachf ∈ D(P ) ⊂ L2((0,2π) ×
R) a sequence{fn} ⊂ D(P) such thatfn → f in the graph norm‖f ‖P =
‖f ‖L2 + ‖vf ‖L2 + ‖Pf ‖L2 + ‖vPf ‖L2.

To shorten the proof we shall consider here only the case

P = µ+ νv∂x + βv∂v + σ∂2
v + 2γ ∂v∂x + α∂2

x

(cf. the definition of the operatorA in (2.2)), but exactly the same strategy extends
to the general case.

First we define the mollifying delta sequence

ϕn(x, v) := n2ϕ(nx,nv), n ∈ N, x, v ∈ R,

with the properties

ϕ ∈ C∞
0 (R2), ϕ(x, v) � 0,

∫ ∫
ϕ(x, v) dx dv = 1,

suppϕ ⊂ {|x|2 + |v|2 � 1
}
.

The velocity-cutoff function

ψn(v) :=ψ

(
v

n

)
, n ∈ N, v ∈ R,

is assumed to have the properties

ψ ∈ C∞
0 (R), 0 � ψ(v) � 1,

∣∣ψ(j)(v)
∣∣ � Cj ∀v ∈ R, j = 1,2,

suppψ ⊂ [−1,1], ψ|[−1/2,1/2] ≡ 1.

We now define the approximating sequence

f̃n(x, v) := (f̃ ∗ ϕn)(x, v) ·ψn(v), n ∈ N,

where∗ denotes the convolution inx andv. Remember that̃f denotes the (inx)
2π -periodic extension of the functionf ∈ X to R2. By construction we have
f̃n ∈ C∞(R2) andf̃n is 2π -periodic inx with compact support inv. Now, letR
denote the restriction operator of (inx) 2π -periodic functions to(0,2π) × R.
Then,fn := Rf̃n ∈ D(P). According to the 4 terms of the graph norm we split
the proof into 4 steps:

Step 1.Sinceϕn → δ in D′(R2) andψn(v) → 1 pointwise, we havef̃n → f̃

in L2
loc(Rx) ×L2(Rv) and

fn → f in L2((0,2π)× R
)
.

Step 2.For the second term of the graph norm we write

vf̃n = (vf̃ ∗ ϕn)ψn + (f̃ ∗ vϕn)ψn.
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The restriction of the first summand converges tovf in L2((0,2π)× R) and the
second term converges to 0 sincevϕn → 0 in D′(R2). Hence we have

fn → f in X.

Step 3.To prove thatPfn → Pf in L2((0,2π)× R) we write

P f̃n =µ(f̃ ∗ ϕn)ψn + ν(vf̃x ∗ ϕn)ψn + β(vf̃v ∗ ϕn)ψn

+ σ(f̃vv ∗ ϕn)ψn + 2γ (f̃xv ∗ ϕn)ψn + α(f̃xx ∗ ϕn)ψn

+ r1
n(x, v)

= (P f̃ ∗ ϕn)ψn + r1
n(x, v).

As we shall show, the restriction of all six terms of the remainder

r1
n = ν(f̃ ∗ v∂xϕn)ψn + β(f̃ ∗ ϕn)(v∂vψn)

+ β
(
f̃ ∗ ∂v(vϕn)

)
ψn + 2σ

(
f̃ ∗

(
1

n
∂vϕn

))
(n∂vψn)

+ σ(f̃ ∗ ϕn)∂
2
vψn + 2γ

(
f̃ ∗

(
1

n
∂xϕn

))
(n∂vψn)

converge to 0 inL2((0,2π)× R).
In the first termv∂xϕn → 0 in D′(R2). Hence we have

R(f̃ ∗ v∂xϕn) → 0 in L2((0,2π)× R
)
,

and the same argument holds for the third term.
For the second term we have

v∂vψn = v

n
ψ ′

(
v

n

)
,

which is in L∞(R), uniformly for n ∈ N and with support in[−n,−n/2] ∪
[n/2, n]. Hence, the second term converges to 0 inL2((0,2π)× R).

In the fourth term(1/n)∂vϕn → 0 in D′(R2), and hence

R

(
f̃ ∗

(
1

n
∂vϕn

))
→ 0 in L2((0,2π)× R

)
.

Furthermore,n∂vψn = ψ ′(v/n) with |ψ ′| � C1. By the same argument also the
sixth term converges to 0 inL2((0,2π)× R).

Finally, the fifth term converges to 0 since

∂2
vψn = 1

n2ψ
′′
(
v

n

)
with |ψ ′′| � C2.

Step 4.To prove thatvPfn → vPf in L2((0,2π)× R) we write
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vP f̃n =µ(vf̃ ∗ ϕn)ψn + ν(v2f̃x ∗ ϕn)ψn + β(v2f̃v ∗ ϕn)ψn

+ σ(vf̃vv ∗ ϕn)ψn + 2γ (vf̃xv ∗ ϕn)ψn + α(vf̃xx ∗ ϕn)ψn

+ r2
n(x, v)

= (
(vP f̃ ) ∗ ϕn

)
ψn + r2

n(x, v),

with the remainder

r2
n =µ(f̃ ∗ vϕn)ψn + 2ν(vf̃ ∗ v∂xϕn)ψn + ν(f̃ ∗ v2∂xϕn)ψn

+ β(vf̃ ∗ ϕn + f̃ ∗ vϕn)v∂vψn + 2β
(
vf̃ ∗ ∂v(vϕn)

)
ψn

+ β(f̃ ∗ v2∂vϕn)ψn + σ
(
f̃ ∗ ∂vv(vϕn)

)
ψn

+ 2σ

(
vf̃ ∗ ∂vϕn

n
+ f̃ ∗ v∂vϕn

n

)
ψ ′

(
v

n

)
+ σ(f̃ ∗ ϕn)v∂

2
vψn + 2γ

(
f̃ ∗ ∂xv(vϕn)

)
ψn

+ 2γ

(
vf̃ ∗ ∂xϕn

n
+ f̃ ∗ v∂xϕn

n

)
ψ ′

(
v

n

)
+ α(f̃ ∗ v∂xxϕn)ψn.

For proving that the restriction of all terms ofr2
n converge to 0 inL2((0,2π)×R)

we recall that bothf, vf ∈ L2((0,2π)× R). Since the strategy of the proof is the
same as in step 3 we shall only give the key points:

The distributionsvϕn, v∂xϕn, v2∂xϕn, ∂v(vϕn), v2∂vϕn, ∂vv(vϕn), ∂vϕn/n,
v∂vϕn/n, ∂xv(vϕn), ∂xϕn/n, v∂xϕn/n, andv∂xxϕn all converge to 0 inD′(R2).

Further,v∂2
vψn → 0 in L∞(R) and the termv∂vψn was already discussed in

step 3. ✷
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