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aDipartimento di Matematica, Università di Milano, Via Saldini 50, Milano 20133, Italy
bDipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Viale Sarca 202, Milano 20126,
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Abstract

We give a simple and explicit construction of compactly supported affine tight frames with

small number of generators, associated to multivariate box splines (with respect to the dilation

matrix 2IÞ: Moreover, the same technique applied to the case of bivariate box splines on the

four-directions mesh with dilation matrix 1
1
1
�1

� �
gives tight frames with at most five generators.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the recent literature, a great deal of attention was devoted to the construction of
compactly supported tight frames both in the univariate and the multivariate cases,
see for example [4–8,10–16].
Compactly supported tight frames are a good replacement of compactly supported

orthonormal wavelets when the system generated by integer translations of the
corresponding scaling function j is not orthogonal or, more generally, when j is
simply refinable and fjð� � kÞ; kAZg may be not stable. Furthermore, in the
multivariate case, even if j is stable, and leaving aside tensor products, the
construction of the corresponding (orthogonal, compactly supported) wavelets is a
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difficult task in general and so far no universal explicit algorithm is available. On the
other hand, the recent papers [13,14] contain a general theory of affine systems and
in particular a general unitary extension principle, which makes the construction of
tight affine frames somewhat easier than the solution of the matrix extension
problem which arises in the orthogonal wavelets construction. The results in our
paper are based on the theory given by Ron and Shen [13,15].
A technique for the constructions of frame wavelets based on the unitary extension

principle was applied to univariate box splines, to some multivariate compactly
supported box splines [15] and to convolutions of self-similar compact sets in any
dimension [10]. However, the actual application of this technique in these papers
gives a number of mother wavelets (the frame generators) which grows at least
proportionally with the regularity. In contrast with this, the papers [5,12] contain a
general result (in the univariate case), where the number of mother wavelets is always
two (three in the symmetric case).
Using the unitary extension principle and a new technique based on a Kronecker

product approach, Chui and He [6] showed how to construct tight affine frames for a
general class of multivariate compactly supported box splines. However, this

construction yields a large number of mother wavelets, namely at least 2K � 1
generators (where K is the number of distinct vectors in the matrix X defining the box
spline).
This paper addresses the problem of constructing multivariate compactly

supported tight affine frames with a small number of generators, for box splines
belonging to the same class as in Ref. [6]. We apply the method of Ron and Shen
[15], which consists in replacing the original box spline jX with a new scaling

function j of larger support. Then, exactly as in Ref. [15], we define the first 2N � 1
wavelet filters to be the N-dimensional Haar wavelet filters. The novelty of our result
lies in the technique of constructing the remaining filters, which allows us to reduce
the number of frame generators. As a result, we are able to construct explicitly tight

affine frames with at most 2N � 1þ K generators where, as above, K is the number
of distinct vectors in the matrix X: To give an example, any bivariate box spline on
the three-directions mesh gives rise to a tight frame with at most six generators (only
four for the Courant element).
We prove our result in the case where the dilation matrix is 2I (where I is the

identity) even though the construction could be carried out also in the more general
cases considered in the paper [16]. As an example, in Section 4 we will deal with the

case of box splines on the four-directions mesh with dilation matrix 1
1
1
�1

� �
(see [15,9]).

2. Notation

We say that a function jAL2ðRNÞ is a scaling function if the following conditions
hold: (i) j satisfies a refinement equation of the type

#jð2�Þ ¼ m0 #j; ð1Þ
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where m0 is a 2p-periodic bounded function called the (symbol of the) mask of the
refinement Eq. (1); (ii) #j is continuous at 0 and #jð0Þ ¼ 1:
In this paper, m0 will always be a trigonometric polynomial and j will always be

compactly supported.
Let us denote V0 the closed linear span of the translates of j by means of the

vectors in ZN : For every integer j let us denote by Vj the 2
j-dilate of V0: Clearly the

refinement Eq. (1) implies that the sequence Vj is increasing with j: If #j is continuous

at 0 and #jð0Þ ¼ 1; then it is possible to prove that ,jVj is dense in L2ðRNÞ and
-jVj ¼ f0g [1]. As in this paper we will be dealing with integrable box splines, these

conditions are automatically satisfied. However, it is worth pointing out that, unlike
the case of multiresolution analyses, the scaling functions considered in this paper in
general do not generate by translation Riesz bases of V0: In fact they do not even
need generating a frame.
Now let c1;y;cL be elements of V1: Then, there exist 2p-periodic functions mc;

for c ¼ 1;y;L; such that

#ccð2�Þ ¼ mc #j;

holds [2, Theorem 2.14]. We say that the functions cc are the generators of a tight

affine frame if for every fAL2ðRNÞ one hasX
j;k;c

j/f ;cj;k;cSj2 ¼ jjf jj22:

Here we made, as usual,

cj;k;c ¼ 2j=2ccð2j � �kÞ

with jAZ; kAZN ; c ¼ 1;y;L:

Set E ¼ f0; 1gN and denote by e ¼ ðe1;y; eNÞ any element of E:
Ron and Shen [15] have a general technique (based on the unitary extension

principle) for the construction of tight affine frames. We summarize this technique,
in the case where the dilation is 2I ; in the following theorem.

Theorem 1 (Ron and Shen [15, Section 4]). Let j1 and j2 be refinable distributions

with bounded masks t1 and t2 and assume that j1 � j2 is a scaling function. Assume

that T1 and T2 are collections of bounded periodic functions such that, for eAE;

t1ðoÞt1ðoþ peÞ þ
X
tAT1

tðoÞtðoþ peÞ ¼ d0e ð2Þ

and

jt2ðoÞj2 þ
X
tAT2

jtðoÞj2 ¼ 1: ð3Þ

Define

T ¼ T1,t1T2ð2�Þ: ð4Þ
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Then the functions #cð2�Þ ¼ t #j; where tAT and #j ¼ #j1 #j2ð2�Þ; are the generators of a

tight affine frame.

Remark. In the original formulation of this result it is required a mild decay
condition on #j: However, it follows from the result [8, Theorem 2] that the
conclusion of Theorem 1 is true also without any decay assumption. In any case, the
scaling function we will be dealing with is a box spline, which satisfies even stronger
decay conditions.

3. Tight affine frames

Let

X ¼
x1; ? xN ; xNþ1;y; xNþ1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

k1 times

; y xNþs;y; xNþs|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ks times

	 

be a full rank matrix with integer entries such that the vectors x1; x2;y; xN are a

basis for ZN (of course one or more of the vectors xNþj j ¼ 1;y; s; is allowed to be

one of the first N vectors). The box spline jX associated with X is the L2ðRNÞ
function whose Fourier transform is

#jXðoÞ ¼
YN
j¼1

1� expð�i/xj;oSÞ
i/xj;oS

� 
Ys

j¼1

1� expð�i/xNþj;oSÞ
i/xNþj;oS

� 
kj

: ð5Þ

Note that we do not assume that X is unimodular, so that, in general, jX is not the
scaling function of a multiresolution analysis (see [3]).
Let, throughout this paper,

HðtÞ ¼ 1þ e�it

2
ð6Þ

denote the one-dimensional Haar low-pass filter.
Upon performing an unimodular change of variables we may suppose, without

loss of generality, that the first N columns in X are the fundamental vectors of the
axes, i.e.

x1 ¼ ð1; 0;y; 0Þt; x2 ¼ ð0; 1;y; 0Þt;y; xN ¼ ð0; 0;y; 1Þt:

Therefore (5) takes the form

#jXðoÞ ¼
YN
j¼1

1� e�ioj

ioj

� 
Ys

j¼1

1� expð�i/xNþj ;oSÞ
i/xNþj;oS

� 
kj

:

Let mX denote the refinement mask of jX: Then we have that

mXðoÞ ¼
#jXð2oÞ
#jXðoÞ

¼ t1ðoÞt2ðoÞ;
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where we made

t1ðoÞ ¼
YN
j¼1

HðojÞ

and

t2ðoÞ ¼
Ys

j¼1
Hð/xNþj;oSÞkj :

Note that jX ¼ j1 � j2; where j1 is the N-dimensional Haar scaling function and

#j2ðoÞ ¼
Q

N

j¼1 t2ð2�joÞ: According to Theorem 1, we define a new compactly

supported scaling function j via the formula

j ¼ 1

2N
j2

�
2

� �
� j1: ð7Þ

Clearly, the refinement mask of j is

m0ðoÞ ¼ t1ðoÞt2ð2oÞ:

Theorem 2. Let X be a full rank matrix with integer entries such that the vectors

x1; x2;y; xN are a basis for ZN and let jX be the corresponding box spline. Then, with

notation as above, there exist ð2N � 1þ sÞ trigonometric polynomials mc such that the

functions cc with

#ccð2oÞ ¼ mcðoÞ #jðoÞ ¼ mcðoÞt2ðoÞ #jXðoÞ; c ¼ 1;y; 2N � 1þ s ð8Þ

generate a compactly supported tight affine frame. The explicit expression of the

polynomials mc is given in Eqs. (9) and (11).

Proof. We start by constructing explicitly the polynomial mc and then we will apply
Theorem 1 to show that the compactly supported functions cc; given by Eq. (8) are
actually the generators of a tight affine frame.

To every integer c ¼ 1;y; 2N � 1 we associate the element eAE\f0g such that

c ¼
PN

j¼1 2
j�1ej: Then, as in [15], we define mc as

mcðoÞ ¼
YN
j¼1

Hðoj þ pejÞ; ð9Þ

i.e., the orthonormal N-dimensional Haar wavelet masks.
As for the remaining masks we proceed as follows. For every h ¼ 1;y; s; the

trigonometric polynomial

1� jHð/xNþh;oSÞj2kh

has real coefficients, is positive and even in its argument. Hence, by the Riesz
Lemma, there exists a (not unique) trigonometric polynomial Qh such that

jQhð/xNþh;oSÞj2 ¼ 1� jHð/xNþh;oSÞj2kh ; h ¼ 1;y; s: ð10Þ
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For every h ¼ 1;y; s; we define

m2N�1þhðoÞ ¼ t1ðoÞQhð/xNþh; 2oSÞ
Ys

j¼hþ1
Hð/xNþj; 2oSÞkj ; ð11Þ

where, if h ¼ s; the last product in (11) must be interpreted as 1.

We define T1 to be the set of the 2N � 1 polynomials in (9). Obviously Eq. (2) is
satisfied. Next we set

T2 ¼ Qhð/xNþh;oSÞ
Ys

j¼hþ1
Hð/xNþj;oSÞkj ; h ¼ 1;y; s

( )
:

Note that the set of the polynomials in (11) is exactly of the form t1T2ð2�Þ:
Next we show that condition (3) in Theorem 1 is satisfied. First we have that

jt2ðoÞj2 þ jQ1ð/xNþ1;oSÞj2
Ys

j¼2
jHð/xNþj;oSÞj2kj

¼
Ys

j¼2
jHð/xNþj;oSÞj2kj fjHð/xNþ1;oSÞj2k1 þ jQ1ð/xNþ1;oSÞj2g

¼
Ys

j¼2
jHð/xNþj;oSÞj2kj : ð12Þ

Arguing as before, and taking into account the last equation in (12), we get,

jt2ðoÞj2 þ
X2
h¼1

jQhð/xNþh;oSÞj2
Ys

j¼hþ1
jHð/xNþj;oSÞj2kj

¼
Ys

j¼3
jHð/xNþj;oSÞj2kj :

Carrying on this process, we finally arrive at the equation

jt2ðoÞj2 þ
Xs

h¼1
jQhð/xNþh;oSÞj2

Ys

j¼hþ1
jHð/xNþj;oSÞj2kj ¼ 1:

Since the set of the set of all the polynomials mc in (9) and (11) is of the form (4) the
result follows by Theorem 1. &

We observe that the number of wavelets obtained by the construction in [15,

Section 4] is, with notation as above, 2N � 1þ k1 þ?þ ks; while Theorem 2 gives

only 2N � 1þ s wavelets. (Note that spK ; where K is the number of distinct vectors
of X). However, most of these wavelets will lack symmetry properties.
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Remark. According to [5] a tight affine frame with scaling function j and generators

cc is said to be a minimum energy frame if, for every fAL2;X
k

j/f ;j1;kSj2 ¼
X

k

j/f ;j0;kSj2 þ
X
c;k

j/f ;c0;k;cSj2:

By [14, Corollary 6.7], every tight frame constructed using the unitary extension
principle is minimum energy. Hence the frames constructed in Theorem 2 are
minimum energy with respect to the scaling function j in (7). However they are not
minimum energy, in general, with respect to the scaling function jX (see Example 2
below).

Example 1. Suppose jX is the bivariate box spline on the three-directions mesh with
Fourier transform given by

#jXðoÞ ¼
1� e�io1

io1

� 
a
1� e�io2

io2

� 
b
1� e�iðo1þo2Þ

iðo1 þ o2Þ

� 
c

;

where a; b; cX1 are integers.
In this case mXðoÞ ¼ t1ðoÞt2ðoÞ ¼ Hðo1ÞHðo2Þt2ðoÞ; where

t2ðoÞ ¼
1þ e�io1

2

� 
a�1
1þ e�io2

2

� 
b�1
1þ e�iðo1þo2Þ

2

� 
c

:

The construction in the proof of Theorem 2 gives the following six trigonometric
polynomials mc

m1ðoÞ ¼ Hðo1 þ pÞHðo2Þ;

m2ðoÞ ¼ Hðo1ÞHðo2 þ pÞ;

m3ðoÞ ¼ Hðo1 þ pÞHðo2 þ pÞ

and

m4ðoÞ ¼ Hðo1ÞHðo2ÞQ1ð2o1ÞHð2o2Þb�1
Hð2o1 þ 2o2Þc;

m5ðoÞ ¼ Hðo1ÞHðo2ÞQ2ð2o2ÞHð2o1 þ 2o2Þc;

m6ðoÞ ¼ Hðo1ÞHðo2ÞQ3ð2o1 þ 2o2Þ;

where H is as in (6) and Qh; h ¼ 1;y; 3; is the square root defined in (10) with

x3 ¼ ð1; 0Þt; x4 ¼ ð0; 1Þt; x5 ¼ ð1;�1Þt and k1 ¼ a � 1; k2 ¼ b � 1; k3 ¼ c: Clearly, if
a ¼ 1 (resp. b ¼ 1) then m4 ¼ 0 (resp. m5 ¼ 0). In particular, in the case of the
Courant element ða ¼ b ¼ c ¼ 1Þ only four wavelets are needed, while the method of
Chui and He [6] gives seven wavelets.
The actual wavelets filters, with respect to jX; are obtained by multiplying the mc

by t2:
The following figures illustrate the case where a ¼ b ¼ 1 and c ¼ 2:
The function jX is symmetric with respect to the lines y ¼ x and y ¼ 3� x: Note

that this spline is only C0 across diagonals, but is otherwise C1 (Fig. 1).
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The wavelet c1 is antisymmetric with respect to the line y ¼ x and to the point
ð3=2; 3=2Þ (Fig. 2). The figure of the wavelet c2 is obtained by exchanging x with y:
The wavelet c3 has the two axes of symmetry y ¼ x and y ¼ 3� x (Fig. 3).

Moreover, the scaling function and the first three wavelets have the same hexagonal
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Fig. 1. The scaling function jX with X ¼ 1 0 1 1
0 1 1 1

� �
:

Fig. 2. The wavelet c1:
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support ½1; 1; 2� where we set

½a1; a2; a3� ¼
X3
j¼1

tjxj ; 0ptjpaj

( )

and x1 ¼ ð1; 0Þt; x2 ¼ ð0; 1Þt; x3 ¼ ð1; 1Þt:
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Fig. 4. The wavelet c4:
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Finally, c4 has support ½1; 1; 3� and is only symmetric with respect to y ¼ x

(Fig. 4).
Analogous computations can be carried out for box splines on the four-directions

mesh. In this case the number of wavelets is at most seven and for the Zwart–Powell
element only five are needed. In the next section we discuss in more detail these

splines with respect to the dilation matrix 1 1
1 �1
� �

:

Example 2. The univariate box spline has Fourier transform

#jXðoÞ ¼
1� e�io

io

� 
k

and the refinement mask is

mXðoÞ ¼ t1ðoÞt2ðoÞ ¼ HðoÞHðoÞk�1:

We have that the function j is

#jðoÞ ¼ t2ðoÞ #jXðoÞ ¼
1þ e�io

2

� 
k�1
#jXðoÞ:

For k41 we have two wavelets

#ccð2oÞ ¼ mcðoÞt2ðoÞ #jXðoÞ; c ¼ 1; 2;

where

m1ðoÞ ¼ Hðoþ pÞ

and

m2ðoÞ ¼ HðoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jHð2oÞj2ðk�1Þ

q
:

The frame generated by these wavelets is minimum energy with respect to the scaling
function j; but, in view of [5, Lemma 1], it is not minimum energy with respect to
jX: Namely, the vectors ðmX;m1t2;m2t2Þ and (mXð� þ pÞ; m1ð� þ pÞt2ð� þ pÞ;
m2ð� þ pÞt2ð� þ pÞ) are not orthogonal.

4. Tight frames with dilation matrix 1
1
1
�1

� �
In this section we show how the methods used to prove Theorem 2 can be

extended to the case where the dilation matrix is not diagonal. For sake of simplicity
we confine ourselves to the case of bivariate box splines on the four-directions mesh
with dilation matrix

M ¼
1 1

1 �1

� 

: ð13Þ
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Namely, it is known (see [15]) that the spline jX; with Fourier transform

#jXðoÞ ¼
1� e�io1

io1

� 
k1 1� e�io2

io2

� 
k2 1� e�iðo1þo2Þ

iðo1 þ o2Þ

� 
k1
1� e�iðo1�o2Þ

iðo1 � o2Þ

� 
k2

;

is refinable with respect to M: Here k1 and k1 are integers greater or equal to one. A
straightforward computation, see [15], shows that

#jXðM�Þ ¼ mX #jX

where

mXðoÞ ¼
1þ e�io1

2

� 
k1 1þ e�io2

2

� 
k2

:

We show how to modify the arguments of the proof of Theorem 2 to construct tight
frames with scaling function jX: We write

mXðoÞ ¼ t1ðoÞt2ðoÞ;
where t1ðoÞ ¼ Hðo1ÞHðo2Þ and

t2ðoÞ ¼
1þ e�io1

2

� 
k1�1 1þ e�io2

2

� 
k2�1
:

Let

m0ðoÞ ¼ t1ðoÞt2ðMoÞ
and define the refinable function j via the formula

j ¼ 1ffiffiffi
2

p j2ðM�1�Þ � j1:

Theorem 1, stated in the particular case of the diagonal dilation matrix 2I ; actually
holds for general dilation matrices. In the case of the dilation matrix (13), Eq. (2)

involves the representatives of the quotient group 2pðM�1Z2=Z2Þ: We choose the
representatives ð0; 0Þ and ðp; pÞ: In this case, condition (2) in Theorem 1 becomes

t1ðoÞt1ðoþ nÞ þ
X
tAT1

tðoÞtðoþ nÞ ¼ d0n; ð14Þ

where nAfð0; 0Þ; ðp; pÞg: We define T1 to be the set of the polynomials

m1ðoÞ ¼ Hðo1 þ pÞHðo2Þ;

m2ðoÞ ¼ Hðo1ÞHðo2 þ pÞ;

m3ðoÞ ¼ Hðo1 þ pÞHðo2 þ pÞ:
Obviously (14) is satisfied.
Now, let Qj; j ¼ 1; 2; denote a square root (by the Riesz Lemma) of the

polynomial 1� jHðojÞj2kj�2:
We define T2 to be the set

fQ1ðo1Þ Hðo2Þk2�1; Q2ðo2Þg:
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Since Mððo1;o2ÞtÞ ¼ ðo1 þ o2;o1 � o2Þt; the last two masks are

m4ðoÞ ¼ Hðo1ÞHðo2ÞQ1ðo1 þ o2ÞHðo1 � o2Þk2�1;

m5ðoÞ ¼ Hðo1ÞHðo2ÞQ2ðo1 � o2Þ:

Therefore, the functions

#ccðMoÞ ¼ mcðoÞ #jðoÞ ¼ mcðoÞt2ðoÞ #jXðoÞ;

generate a tight affine frame.

Remark. It is worthwhile pointing out that the above construction yields tight affine
frames with exactly five generators for every k141 and k241: Clearly, if k1 ¼ 1
(resp. k2 ¼ 1), then c4 ¼ 0 (resp. c5 ¼ 0). It is easy to compute the support of the
wavelets. Let

x1 ¼
1

0

� 

; x2 ¼

0

1

� 

; x3 ¼

1

1

� 

; x4 ¼

1

�1

� 

:

Then the function j has the octagonal support ½2k1 � 1; 2k2 � 1; k1; k2�; where we set

½a1; a2; a3; a4� ¼
X4
j¼1

tjxj; 0ptjpaj

( )
:

The first three wavelets have the same support as jX i.e. ½k1; k2; k1; k2�: The supports
of c4 and c5 are, respectively ½2k1 � 1; 2k2 � 1; k1; k2� and ½k1; 2k2 � 1; k1; k2�:
This result should be compared with [15] where two different constructions are

given. In the first one ðk1 þ 1Þ ðk2 þ 1Þ � 1 generators, with the same support as jX;
are constructed. In the second one the number of generators is k1 þ k2; of which k2
have the same support as jX; while k1 have the octagonal support ½2k1; k2; k1; k2�:
In conclusion the advantage of our construction is evident for large values of

k1 þ k2; but in general there is a tradeoff between the number of generators and the
size and symmetry of the support.
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