Note

Two Transformations of Series That Commute with Compositional Inversion

ROBERT DONAGHEY

Department of Mathematics, Baruch College, CUNY, New York, New York 10010

Communicated by John Riordan

Received November 14, 1977

It is shown that the compositional inverse of either of two transformations of a given series can be determined from the compositional inverse of the series. Specifically, if \(t \cdot f(t) \) and \(t \cdot g(t) \) are compositional inverses, then so are \(t \cdot f_k(t) \) and \(t \cdot g^*_k(t) \), where \(f_k(t) \) is the \(k \)th Euler transformation of \(f(t) \) and \(g^*_k(t) = g(t)/(1 - kt \cdot g(t)) \).

1. INTRODUCTION

Compositional (or functional) inversion of series is defined in two forms in [3, pp. 149, 177]. Given two series \(f(t) = 1 + a_1t + a_2t^2 + \cdots \) and \(g(t) = 1 + b_1t + b_2t^2 + \cdots \), \(t \cdot f(t) \) and \(t \cdot g(t) \) are compositional inverses if they satisfy

\[
t \cdot f(t) \cdot g(t \cdot f(t)) = t \cdot g(t) \cdot f(t \cdot g(t)) = t.
\]

(1)

It is sometimes convenient to rewrite (1) as

\[
f(t \cdot g(t)) = 1/g(t) \quad \text{and} \quad g(t \cdot f(t)) = 1/f(t).
\]

(2)

The classical method for determining the compositional inverse of a series is to compute the first few terms, guess at the general term, and then check the guess against Eqs. (1) or (2). Finding the compositional inverse of a series would frequently be made easier if it were possible to derive it from the compositional inverse of a related series. However, the only transformation of series which commutes with the compositional inverse heretofore known is the obvious one of replacing \(t \) by \(kt \) for some constant \(k \).

In this paper I present two nontrivial transformations of series, the well-known Euler transformation and what I call the star transformation, and I show how to determine the compositional inverse of each of these transformations using the compositional inverse of the original series.
The kth Euler transformation of a series, as determined by Touchard [5], cf. [3, p. 156], is

$$f_k(t) = \frac{1}{1 + kt} f\left(\frac{t}{1 + kt}\right) = \sum_{n=0}^{\infty} (f - k)^n \frac{t^n}{n!}, \quad f^n \equiv f_n. \quad (3)$$

The kth star transformation of series is

$$f_k^*(t) = \left[\left[f(t)\right]^{-1} - kt\right]^{-1} = \frac{f(t)}{1 - kt \cdot f(t)} = \sum_{n=0}^{\infty} k^n t^n [f(t)]^{n+1}. \quad (4)$$

Both of these transformations are closed under composition in the sense that the ith transformation of the jth transformation of a series equals its $(i + j)$th transformation. That is, $[f_i][j](t) = f_{i+j}(t)$ and $[g_i^*][j^*](t) = g_{i+j}^*(t)$ for any series $f(t)$ and $g(t)$.

Furthermore, the two transformations commute with each other in the sense that the ith Euler transformation of the jth star transformation of a series equals the jth star transformation of the ith Euler transformation of a series. That is, $[f_i]^*[j^*](t) = [f^*_i][j^*](t)$ for any series $f(t)$.

It will be convenient to call two series $f(t)$ and $g(t)$ an inverse pair of series provided that $t \cdot f(t)$ and $t \cdot g(t)$ are functional inverses which satisfy Eqs. (1).

It will be shown in the next section that if $f(t)$ and $g(t)$ are an inverse pair of series, then so are $f_k(t)$ and $g_k^*(t)$, where these are, respectively, the Euler and star transformations of $f(t)$ and $g(t)$. By symmetry, it follows that $f_k^*(t)$ and $g_k(t)$ are also an inverse pair of series.

The paper concludes with a number of examples, both combinatorial and algebraic, for concreteness.

2. COMPOSITIONAL INVERSES OF THE TRANSFORMATIONS

Theorem. If $f(t)$ and $g(t)$ are an inverse pair of series satisfying Eqs. (1), then $f_k(t)$ and $g_k^*(t)$, as defined by Eqs. (3) and (4), respectively, are also an inverse pair of series.

Proof.

(1) $f_k(t \cdot g_k^*(t)) = f_k\left(\frac{t \cdot g(t)}{1 - kt \cdot g(t)}\right)$

$$= \frac{1}{1 + k \left(\frac{t \cdot g(t)}{1 - kt \cdot g(t)}\right)}$$

$$\cdot f\left(\frac{t \cdot g(t)}{1 - kt \cdot g(t)}\right) \left[1 + k \left(\frac{t \cdot g(t)}{1 - kt \cdot g(t)}\right)\right]$$

$$= (1 - kt \cdot g(t)) \cdot f(t \cdot g(t)) = \frac{1 - kt \cdot g(t)}{g(t)} = \frac{1}{g_k^*(t)}.$$
\[(2) \quad g_k^*(t \cdot f_k(t)) = g_k^* \left(\frac{t}{1 + kt} \cdot f \left(\frac{t}{1 + kt} \right) \right) = g_k^*(u \cdot f(u)), \]

\[u = \frac{t}{1 + kt}, \]

\[= \frac{g(u \cdot f(u))}{1 - ku \cdot f(u) \cdot g(u \cdot f(u))} = \frac{1/f(u)}{1 - ku \cdot f(u)/f(u)} \]

\[= \frac{1}{f(u)} \cdot \frac{1}{1 - ku} = \frac{1 + kt}{f(t/(1 + kt))} = \frac{1}{f_k(t)}. \]

Therefore \(f_k(t) \) and \(g_k^*(t) \) satisfy Eqs. (2) and, hence, are an inverse pair of series.

Corollary. If \(f(t) \) and \(g(t) \) are an inverse pair of series and \(k \) is any integer, the following diagram is commutative where \(\rightarrow^E \) represents the Euler transformation, \(\leftrightarrow^* \) represents the star transformation, and \(\leftrightarrow^C \) is used between inverse pairs of series.

\[f(t) \xrightarrow{E} f_k^*(t) \]

\[g(t) \xrightarrow{\ast} g_k^*(t) \]

\[* \]

\[\ast \]

\[\ast \]

\[\ast \]

\[\ast \]

3. **Examples**

A class of combinatorial examples of the application of the Euler and star transformations can be found in the Catalan domain. Consider the series

\[c(t) = c_0 + c_1 t + c_2 t^2 + \cdots = \frac{1 - (1 - 4t)^{1/2}}{2t}, \]

the generating function of the well-known Catalan [1-5] numbers \(c_n = \binom{2n}{n}/(n + 1) \). Applying the star transformation to \(c(t) \) yields \(c_k^*(t) = c(t)/(1 - t \cdot c(t)) \) which equals \(c^2(t) \) because
\[\frac{c(t)}{1 - t \cdot c(t)} = c^2(t) \iff c(t) = c^2(t)(1 - t \cdot c(t)) \iff 1 = c(t) - t \cdot c^2(t), \]

a well-known identity for the Catalan numbers.

Because

\[c^2(t) = \frac{c(t) - 1}{t} = \frac{1 - 2t - (1 - 4t)^{1/2}}{2t^2}, \]

applying the Euler transformation to \(c^2(t) \) yields

\[\frac{1 - t - (1 - (1 - t)^2 - 4t^2)^{1/2}}{2t^2} = m(t), \]

the generating function of Motzkin numbers discussed in [1, 2, 4]. Applying the Euler transformation to the Motzkin numbers then yields

\[\frac{1 - (1 - 4t^2)^{1/2}}{2t^2} = c(t^2). \]

Returning to \(c(t) \) and applying the Euler transformation yields

\[c_1(t) = \frac{1 - (1 - 4t/(1 + t))^{1/2}}{2t} = \frac{(1 + t) - ((1 - t)^2 - 4t^2)^{1/2}}{2t(1 + t)} = \gamma(t), \]

the generating function of gamma numbers discussed in [2, 4], where it is noted that the gamma numbers and the Motzkin numbers satisfy the identity \(\gamma_n + \gamma_{n+1} = m_n \). Applying the star transformation to \(\gamma(t) \) also yields the Motzkin numbers.

It follows, because \(c(t) \) and \(1 - t \) are an inverse pair of series, that the following diagram is commutative:
Here are a number of algebraic examples of inverse pairs of series obtained through the application of the Euler and star transformations.

(1) \(f(t) = 1 \) and \(g(t) = 1 \) are (trivially) an inverse pair of series. Hence, \(f_\varepsilon(t) = 1/(1 + kt) \leftrightarrow^C g_\varepsilon(t) = 1/(1 - kt) \).

(2) \(f(t) = t^n \) and \(g(t) = t^{-n/(n+1)} \), for \(n \neq -1 \), are an inverse pair of series. Hence, \(f_\varepsilon(t) = t^n/(1 + kt)^{n+1} \leftrightarrow^C g_\varepsilon(t) = 1/(t^n/(n+1) - kt) \) and \(f_\varepsilon(t) = t^n/(1 - kt^{n+1}) \leftrightarrow^C g_\varepsilon(t) = 1/[t^n(1 + kt)]^{1/(n+1)} \).

(3) \(f(t) = 1/(1 - t^n)^{1/2} \) and \(g(t) = 1/(1 + t^n)^{1/2} \) are an inverse pair of series. Hence, \(f_\varepsilon(t) = 1/((1 + kt)^2 - t^n)^{1/2} \leftrightarrow^C g_\varepsilon(t) = 1/((1 + t^n)^{1/2} - kt) \).

(4) \(f(t) = 1/(1 + t^n) \) and \(g(t) = 2/(1 + (1 - 4t^n)^{1/2}) \) are an inverse pair of series. Hence, \(f_\varepsilon(t) = (1 + kt)/(1 + kt)^2 + t^n \leftrightarrow^C g_\varepsilon(t) = 2/((1 - 2kt + (1 - 4t^n)^{1/2}) \) and \(f_\varepsilon(t) = 1/(1 - kt + t^2) \leftrightarrow^C g_\varepsilon(t) = 2/(1 + kt + ((1 + kt)^2 - 4t^n)^{1/2}) \).

(5) \(f(t) = 1 - t \) and \(g(t) = 2/(1 + (1 - 4t^n)^{1/2}) \) are an inverse pair of series. Hence, \(f_\varepsilon(t) = (1 + kt - t)/(1 + kt)^2 \leftrightarrow^C g_\varepsilon(t) = 2/((1 - 2kt + (1 - 4t^n)^{1/2}) \) and \(f_\varepsilon(t) = (1 - t)/(1 - kt + kt^2) \leftrightarrow^C g_\varepsilon(t) = 2/(1 + kt + ((1 + kt)^2 - 4t^n)^{1/2}) \).

(6) \(f(t) = 2 - t \) and \(g(t) = 1/(1 + (1 - t)^{1/2}) \) are an inverse pair of series. Hence, \(f_\varepsilon(t) = (2 + 2kt - t)/(1 + kt)^2 \leftrightarrow^C g_\varepsilon(t) = 1/(1 - kt + (1 - t)^{1/2}) \) and \(f_\varepsilon(t) = (2 + t)/(1 - 2kt - kt^2) \leftrightarrow^C g_\varepsilon(t) = 1/(1 + kt + ((1 + kt)^2 - t(1 + kt))^{1/2}) \).

More examples may be obtained from these by applying the two transformations one after the other.

REFERENCES