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Abstract

Let S = K[x1; : : : ; xn] be a polynomial ring and R = S=I be a graded K-algebra where I ⊂ S
is a graded ideal. Herzog, Huneke and Srinivasan have conjectured that the multiplicity of R
is bounded above by a function of the maximal shifts in the minimal graded free resolution of
R over S. We prove the conjecture in the case that codim(R) = 2 which generalizes results in
(J. Pure Appl. Algebra 182 (2003) 201; Trans. Amer. Math. Soc. 350 (1998) 2879). We also
give a proof for the bound in the case in which I is componentwise linear. For example, stable
and squarefree stable ideals belong to this class of ideals.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let S=K[x1; : : : ; xn] be the polynomial ring with n variables over a Celd K equipped
with the standard grading by setting deg(xi)=1. Let I ⊂ S be a graded ideal and R=S=I
be a standard graded K-algebra. Consider the minimal graded free resolution of R:

0 →
⊕
j∈Z
S(−j)�Sp; j(R) → · · · →

⊕
j∈Z
S(−j)�S1; j(R) → S → 0;

where we denote with �Si; j(R) = dimK TorSi (R; K)j the graded Betti numbers of R and
p = proj dim(R) is the projective dimension of R. The ring R is said to have a pure
resolution if at each step there is only a single degree, i.e. the resolution has the
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following shape:

0 → S(−dp)�
S
p(R) → · · · → S(−d1)�

S
1 (R) → S → 0

for some numbers d1; : : : ; dp.
Let e(R) denote the multiplicity of R. Huneke and Miller proved in [15] the following

formula:

Theorem 1.1. Let R be a Cohen–Macaulay ring with a pure resolution. Then

e(R) =

( p∏
i=1

di

)/
p!:

More general, for 16 i6 proj dim(R) we deCne

Mi = max{j∈Z: �Si; j(R) �= 0} and mi = min{j∈Z: �Si; j(R) �= 0}:
The multiplicity conjecture of Huneke and Srinivasan is:

Conjecture 1.2. Let I ⊂ S be a graded ideal, R= S=I be Cohen–Macaulay and p =
proj dim(R). Then( p∏

i=1

mi

)/
p!6 e(R)6

( p∏
i=1

Mi

)/
p!:

Herzog and Srinivasan proved this conjecture in [13] for several types of ideals:
complete intersections, perfect ideals with quasipure resolutions (i.e. mi(R)¿Mi−1(R)
for all i), perfect ideals of codimension 2, codimension 3 Gorenstein ideals generated
by 5 elements (the upper bound holds for all codimension 3 Gorenstein ideals), codi-
mension 3 Gorenstein monomial ideals with at least one generator of smallest possible
degree (relative to the number of generators), perfect stable ideals (in the sense of
Eliahou and Kervaire [8]), perfect squarefree strongly stable ideals (in the sense of
Aramova et al. [2]). See also [14] for related results. The lower bound fails to hold in
general if R is not Cohen–Macaulay (see [13] for a detailed discussion). Herzog and
Srinivasan conjectured in this case the following inequality:

Conjecture 1.3. Let I ⊂ S be a graded ideal, R= S=I and c = codim(R). Then

e(R)6

(
c∏
i=1

Mi

)/
c!:

Since the codimension of a graded K-algebra is less or equal to the projective
dimension and for all i we have that Mi¿ i, the inequality in Conjecture 1.3 is stronger
than the one of Conjecture 1.2.

Herzog and Srinivasan proved this conjecture in the cases of stable ideals, squarefree
strongly stable ideals and ideals with a d-linear resolution, i.e. �Si; i+j(I) = 0 for j �= d.
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Furthermore Gold [10] established Conjecture 1.3 in the case of codimension 2 lattice
ideals. This conjecture is also known to be true for so-called a-stable ideals (see Sec-
tion 3 for the deCnition) by Gasharov et al. [9] which generalizes the stable and
squarefree stable case.

In the Crst part of this paper, we show that Conjecture 1.3 is valid for codimension
2 ideals. This generalizes the cases of perfect codimension 2 ideals of Herzog and
Srinivasan and codimension 2 lattice ideals of Gold.

For d¿ 0 let I〈d〉 ⊆ I be the ideal which is generated by all elements of degree
d in I . Recall from [11] that an ideal I ⊂ S is called componentwise linear if for
all d¿ 0 the ideal I〈d〉 has a d-linear resolution. We show that the upper bound for
the multiplicity holds for componentwise linear ideals which generalizes some of the
known cases since for example stable and squarefree stable ideals are componentwise
linear. We prove that a-stable ideals are componentwise linear and can also deduce the
conjecture in this case.

2. Codimension 2 case

Let I ⊂ S be a graded ideal and R= S=I . In this section we prove Conjecture 1.3 in
the case that codim(R) = 2.

The codimension 2 case is known if R is Cohen–Macaulay:

Theorem 2.1 (Herzog–Srinivasan [13]). Let I ⊂ S be a graded ideal and R = S=I
Cohen–Macaulay with codim(R) = 2. Then

e(R)6 (M1 ·M2)=2:

Following [1] (or [18] under the name Clter regular element) we call an element
x∈R1 almost regular for R if

(0 :R x)a = 0 for a
 0:

A sequence x1; : : : ; xt ∈R1 is an almost regular sequence if for all i∈ {1; : : : ; t} the
element xi is almost regular for R=(x1; : : : ; xi−1)R. It is well-known that, provided |K |=
∞, after a generic choice of coordinates we can achieve that a K-basis of R1 is almost
regular for R. (See [1,18] for details.)

If dimK (R)=n and since neither the Betti numbers nor the multiplicity of R changes
by enlarging the Celd, we always may assume that x1; : : : ; xn ∈R is an almost regular
sequence for R to prove Conjecture 1.3. In the following we will not distinguish
between an element x∈ S1 and the image in R1.

We use almost regular elements to reduce the problem to dimension zero. At Crst
we have to recall some properties of almost regular elements.

Lemma 2.2. Let I ⊂ S be a graded ideal and R= S=I . Let x∈R1 be almost regular
for R. If dim(R)¿ 0, then dim(R=xR) = dim(R) − 1.
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Proof. We have the exact sequence

0 → (0 :R x)(−1) → R(−1) x→R→ R=xR→ 0:

Since (0 :R x) has Cnite length and dim(R)¿ 0 we conclude that dim(R=xR)=dim(R)−1.

Lemma 2.3. Let I ⊂ S be a graded ideal and R= S=I . Let x∈R1 be almost regular
for R. Then

(i) If dim(R)¿ 1, then e(R) = e(R=xR).
(ii) If dim(R) = 1, then e(R)6 e(R=xR).

Proof. Again we have the exact sequence

0 → (0 :R x)(−1) → R(−1) x→R→ R=xR→ 0:

In the case dim(R)¿ 1 we get e(R) = e(R=xR), because (0 :R x) has Cnite length. If
dim(R) = 1, then

e(R) = e(R=xR) − l((0 :R x))6 e(R=xR):

Let K•(k;R) denote the Koszul complex and H•(k;R) denote the Koszul homol-
ogy of R with respect to x1; : : : ; xk ∈ S (see [6] for details). Note that K•(k;R) =
K•(k; S)

⊗
S R where K•(k; S) is the exterior algebra on e1; : : : ; ek with deg(ei) = 1

together with a diKerential @ induced by @(ei) = xi. For a cycle z ∈K•(k;R) we denote
with [z] ∈H•(k;R) the corresponding homology class. For k = 0 we set H0(0;R) = R.
Then there are long exact sequences relating the Koszul homology groups:

· · · → Hi(k;R)(−1)
xk+1−−−→Hi(k;R) → Hi(k + 1;R) → Hi−1(k;R)(−1)

xk+1−−−→ · · · → H0(k;R)(−1)
xk+1−−−→H0(k;R) → H0(k + 1;R) → 0:

The map Hi(k;R) → Hi(k + 1;R) is induced by the inclusion of the corresponding
Koszul complexes. Every homogeneous element z ∈Ki(k+1;R) can be uniquely written
as ek+1 ∧ z′ + z′′ with z′; z′′ ∈Ki(k;R). Then Hi(k+1;R) → Hi−1(k;R)(−1) is given by
sending [z] to [z′]. Furthermore Hi(k;R)(−1)

xk+1−−−→Hi(k;R) is the multiplication map
with xk+1. Observe that H0(k;R) = R=(x1; : : : ; xk)R. As noticed above we may assume
that the image of x1; : : : ; xn ∈ S1 in R1 is an almost regular sequence for R. In this case
the modules Hi(k;R) all have Cnite length for i¿ 0.

We are able to extend Theorem 2.11 to the general case, which also generalizes the
main result in [10].

Theorem 2.4. Let I ⊂ S be a graded ideal and R= S=I with codim(R) = 2. Then

e(R)6 (M1 ·M2)=2:
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Proof. Let x=x1; : : : ; xn−2 and consider R̃=R=xR. Notice that by 2.2 and 2.3 we have
that e(R)6 e(R̃) and 2 = codim(R) = codim(R̃). Observe that R̃= S̃=Ĩ , where S̃ is the
2-dimensional polynomial ring S=xS and Ĩ = (I + (x))=(x). Let

Mi = max{j∈Z: �Si; j(R) �= 0} for i = 1; 2

and

M̃ i = max{j∈Z: �S̃i; j(R̃) �= 0} for i = 1; 2:

We claim that

M̃ 16M1 and M̃ 26M2: (1)

Since dim(R̃) = 0, the ring R̃ is Cohen–Macaulay. Thus it follows from 2.1 that

e(R)6 e(R̃)6 (M̃ 1 · M̃ 2)=26 (M1 ·M2)=2:

It remains to prove claim (1). The Crst inequality can easily be seen: M̃ 1 is the
maximal degree of a minimal generator of Ĩ and M1 is the maximal degree of a
minimal generator of I . Since Ĩ = (I + (x))=(x) we get that

M̃ 16M1:

Next we prove the second inequality M̃ 26M2. Let H•(k;R) denote the Koszul homol-
ogy of R with respect to x1; : : : ; xk ∈ S for k = 1; : : : ; n and H̃•(l; R̃) denote the Koszul
homology of R̃ with respect to xn−2+1; : : : ; xn−2+l ∈ S̃ for l= 1; 2. We denote with

Mi;k = max({j∈Z: Hi(k;R)j �= 0} ∪ {0}) for i = 1; 2 and k = 1; : : : ; n;

and

M̃ i; l = max({j∈Z: H̃ i(l; R̃)j �= 0} ∪ {0}) for i = 1; 2 and l= 1; 2:

Observe that these numbers are well-deCned since all considered modules have Cnite
length. Note that Mi;n =Mi and M̃ i;2 = M̃ i for i = 1; 2. We have to show that

M̃ 2;26M2; n:

Since H0(n− 2;R) = R̃ there is the long exact sequence of Koszul homology groups

· · · → H1(n− 2;R) → H1(n− 1;R) → R̃(−1)
xn−1−−−−−→ R̃→ R̃=(xn−1)R̃→ 0:

We also have an exact sequence

0 → H̃ 1(1; R̃) → R̃(−1)
xn−1−−−−−→ R̃→ R̃=(xn−1)R̃→ 0:

We get a surjective homomorphism H1(n − 1;R) � Ker(R̃(−1)
xn−1−−−−−→ R̃) and an

isomorphism H̃ 1(1; R̃) ∼= Ker(R̃(−1)
xn−1−−−−−→ R̃) of graded K-vector spaces. Hence

M̃ 1;16M1; n−1:

Next we consider the exact sequence

· · · → H2(n;R) → H1(n− 1;R)(−1)
xn−−−−−→H1(n− 1;R) → H1(n;R) → · · ·

Since H1(n− 1;R)M1; n−1+1 = 0 we have a surjective map

H2(n;R)M1; n−1+1 → H1(n− 1;R)M1; n−1 :
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By deCnition of the number M1; n−1 we have that H1(n − 1;R)M1; n−1 �= 0. It follows
that H2(n;R)M1; n−1+1 �= 0 and therefore

M1; n−1 + 16M2; n:

We also have an exact sequence

0 → H̃ 2(2; R̃) → H̃ 1(1; R̃)(−1)
xn−−−−−→ H̃ 1(1; R̃) → H̃ 1(2; R̃) → · · ·

Note that H̃ 1(1; R̃)M̃ 1; 1+1=0. Considering the sequence in degree M̃ 1;1+1 we get an iso-
morphism H̃ 2(2; R̃)M̃ 1; 1+1

∼= H̃ 1(1; R̃)M̃ 1; 1
�= 0 and thus M̃ 1;1 +16 M̃ 2;2. In degree M̃ 2;2

we obtain the injective map 0 → H̃ 2(2; R̃)M̃ 2; 2
→ H̃ 1(1; R̃)M̃ 2; 2−1. Since by deCnition

of the number M̃ 2;2 we have that H̃ 2(2; R̃)M̃ 2; 2
�= 0, it follows that H̃ 1(1; R̃)M̃ 2; 2−1 �= 0

and therefore M̃ 2;26 M̃ 1;1 + 1. Hence

M̃ 2;2 = M̃ 1;1 + 1:

All in all we have shown that

M̃ 2 = M̃ 2;2 = M̃ 1;1 + 16M1; n−1 + 16M2; n =M2

which is the second part of the desired inequalities of (1). Thus we proved (1) and
this concludes the proof.

3. Componentwise linear ideals

In this section we prove Conjecture 1.3 for componentwise linear ideals. We Crst
introduce some notation and recall some deCnitions. (For unexplained notation see
[6].) Given a Cnitely generated S-module M �= 0 and i; j∈Z we denote with �Si; j(M)=
dimK TorSi (M;K)j the graded Betti numbers of M . Let

proj dim(M) = max{i∈Z: �Si; i+j(M) �= 0 for some j}
be the projective dimension and

reg(M) = max{j∈Z: �Si; i+j(M) �= 0 for some i}
be the Castelnuovo–Mumford regularity of M .

For a=(a1; : : : ; an) ∈Nn and a monomial xa1
1 · · · xann ∈ S we set xa. Let |a|=a1+· · ·+an

and supp(a) ={i : ai �= 0} ⊆ [n] ={1; : : : ; n}. A simplicial complex � on the vertex set
[n] is a collection of subsets of [n] such that {i} ∈� for i=1; : : : ; n, and F ∈� whenever
F ⊆ G for some G ∈�. For F ∈� we deCne dim(F) = |F | − 1 where |F | = |{i∈F}|
and dim(�)=max{dim(F): F ∈�}. Then F ∈� is called an i-face if i=dim(F). Faces
of dimension 0, 1 are called vertices and edges, respectively. The maximal faces under
inclusion are called the facets of the simplicial complex. Note that ∅ is also a face of
dimension −1. For i= −1; : : : ; dim(�) we deCne fi to be the number of i-dimensional
faces of �.

We denote with �∗ = {F : Fc �∈ �} the Alexander dual of � where Fc = [n] \ F .
This is again a simplicial complex. For F = {i1; : : : ; is} ⊆ [n] we also write xF for
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the monomial
∏
i∈F xi. These monomials are also called squarefree monomials. Then

K[�] = S=I� is the Stanley–Reisner ring of � where

I� = (xF : F ⊆ [n]; F �∈ �)

is the Stanley–Reisner ideal of �. Observe that dim(K[�]) = dim(�) + 1. (See [6] for
details.) At Crst we relate some of the considered invariants. For a graded ideal I ⊂ S
let

a(I) = min{d∈Z: �S0;d(I) �= 0}
be the initial degree of I .

Lemma 3.1. Let � be a (d− 1)-dimensional simplicial complex. Then:

(i) e(S=I�) = �S0; a(I�∗ )(I�∗).
(ii) codim(S=I�) = a(I�∗).
(iii) proj dim(S=I�) = reg(I�∗).

Proof. Observe that F ∈� is a facet if and only if xFc is a minimal generator of I�∗ .
Hence F has maximal dimension d − 1 if and only if xFc is a minimal generator of
I�∗ of minimal degree. It follows that

a(I�∗) = n− d and �S0; a(I�∗ )(I�∗) = fd−1:

(i) We know that e(S=I�) = fd−1. (For example combine 4.1.9 and 5.1.9 in [6].)
Thus e(S=I�) = �S0; a(I�∗ )(I�∗).

(ii) This follows from

codim(S=I�) = n− dim(S=I�) = n− dim(�) − 1 = n− d= a(I�∗):

(iii) This is a result of Terai in [17].

Recall that an ideal I ⊂ S is called a monomial ideal if it is generated by monomials
of S. We denote with G(I) the unique minimal system of generators for I . A mono-
mial ideal I ⊂ S is called squarefree strongly stable, if it is generated by squarefree
monomials such that for all xF ∈G(I) and i with xi|xF we have for all j¡ i with xjAxF
that (xF=xi)xj ∈ I .

Note that for a simplicial complex � we have that I� is squarefree strongly stable
if and only if I�∗ is squarefree strongly stable.

We give a new proof for the bound of the multiplicity in the case of squarefree
strongly stable ideals which avoids the calculations of the original proof in [13].

Theorem 3.2. Let � be a simplicial complex such that I� is a squarefree strongly
stable ideal and c = codim(S=I�). Then

e(S=I�)6

(
c∏
i=1

Mi

)/
c!:
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Proof. Let b(S=I�)=max{i∈Z: �Si; i+reg(S=I�)(S=I�) �= 0}. Since I� and I�∗ are squarefree
strongly stable ideals, it follows from Theorem 3.88 below that

�Si; i+reg(S=I�)(S=I�) �= 0 for i = 1; : : : ; b(S=I�) and

�S0; a(I�∗ )(I�∗)6

(
proj dim(I�∗) + a(I�∗)

a(I�∗)

)
:

Let p= proj dim(I�∗). We have that

codim(S=I�) = a(I�∗)6max{j∈Z: �Sp;p+j(I�∗) �= 0} = b(S=I�);

where the last equality follows from Theorem 2.8 in [5]. (These numbers describe
certain “extremal Betti numbers” of the considered modules.)

Hence we get that

Mi = reg(S=I�) + i for i = 1; : : : ; codim(S=I�):

Together with the results of Lemma 3.1 we obtain

e(S=I�) = �S0; a(I�∗ )(I�∗)6

(
proj dim(I�∗) + a(I�∗)

a(I�∗)

)

=

(
reg(S=I�) + codim(S=I�)

codim(S=I�)

)

=

(codim(S=I�)∏
i=1

Mi

)/
codim(S=I�)!

For an arbitrary graded ideal we can prove a weaker bound than the one of Conjec-
ture 1.3 which was already noticed in [13]. We also get a bound for the codimension
of the considered ideal.

Corollary 3.3. Let char(K) = 0, I ⊂ S be a graded ideal, R= S=I and c = codim(R).
Then

(i) c6max{i∈Z: �Si; i+reg(S=I)(S=I) �= 0}:
(ii) e(R)6 ( reg(R)+c

c ).

Proof. Let again

b(S=I) = max{i∈Z: �Si; i+reg(S=I)(S=I) �= 0}:
By replacing I with the generic initial ideal Gin(I) with respect to the reverse lexico-
graphic order of I (see for example [7] for details) we do not change the multiplicity
and the codimension. Furthermore, by Theorem 2.8 in [5] also the number b(S=I) does
not change. This means we may assume that I is a monomial ideal.
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By polarization we get a Stanley–Reisner Ideal I� for some complex � with the
same Betti diagram as I and also the multiplicity, codimension do not change. Hence
we may assume that I = I�.

Now we replace I� by the Stanley–Reisner ideal of the associated simplicial complex
with respect to symmetric or algebraic shifting. Again the multiplicity, codimension and
b(S=I�) do not change and we may assume that I� is a squarefree strongly stable ideal.
(See [4] for details on shifting operations.)

In the proof of Theorem 3.2 we showed in fact that for a squarefree strongly stable
ideal the desired bounds of (i) and (ii) hold. This concludes the proof.

Remark 3.4. It can also be shown that the bound for the multiplicity of Corollary
3.3 is valid if char(K)¿ 0. This can be proved analogously to the discussion before
Corollary 3.8 in [13].

In a special case we can prove Conjecture 1.3.

Corollary 3.5. Let I ⊂ S be a graded ideal, R= S=I , c = codim(R) and suppose that
Mi = reg(R) + i for i = 1; : : : ; c. Then

e(R)6

(
c∏
i=1

Mi

)/
c!:

Remark 3.6. Corollary 3.5 does not imply the upper bound for the multiplicity in
Conjecture 1.3 in full generality. For example even for complete intersections with
ideals generated in degree ¿ 2 the assumptions of the corollary are not satisCed.

But several known cases besides squarefree strongly stable ideals are included in
this result. For example the following cases which were originally proved in [13] with
diKerent proofs for each type of ideal:

(i) I is a stable ideal.
(ii) I is a squarefree stable ideal.

(iii) I has a linear resolution.

Next we generalize these results to the case of componentwise linear ideals.

In the following we Cx a Celd K with char(K) = 0. Recall that an ideal I is called
componentwise linear, if for all d¿ 0 the ideal I〈d〉 has a d-linear resolution.

Theorem 3.7. Let I ⊂ S be a componentwise linear ideal, R= S=I and c= codim(R).
Then

e(R)6

(
c∏
i=1

Mi

)/
c!:

Proof. Aramova et al. [3] proved that an ideal I is componentwise linear if and only
if �Si; j(I) = �Si; j(Gin(I)) for all i; j∈Z where Gin(I) is the generic initial ideal of I
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with respect to the reverse lexicographic order. We know that Gin(I) is stable (see
[7]). Then the Eliahou–Kervaire resolution of Gin(I) (see also 3.8 below) and 3.3 (i)
imply that

Mi(S=Gin(I)) = reg(S=Gin(I)) + i for i = 1; : : : ; codim(S=Gin(I)):

Thus we can apply Corollary 3.5 to conclude the proof.

We introduce a large class of componentwise linear ideals. We Cx a vector a =
(a1; : : : ; an) where 26 ai6∞. The following type of ideal was deCned in [9] and
[16]: Let I ⊂ S be a monomial ideal. I is said to be a-bounded if for all xu ∈G(I)
and all i∈ [n] one has ui ¡ai. The ideal I is called a-stable if, in addition for all
xu ∈G(I) and all j6m(u) = max{i∈ [n]: ui �= 0} with uj ¡aj − 1, we have that
xjxu=xm(u) ∈ I . It is easy to see that if I is a-stable, then for all xu ∈ I and all j6m(u)
with uj ¡aj − 1 we have that xjxu=xm(u) ∈ I . If I is a-stable with a = (2; : : : ; 2), then I
is exactly squarefree stable. For a = (∞; : : : ;∞) we obtain a stable ideal in the usual
sense.

Let a; b∈Z. We make the convention that
( a
b

)
= 0 unless 06 b6 a. If xu ∈ S with

u ≺ a, then we deCne

l(u) = |{i: ui = ai − 1; i ¡m(u)}|:
The following Theorem was proved in [9,16].

Theorem 3.8. Let I ⊂ S be an a-stable ideal and i; j∈Z. One has, independent of
the characteristic of K ,

�Si; i+j(I) =
∑

xu∈G(I); |u|=j

(
m(u) − 1 − l(u)

i

)
:

As a consequence we are able to determine the regularity for a-stable ideals.

Corollary 3.9. Let I ⊂ S be an a-stable ideal. Then

reg(I) = max{|u|: xu ∈G(I)}:
In particular, if I is generated in degree d, then I has a d-linear resolution.

Corollary 3.10. Let I ⊂ S be an a-stable ideal, R= S=I and c = codim(I). Then

e(R)6

(
c∏
i=1

Mi

)/
c!:

Proof. Apply 3.5 and 3.8.

We can prove a little bit more:

Theorem 3.11. Let I ⊂ S be an a-stable ideal. Then I is componentwise linear.
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Proof. For k ∈N let I6k ⊂ S be the ideal which is generated by all homogeneous
polynomials of I of degree at most k.

We use the following criterion from [12]: a monomial ideal I is componentwise
linear if and only if reg(I6k)6 k for all k ∈N. Let I be an a-stable ideal. Then for all
k the ideal I6k is a-stable. By 3.9 we have reg(I6k)6 k. This concludes the proof.
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