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Abstract

The interest on renewable energy resources is growing and the study of different integration aspects of these resources becomes very

important to overcome problems caused by their variability or uncertainty. This paper treats the economic environmental power

dispatch as a probabilistic multiobjective problem. The operation cost and green house gas emission functions are considered as

the sum of deterministic part and probabilistic one. First, the problem is solved based on expected values of generated wind power

then, using the cumulative density function (CDF) of each renewable energy source (RES), the CDF of the required reserve to

compensate the RESs variability in order to keep the power balance. Then, respecting to the reserve contribution of each thermal

generator, the probabilistic part of the global generation cost as well as its CDF are developed. Finally, the proposed approach is

applied to solve the active power dispatch problem of IEEE 30-bus test system in two cases with and without RESs. The simulation

results show that this method allows to get the complete information about the cumulative distribution function of the actual global

cost of the system operation.
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1. Introduction

With the growing interest to use renewable and sustainable new energy sources (RESs) for economic and/or envi-

ronmental reasons, systems power operators have to start changing their power management policies because of the

changing conducted by the intermittent RESs generation. In [1], a probabilistic approach based on the convolution

technique to assess the long-term performance of a hybrid solarwind power system is developed in order to deal with

the RES variability in the economic dispatch. Other studies have been done to reach a great power management in

microgrids such as the approach developed in [2] which proposes a dynamic assignment of renewable energy tokens

algorithm for collaborative microgrids based on the load management side and allowing to keep the power balance.
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Besides, the paper [3] proposes non-uniform hierarchical 16-QAM to provide a reliable data transmission over wire-

less links to achieve an efficient information exchange between the participants in such collaborative system.

This paper proposes a resolution approach for the economic dispatch problem (EED) of a power system integrating

RESs. Both the cost and the greenhouse gas emission of the system operation to minimize as a multiobjective opti-

mization problem. Recently, the use of evolutionary algorithms is increasing due to their abilities to resolve complex

problems especially in electrical field such solving problems of active and reactive power dispatch problems [4,5].

This work uses fast and elitist multi-objective genetic algorithm (NSGA-II) to optimize the EED of power system in

terms of load supplying and contribution of renewable sources in production power. Besides, a probabilistic study of

the required reserve is done in order to give the cumulative distribution function (CDF) of the global operation cost.

The reminder of this paper is structured as follows. Section II presents a probabilistic modeling of RESs, Section III

develops the problem formulation while Section IV details the used optimization approach. Then, Section IV presents

results discussion are conducted in Section V and finally, section V concludes this work.

2. Probabilistic power modeling of renewable energy sources

There are various models that express mathematically the electrical power produced by renewable technologies

using deterministic or probabilistic approaches [6,7].

2.1. Probabilistic modeling of PV cell power

The energy produced by a photovoltaic (PV) generator is estimated based on manufacturer data as well as climate

data (radiation and temperature). The output power of the PV generator can be calculated by [8]

PPV = rAη (1)

with

η = ηre f (1 − γ(T − Tre f )) (2)

where r is the solar irradiance; A is the total area of the PV module; η is the PV generation efficiency. On the other

hand, η varies with the cell temperature T , where ηre f is the reference efficiency of the photovoltaic generator, γ is the

temperature coefficient of short-current [K] and Tre f is the reference cell temperature [K]. The solar irradiance r can

be described reasonably by a beta distribution [9]

fr(r) =
Γ(a + b)

Γ(a)Γ(b)

(
r

rmax

)a−1 (
1 − r

rmax

)b−1

(3)

with

a = μ

[
μ(1 − μ)

σ2 − 1

]
(4)

b = (1 − μ)

[
μ(1 − μ)

σ2 − 1

]
(5)

where rmax is maximum solar irradiance. In this paper, it is assumed that the PV cell temperature forecasts are without

errors. Then the PDF of PV cell power PPV is given by

fPV (PPV ) =
Γ(a + b)

Γ(a)Γ(b)

(
PPV

Pmax
PV

)a−1 (
1 − PPV

Pmax
PV

)b−1
1

Aη
(6)

where Pmax
PV is the maximum generated power. Then, the expected values and the cumulative distribution function

(CDF) of PV generation are expressed in Eq. 7 and Eq. 8.

E(PPV ) =

∫ +∞
−∞

PPV fPV (PPV )dPPV (7)
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CDF(PPV ) =

∫ PPV

−∞
fPV (x)dx (8)

2.2. Probabilistic modeling of wind power

The output power of a wind turbine varies at different wind speeds and accordingly to the power curve given by

the manufacturer. Indeed, the power output of wind turbine can be approximated by [8,10],

Pw(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 v < vc, v > v f

pr
v−vc
vr−vc

vc ≤ v ≤ vr

pr vr ≤ v ≤ v f

(9)

where pr is the rated electrical power, vc is the cut-in wind speed at which the turbine first starts to rotate and generate

power, v f the Cut-off wind speed which is the breaking system employed to avoid damage to the rotor and vr the rated

wind speed [m/s] at which the power output reaches the best operating at pr.

The wind speed is a random variable which mostly approximated by Weibull distribution [1].

f (V) =

(
k
c

) (V
c

)k−1

exp

(
−
(V

c

)k)
(10)

where c is a scale parameter and k is a shape parameter.

The wind power PDF is deduced from Eq.9 and Eq.10 and since the function of wind power in terms of wind speed

variable is strictly increasing, the PDF of Pw can be expressed by

fW (PW ) ==

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − exp

(
−
(Vc

c

)k)
+ exp
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c

)k⎞⎟⎟⎟⎟⎟⎠ Pw = 0
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k
c

) (
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c
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exp
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c
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Pr

0 ≤ Pw ≤ Pr

exp
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− exp
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)k⎞⎟⎟⎟⎟⎟⎠ Pw = Pr

(11)

Then, the expected values and the cumulative distribution function (CDF) of wind generator are expressed in Eq. 12

and Eq. 13.

E(PW ) =

∫ +∞
−∞

PW fW (PW )dPW (12)

CDF(PW ) =

∫ PW

−∞
fW (x)dx = 1 − exp

⎛⎜⎜⎜⎜⎜⎝−
(

Vc + (Vr − Vc)P/Pr

c

)k⎞⎟⎟⎟⎟⎟⎠ (13)

3. Probabilistic economic emission dispatch optimization

This paper considers the economic emission dispatch (EED) problem as the combination of two subproblems.

The first one is a multiobjective optimization of fuel cost and greenhouse gases emission of thermal units (TU)

which accounts the wind ans PV generations by their expected values. While the second subproblem considers

the cumulative distribution functions (CDF) of either wind and PV power in order to compute the total necessary

reserve. In fact, this work takes into account only the required reserve for compensating the disparity between actual

renewable generated power and expected values and considers that reserve is guaranteed by the system TUs and the

power contributing in reserve of each one is depending on the the shape slope of the spinning reserve cost.

Using the expected values of renewable sources, the residual load power Pr
D can be expressed by,

Pr
D = PD −

NW∑
i=1

E(PWi) −
NPV∑
i=1

E(PPVi) (14)
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where PD is the active power demand. Then, this paper considers the EED problem solution as a multiobjective

problem of cost and emission objective functions to satisfy the residual demand. The classical economic dispatch

problem of finding the optimal combination of power generation, that minimizes the total fuel cost, while satisfying

required demand at each bus [11], is formulated as,

f1 =
NG∑
i=1

(ai + biPGi + ciP2
Gi), (15)

where ai, bi and ci are the fuel cost coefficients of generator i, PGi is the power produced per unit (p.u) by generator i
and NG is the number of generators. The amount of greenhouse gas emissions is given as the sum of a quadratic and

exponential functions of each generator [11] and is given by,

f2 =
mg∑
i=1

(
10−2(αi + βiPGi + γiP2

Gi) + ψ exp(λiPGi)
)
, (16)

where αi, βi, γi and λi are the emission coefficients of generator i.
Equality constraint: Such constraints presents the active power balance of the whole electrical network. The power

losses are neglected in this work the this constraint is formulated by,

NG∑
i=1

PGi − Pr
D = 0, (17)

where PD and PL are, respectively, the active power demand and the active power losses.

Inequality constraints: Each voltage and active power Pgi is restricted by an upper and a lower limits, and expressed

by,

Vmin
i ≤ Vi ≤ Vmax

i , (18)

Pmin
gi ≤ Pgi ≤ Pmax

gi . (19)

Since the generated power of TUs are obtained, the total required reserve can be given as

TR(PW1
, ..., PWNW

, PPV1
, ..., PPVNPV

) =

NG∑
i=1

PGi +

NW∑
i=1

PWi +

NPV∑
i=1

PPVi − PD (20)

We note that the expected value of the total required reserve is a null value and its PDF is equal to the convolving

product of all RES PDFs. In the case of two generators wind and photovoltaic, the TR CDF is given by

CDF(TR) =

∫ +∞
−∞

FW (TR − PPV ) fPV (PPV )dPPV (21)

Finally, the reserve cost is added to the solutions values of f1. The cost contributing reserve power PS Ri can be

expressed by [12],

CS Ri(PS Ri) = xi + yiPS Ri (22)

where xi and yi are the spinning reserve cost of the ith thermal generator.

4. Optimization method

The problem defined above needs a multi-objective optimization approach to be solved. Then, this section describes

the proposed algorithm. First, we develop the operating process then, we present the flow chart of the proposed

optimization approach.



 Hasnae Bilil et al.  /  Energy Procedia   50  ( 2014 )  789 – 796 793

4.1. Multiobjective optimization

A general multiobjective optimization problem can be mathematically expressed as follows [13] :

Minimize F(x) =
[
f1(x), f2(x), . . . , fNobj

(x)
]

(23)

Subject to gk(x) ≤ 0, k = 1, . . . ,Nc,

where x = [x1, x2, . . . , xD]T with x j can be either real, integer or boolean values, and D is the research space dimension.

fr(·) are the Nobj objective functions and gk(·) are the Nc constraint functions of the problem.

The family of optimal solutions of this MOP is composed of all those potential solutions such that the components

of the corresponding objective vectors whose elements cannot be simultaneously improved. This is known as the

concept of Pareto optimality. In a minimization problem, Pareto dominance and Pareto optimality are defined as

follows [14] :

Definition 1 (Pareto dominance). A given vector x = [x1, x2, . . . , xD] is said to dominate y = [y1, y2, . . . , yD] if and
only if ∀ j ∈ {1, 2, . . . ,D}, x j ≤ y j and ∃ j0 ∈ {1, 2, . . . ,D}, x j0 < y j0 .

Definition 2 (Pareto optimality). For a general MOP, a given solution x	 ∈ F , where F is the feasible solution space,
is Pareto optimal if and only if there is no x ∈ F that dominates x	.

4.2. Fast and elitist multiobjective genetic algorithm

Fast and elitist multiobjective genetic algorithm (NSGA-II) is the second version of NSGA which improves this

later to overcome the computation complexity and the non-elitist characteristic of solutions [15]. NSGA-II method

starts by initializing the population and assigning to each point the appropriate rank. Thereafter, reproduction oper-

ators such as tournament selection, recombination and mutation are used to create the offspring population. Then,

the two populations parent and offspring are combined and and sorted following the comparison operators mentioned

above. More details and complexity study of NSGA-II are given in [15]. The basic operations of NSGA-II are as

follows:

• Fast Non-dominated Sorting which is based on two entities. The first one is the calculation of the number of solutions

dominating each solution in the current population. This number determine the rank of each solution. The second

entity is the set of solutions that a solution dominates. The sorting process of a population P is described in the

algorithm 1.
• Density estimation (crowding distance): presents the density of solutions surrounding a particular point in Pareto

front. It is the average distance of two points on either side of this point along each of the objectives.
• Crowded-Comparison Operator: which compares two solutions on the basis of both the rank and crowded distance.

The better solution is this with smaller rank. In the case of rank equality, the saved solution is this with smaller

crowded distance.

5. Simulation and results

Hereafter, we use the proposed optimization algorithm to solve the power dispatch problem in the case of a IEEE

30-bus test network. This network which includes 30 buses, 6 thermal generators and 41 transmission lines [16]. Table

1 presents the fuel cost and emission function coefficients. The grid data and the buses loads on a 100MVA base of

the test system are given in [16]. In order to show performances f the proposed approach, two cases are studied. In the

first one, we consider the classical EED with and without considering the spinning reserve cost and which considers

the TUs only. However, in the second case, the two first TUs generators are replaced by, the first one, wind power

generator and the second one by PV cell generator of the same capacity 50MW and 60MW, respectively. The CDF of

both wind and PV generators are presented in Figs. 1a and 1b, respectively. Figs. 2a and 2b shows the Pareto fronts

with taking into account the spinning reserve cost in the second one. Comparing these curves with the obtained one

in the case of considering the expected values of wind and PV generators as shown in Fig. 3, it is well observed that
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Algorithm 1 Fast non dominated sort

1: for p ∈ P do
2: S p = ∅ { S p is the set of solutions that the solution p dominates.}
3: np = 0 { np is the domination count}
4: for q ∈ P do
5: if p ≺ q then
6: S p = S p ∩ {p} {p dominates q}
7: else
8: np = np + 1

9: end if
10: if np = 0 then
11: prank = 1

12: F1 = F1 ∪ {p}
13: end if
14: end for
15: end for
16: i = 1 {Initialize the front counter}
17: while Fi � ∅ do
18: Q = ∅
19: for q ∈ S p do
20: nq = nq − 1

21: if nq = 0 then
22: qrank = 1

23: Q = Q ∪ {q}
24: end if
25: end for
26: i = i + 1

27: end while

the cost and emission functions get better values. But, it is important to note that this curve reflect only the expected

values of RES generations. Three particular solutions are chosen, especially extreme points and a middle one, in

order to show the CDF of all possible total costs, as illustrated in 4b, which are elaborated based on the CDF of total

required reserve cost as shown in Fig. 4a.

G1 G2 G3 G4 G5 G6

Cost coef

a 10 10 20 10 20 10

b 200 150 180 100 180 150

c 100 120 40 60 40 100

x 30 35 25 30 25 30

y 300 190 320 310 320 310

Emission coef

α 4.091 2.543 4.258 5.326 4.258 6.131

β -5.554 -6.047 -5.094 -3.550 -5.094 -5.555

γ 6.490 5.638 4.586 3.380 4.586 5.151

ψ 2.0e-4 5.0e-4 1.0E-6 2.0E-3 1.0e-6 1.0e-5

λ 2.857 3.333 8.000 2.000 8.000 6.667

Limits
Pmin 5 5 5 5 5 5

Pmax 50 60 100 120 100 60

Table 1: Cost and emission coefficients of IEEE-30 generators
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Fig. 1: Cumulative distribution of (a) PV cell generation and (b) wind power generation
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Fig. 2: Economic emission dispatch solutions in the case required reserve cost (a) not considered and (b) considered
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Fig. 3: Economic emission dispatch solutions considering expected values of RESs generations

6. Conclusion

This paper extends the classical multiobjective economic emission dispatch of a power system with only thermal

units production to a probabilistic EED of a system with renewable energy sources. The proposed approach is based

on determining the cumulative distribution function (CDF) of the required reserve in order to find the CDF of all the

problem random variables and especially to determine the CDF of total operating cost. The obtained results show
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Fig. 4: Cumulative distribution function of (a) contributing reserve and of (b) three particular solutions

clearly the importance of the obtained performances allowing a great dispatch of the future power system generation.

This study can be extended to analyze and to treat the probabilistic EED of power system with more RES diversity

such as biomass, CSP with and without storage, geothermal, solar thermal and heliostat. And also in the case of

combined heat and power.
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