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We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluores-
cence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA.
mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of
the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear
accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene
encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon.

Published by Elsevier Inc.
Introduction

Rift Valley fever virus (RVFV) is a mosquito-borne virus in the
family Bunyaviridae, genus Phlebovirus. RVFV encodes seven pro-
teins in its three genome segments L, M, and S. The L segment
encodes the RNA-dependent RNA polymerase (Muller et al., 1992,
1994). The M segment encodes the viral glycoproteins GN and GC, a
nonstructural protein NSM, and a 78-kDa protein (Collett et al.,
1985; Kakach et al., 1988). The S segment encodes the nucleo-
capsid protein (N) and a nonstructural protein NSS (Giorgi et al.,
1991). The NSS protein has been shown to interfere with host RNA
synthesis by targeting components of the TFIIH transcription fac-
tor (Cyr et al., 2015; Kalveram et al., 2011; Le May et al., 2004). We
previously demonstrated that NSS gene expression alters the
localization of the translation-related protein polyadenylate
binding protein 1 (PABP1) (Copeland et al., 2013).

Our prior studies demonstrated that PABP1 becomes seques-
tered in the nuclei of RVFV-infected cells, suggesting a block in
PABP1 nuclear export during infection (Copeland et al., 2013).
PABP1 nuclear export has been shown to occur by mRNA export-
dependent (Burgess et al., 2011) and -independent mechanisms
(Woods et al., 2005). A change in PABP1 export can therefore be an
indicator of a change in mRNA export. To determine if mRNA
(C.S. Schmaljohn).
export was altered during RVFV infection, we measured changes in
mRNA localization.
Results and discussion

Host mRNA accumulates in the nuclei of RVFV infected cells

We evaluated the location of host mRNA during infection with
RVFV. To determine if changes in mRNA localization occurred
during infection with RVFV, we examined infected cells using
fluorescence in situ hybridization (FISH) with a Cy3-labeled oligo d
(T) probe. In mock-infected cells, polyadenylated RNA produced a
diffuse signal in the cytoplasm and a slightly stronger mottled
nuclear pattern (Fig. 1A). This pattern is consistent with previously
observed mRNA staining in cells (Dias et al., 2010; Faria et al.,
2005; Satterly et al., 2007). In contrast, RVFV MP12-infected cells
exhibited weak diffuse cytoplasmic staining with strong nuclear
aggregates (Fig. 1A). The observed decrease in cytoplasmic signal is
not surprising given that RVFV inhibits host transcription (Kal-
veram et al., 2011; Le May et al., 2004). The nuclear aggregation of
mRNA seen during RVFV infection is consistent with the staining
pattern observed when polyadenylated RNA export is blocked
(Burgess et al., 2011; Satterly et al., 2007). These results reveal a
previously undescribed arrest in mRNA export during RVFV
infection.

To determine if the aggregated nuclear mRNA was coincident
with nuclear PABP1, co-staining was performed with oligo d
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Fig. 1. mRNA localization during RVFV infection. (A) Fluorescence micrographs of cells infected with RVFV MP12 or mock-infected for 24 h and then fixed and stained for
polyadenylated RNA and DNA. Insets show an enlarged view (3� ) of each panel. (B) Fluorescence micrographs of cells infected with RVFV MP12 or mock-infected for 24 h
and then fixed and stained for polyadenylated RNA and PABP1.
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(T) probe and an antibody specific for PABP1 on mock- and RVFV
MP12-infected samples. PABP1 and polyadenylated RNA staining
were coincident in the nuclei of RVFV-infected but not mock-
infected cells (Fig. 1B). As in our previous study, nuclear relocali-
zation of PABP1 occurred in 80–90% of RVFV infected cells.

NSS is responsible for the nuclear accumulation of host mRNA during
RVFV infection

To examine the roles of individual RVFV proteins in the
observed change in mRNA localization, we transfected cells with
RVFV M or S segment expression plasmids and subsequently
detected mRNA location by FISH. To assess M segment protein
influences on the localization of mRNA, we transfected cells with a
plasmid expressing the codon-optimized M segment from the
fourth start codon. Expression was confirmed by immuno-
fluorescence microscopy using an anti-GN monoclonal antibody
(4D4) (Keegan and Collett, 1986). GN exhibited a perinuclear
staining pattern consistent with its expected localization (Fig. 2).
However, no change in mRNA location or signal intensity was
observed in transfected cells. To examine a possible role for NSM,
we transfected cells with a plasmid encoding a FLAG-tagged par-
tial NSM and confirmed its expression with an anti-FLAG antibody.
NSM staining was observed throughout the cytoplasm and nucleus
(Fig. 2). As with GN, we observed no change in mRNA signal or
intensity upon NSM expression.

For assessing the roles of S segment proteins, we used two
expression plasmids: one encoding the open reading frame (ORF)
of N and one encoding a V5 tagged NSS. Upon N expression, a
monoclonal anti-N antibody (R3-1D8-1-1a) detected N in the
cytoplasm (Fig. 2). In cells expressing the N ORF, the mRNA
staining pattern was altered, with mRNA aggregating in the cyto-
plasm at sites of N aggregation (Fig. 2). This was not consistent
with the changes in mRNA seen during infection. Therefore while



Fig. 2. mRNA localization during overexpression of RVFV genes. Fluorescence micrographs of HeLa cells individually expressing GN, NSM, N, and NSS. Cells were transfected
and stained for polyadenylated RNA and the specific viral expression product indicated in the left panels. Insets show an enlarged view (3� ) of each panel.
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expression of N alone appears to be able to alter mRNA localization
it does not appear to be responsible for the nuclear accumulation
of mRNA seen during infection. We hypothesize that this change is
an artifact of overexpression as mRNA-N co-aggregation was not
observed during infection (data not shown). Upon expression of
the NSS coding region, an anti-V5 antibody detected filaments of
NSS in the nuclei of transfected cells (Fig. 2). This is consistent with
the native distribution of NSS during infection (Struthers and
Swanepoel, 1982; Struthers et al., 1984; Swanepoel and Blackburn,
1977). In cells expressing the NSS gene, mRNA localization
resembled the pattern seen during infection, with weak cyto-
plasmic staining and bright nuclear aggregates (Fig. 2). The nuclear
accumulation of mRNA upon NSS expression was highly suggestive
that NSS was responsible for the mRNA accumulation.

To confirm the role of NSS in relocalization of mRNA, HeLa cells
were mock-infected, RVFV MP12-infected, or infected with a
recombinant RVFV in which the NSS gene was replaced with a
luciferase gene (MP12rLuc) (Ikegami et al., 2006). Upon infection
with the MP12rLuc RVFV, no change in mRNA localization was
observed (Fig. 3A). To quantify the changes in mRNA signal, Zeiss
Zen software was used to measure the mean fluorescence inten-
sity from the mRNA probe in the nucleus and cytoplasm of indi-
vidual cells (Fig. 3B). No significant difference was seen between
MP12rLuc- and Mock-infected samples. Measurements for MP12-
infected cells were significantly different from both MP12rLuc-
infected and Mock-infected cells. These results indicate that
expression of the NSS gene of RVFV leads to nuclear accumulation
of mRNA during RVFV infection.

Our study revealed previously undescribed changes in host
mRNA during RVFV infection. mRNA export is crucial for host cells
and is targeted by many viruses through a variety of mechanisms
(Castello et al., 2009; Faria et al., 2005; Her et al., 1997; Ricour et
al., 2009; Satterly et al., 2007; von Kobbe et al., 2000). We were
unable to identify the specific mechanism by which NSS exerts its
effects on host cell mRNA relocalization. Studies measuring the
effects of NSS on components of the nuclear export pathway, to
include Aly, Nxf1/TAP, Rae1, Nxt1, UAP56, and Gle1 did not yield
any measureable changes (data not shown). It is possible that the
observed arrest in mRNA export is linked to the arrest in host
transcription as transcription, splicing and export are connected



Fig. 3. mRNA localization during RVFV infection. (A) Fluorescence micrographs of cells infected with RVFV MP12, MP12rLuc or mock-infected for 24 h and then fixed and
stained for polyadenylated RNA and DNA. Insets show an enlarged view (4� ) of each panel. (B) Graph of ratio of nuclear to cytoplasmic Cy3 fluorescence intensity. A
statistically significant difference was seen between MP12-infected and MP12rLuc-infected cells (po0.0001) as well as between MP12-infected and mock-infected cells
(po0.0001) as determined by Welch's t-test.
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(Carmody and Wente, 2009; Reed, 2003; Vinciguerra and Stutz,
2004).

Altered mRNA export provides an explanation for our earlier
findings of nuclear accumulation of PABP1 during RVFV infection
(Copeland et al., 2013), as previous studies demonstrated that a
block in mRNA export can result in nuclear accumulation of PABP1
(Burgess et al., 2011). Further, studies have shown that PABP1
accumulates in the nucleus when cytoplasmic mRNA is depleted
due to mRNA antagonizing PABP1's ability to interact with nuclear
import factors (Kumar et al., 2011). The observed block in mRNA
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export and concurrent reduction in cytoplasmic mRNA identified
here would both be expected to induce nuclear accumulation of
PABP1, by inhibiting nuclear export of PABP1 and by allowing
nuclear import of PABP1 respectively. This study represents the
first observation of a defect in mRNA export during infection with
a bunyavirus.
Materials and methods

Cells and viruses

All experiments were performed with HeLa cells. Unless
otherwise noted, all experiments were performed with the MP12
strain of RVFV. Cells were maintained in modified essential med-
ium (MEM) supplemented with 10% (vol/vol) fetal calf serum
(FCS), 75 U/ml penicillin–streptomycin, and 2 mM L-glutamine.
Infections were performed by adding virus to cell cultures. Fol-
lowing 1 h of incubation, the inoculum was removed and replaced
with fresh MEM. Cells were infected at multiplicities of infection
between 2.5 and 5.

Immunofluorescence

RVFV-infected samples and accompanying mock-infected
samples were fixed by submersion in 4% (wt/vol) paraformalde-
hyde (PFA) for 10 min. After fixation, cells were permeabilized by
submersion in ice-cold methanol for 5 min. Nonspecific binding
sites were blocked for 1 h at room temperature in 5% (vol/vol) goat
serum. Primary antibody incubation proceeded for 1 h at room
temperature at antibody specific optimized dilutions in 5% (vol/
vol) goat serum. Cells were washed three times in 1�phosphate-
buffered saline (PBS). Secondary antibodies (Alexa Fluor-conjuated
goat anti-mouse and/or goat anti-rabbit secondary antibodies [Life
Technologies]) were added at a dilution of 1:2000 for 1 h at room
temperature. Cells were then washed three times in PBS and
mounted on slides with mounting medium containing diamidion-
2-phenylindole (DAPI) (Prolong Gold, Life Technologies). Slides
were allowed to cure overnight at room temperature prior to
imaging.

Microscopy and image processing

All fluorescence microscopy was performed with a Zeiss-Axio
Observer D1 microscope. Contrast enhancement was performed
equally on all areas and panels of Figs. 1 and 2.

Transfection

HeLa cells were grown to 75% confluence in MEM supple-
mented with 10% (vol/vol) FCS. Plasmid DNA was diluted to 1 μg/
50 μl in Opti-MEM. FuGene HD transfection reagent (Promega)
was added at a Fugene-to-plasmid ratio of 3 μl to 2 μg. The
FuGene-DNA solution was incubated at room temperature for
15 min and then added dropwise to cells. At 24 h posttransfection,
cells were fixed for immunofluorescence assay (IFA) as
described above.

Antibodies

The following primary antibodies and antibody concentrations
were used: RVFV N R3-1D8-1-1a (mouse monoclonal antibody) IFA
1:1000 (J. Smith, United States Army Medical Research Institute of
Infectious Diseases [USAMRIID]), PABP1 IFA 1:1000 (ab21060;
Abcam), FLAG IFA 1:1000 (F1804; Sigma), V5 IFA 1:200 (P/N 46-
0705; Invitrogen), GN 4D4 (mouse monoclonal antibody) IFA
1:1000, NSS 3C3 (mouse monoclonal antibody) IFA 1:1000. Alexa
Fluor-conjugated secondary antibodies were all used at 1:2000 for
IFA (Alexa Fluor 594 goat anti-rabbit, Alexa Fluor 488 goat anti-
rabbit, Alexa Fluor 488 goat anti-mouse; Life Technologies).

Plasmids

A plasmid encoding the open reading frame of the RVFV ZH-
501N protein (pCAGGS RVFV ZH-501N) was provided by Stuart
Nichol (Centers for Disease Control and Prevention, Altanta, GA).
A V5-tagged NSS plasmid was provided by Sheli Radoshitzky, Julie
Constantino, and Sina Bavari (United States Army Medical
Research Institute of Infectious Diseases). A plasmid encoding the
RVFV M segment was provided by Robert Doms (University of
Pennsylvania). A plasmid encoding a FLAG-tagged partial NSM was
produced by cloning codon optimized ZH-501M segment (aa135-
130) into pDEST737 as previously described (Copeland et al., 2013).

Fluorescence in-situ hybridization

Our method was adapted from that of Chakraborty et al. (2006).
Cells were washed once in PBS and fixed by submersion in 4% (wt/
vol) PFA for 10 min. Cells were washed 3� with PBS and per-
meabilized by submersion in 100% ice cold methanol for 5 min at
4 °C. Methanol was aspirated and cells were incubated in 70% (vol/
vol) ethanol for 10 min. Ethanol was aspirated and cells were
washed twice in PBS. 1 M Tris pH8 was added to cells for 5 min.
Cells were then incubated in pre-warmed (37 °C) pre-
hybridization buffer (10 μg/ml tRNA, 10% (wt/vol) dextran sulfate,
25% (vol/vol) formamide, 100–200 units/ml RNAsin (Promega
N2115), and 2� SSC (1� SSC is 150 mM sodium chloride and
15 mM sodium citrate at pH7)) for 15 min at 37 °C. Cells were then
incubated overnight at 37 °C in hybridization buffer (pre-hybridi-
zation buffer with 5 ng/μl 50-Cy3-Oligo d(T)30 (Genelink, 26-
4330-02) protected from the light. All subsequent steps were
performed protected from the light. The following day cells were
washed 2� for 15 min in pre-warmed (37 °C) 2� SSC. Cells were
subsequently washed 2� for 15 min in pre-warmed (37 °C)
0.5� SSC. Cells were immediately submerged in 4% PFA for 10 min.
Cells were washed 3� in PBS and either mounted and visualized
or stained for host proteins as described above.
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