PDB59
OBJECTIVES: Determine the cost-effectiveness of clostridial collagenase ointment on wound closure in patients with diabetic foot ulcer.

METHODS: A 3-stage Markov model was used to predict the expected costs and outcomes of wound closure for CCO and SC. The 3 stages were open wound, epithelialization, and death. Outcome data used in the model were taken from a randomized clinical trial that directly compared CCO and SC. The primary outcome was the proportion of patients achieving a closed, epithelialized wound. Transition probabilities for the Markov stages were estimated from published literature. The costs and benefits were discounted at a rate of 3% per year.

RESULTS: The 3-stage model was used based on the transition probabilities and costs provided by the randomized clinical trial. The model predicted a savings of $21,000 per patient compared to SC, yielding better outcomes at a lower cost in patients with diabetes.

CONCLUSIONS: The 3-stage Markov model was used based on the transition probabilities and costs provided by the randomized clinical trial. The model predicted a savings of $21,000 per patient compared to SC, yielding better outcomes at a lower cost in patients with diabetes.

PDB60
OBJECTIVES: To determine the cost-effectiveness of canagliflozin in dual therapy (plus metformin) compared to sitagliptin and metformin and as an add on to insulin (plus metformin) respectively in the Belgian setting from the public payers perspective.

METHODS: The IMS CORE Diabetes Model was used to evaluate, based on head-to-head clinical trials, the cost-effectiveness of canagliflozin (assuming 70/30 dose distribution for the 100mg and 300mg respectively) versus the aforementioned comparators using Belgian-specific data, where available. Costs were obtained from official sources, literature and the IMS Hospital Disease Database and are reported in 2013 Euro (€) per patient/year. An annual discount rate of 3% was applied on costs and 1.5% on effects. The cost-effectiveness analyses indicated that in dual therapy when compared with sitagliptin and metformin, canagliflozin was expected to be cost-effective with an ICER of 6,992 €/QALY gained (with an incremental cost and QALY of €366 and €0.052) and 3,364 €/QALY gained (with an incremental cost and QALY of €1,604 and €0.060). The probabilistic sensitivity analysis revealed the results are sensitive to time horizon (with a time horizon of 10 years the ICER increases to a range of €920,000 to €9,000,000). Probabilistic sensitivity analysis showed that in all the comparisons, canagliflozin appears to be the dominant strategy with a large proportion (about 48%) of cases being in the south-east quadrant. CONCLUSIONS: Canagliflozin 100 mg or 300 mg (70/30 dose split) provides economic value when used in treatment of type 2 diabetes in Belgium.

PDB61
OBJECTIVES: To determine the effectiveness of becaplermin (amifostine) as an add-on therapy to metformin as a cost-effective treatment option for people with diabetes who have had an amputation.

METHODS: The results were robust to the sensitivity analyses performed. Costs were expressed in US dollars ($). A 20-year time horizon was assumed and the payer’s perspective was assumed. Costs and health outcomes were discounted at 3% and 1% in Argentina and Chile, respectively. Deterministic and probabilistic sensitivity analyses (PAS) were performed. RESULTS: Comparison of tapufloxanin add-on to metformin versus SU add-on to metformin showed an incremental benefit of 0.82 QALYs (95% CI: 0.58 to 1.06) in Argentina and 0.28 QALYs (95% CI: 0.14 to 0.42) in Chile. In both countries, the total cost of the tapufloxanin cohort was higher than that of the SU cohort (Incremental cost: Argentina: $3,500, Chile: $2,423). The cumulative cost-effectiveness acceptability curve (CEAC) showed that $15,745 QALY in Argentina and $3,607 QALY in Chile, respectively. Using WHO’s criteria, tapufloxanin compared to the SU treatment strategy has 88% probability for Argentina and 99% for Chile of being highly cost-effective (ICER< 1 GDP per capita). The results were robust to sensitivity analyses performed. CONCLUSIONS: Tapufloxanin based on the combination with metformin in people with diabetes who have had an amputation is a cost-effective treatment option for patients who are inadequately controlled with metformin monotherapy in Argentina and Chile.

PDB62
OBJECTIVES: To determine the effectiveness of becaplermin (amifostine) as an add-on therapy to metformin as a cost-effective treatment option for people with diabetes who have had an amputation.

METHODS: The results were robust to the sensitivity analyses performed. Costs were expressed in US dollars ($). A 20-year time horizon was assumed and the payer’s perspective was assumed. Costs and health outcomes were discounted at 3% and 1% in Argentina and Chile, respectively. Deterministic and probabilistic sensitivity analyses (PAS) were performed. RESULTS: Comparison of tapufloxanin add-on to metformin versus SU add-on to metformin showed an incremental benefit of 0.82 QALYs (95% CI: 0.58 to 1.06) in Argentina and 0.28 QALYs (95% CI: 0.14 to 0.42) in Chile. In both countries, the total cost of the tapufloxanin cohort was higher than that of the SU cohort (Incremental cost: Argentina: $3,500, Chile: $2,423). The cumulative cost-effectiveness acceptability curve (CEAC) showed that $15,745 QALY in Argentina and $3,607 QALY in Chile, respectively. Using WHO’s criteria, tapufloxanin compared to the SU treatment strategy has 88% probability for Argentina and 99% for Chile of being highly cost-effective (ICER< 1 GDP per capita). The results were robust to sensitivity analyses performed. CONCLUSIONS: Tapufloxanin based on the combination with metformin in people with diabetes who have had an amputation is a cost-effective treatment option for patients who are inadequately controlled with metformin monotherapy in Argentina and Chile.

PDB63
OBJECTIVES: To determine the effectiveness of becaplermin (amifostine) as an add-on therapy to metformin as a cost-effective treatment option for people with diabetes who have had an amputation.

METHODS: The results were robust to the sensitivity analyses performed. Costs were expressed in US dollars ($). A 20-year time horizon was assumed and the payer’s perspective was assumed. Costs and health outcomes were discounted at 3% and 1% in Argentina and Chile, respectively. Deterministic and probabilistic sensitivity analyses (PAS) were performed. RESULTS: Comparison of tapufloxanin add-on to metformin versus SU add-on to metformin showed an incremental benefit of 0.82 QALYs (95% CI: 0.58 to 1.06) in Argentina and 0.28 QALYs (95% CI: 0.14 to 0.42) in Chile. In both countries, the total cost of the tapufloxanin cohort was higher than that of the SU cohort (Incremental cost: Argentina: $3,500, Chile: $2,423). The cumulative cost-effectiveness acceptability curve (CEAC) showed that $15,745 QALY in Argentina and $3,607 QALY in Chile, respectively. Using WHO’s criteria, tapufloxanin compared to the SU treatment strategy has 88% probability for Argentina and 99% for Chile of being highly cost-effective (ICER< 1 GDP per capita). The results were robust to sensitivity analyses performed. CONCLUSIONS: Tapufloxanin based on the combination with metformin in people with diabetes who have had an amputation is a cost-effective treatment option for patients who are inadequately controlled with metformin monotherapy in Argentina and Chile.

PDB64
OBJECTIVES: To determine the effectiveness of becaplermin (amifostine) as an add-on therapy to metformin as a cost-effective treatment option for people with diabetes who have had an amputation.

METHODS: The results were robust to the sensitivity analyses performed. Costs were expressed in US dollars ($). A 20-year time horizon was assumed and the payer’s perspective was assumed. Costs and health outcomes were discounted at 3% and 1% in Argentina and Chile, respectively. Deterministic and probabilistic sensitivity analyses (PAS) were performed. RESULTS: Comparison of tapufloxanin add-on to metformin versus SU add-on to metformin showed an incremental benefit of 0.82 QALYs (95% CI: 0.58 to 1.06) in Argentina and 0.28 QALYs (95% CI: 0.14 to 0.42) in Chile. In both countries, the total cost of the tapufloxanin cohort was higher than that of the SU cohort (Incremental cost: Argentina: $3,500, Chile: $2,423). The cumulative cost-effectiveness acceptability curve (CEAC) showed that $15,745 QALY in Argentina and $3,607 QALY in Chile, respectively. Using WHO’s criteria, tapufloxanin compared to the SU treatment strategy has 88% probability for Argentina and 99% for Chile of being highly cost-effective (ICER< 1 GDP per capita). The results were robust to sensitivity analyses performed. CONCLUSIONS: Tapufloxanin based on the combination with metformin in people with diabetes who have had an amputation is a cost-effective treatment option for patients who are inadequately controlled with metformin monotherapy in Argentina and Chile.