
J. Math. Anal. Appl. 361 (2010) 48–58

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

On ground states of superlinear p-Laplacian equations in RN ✩

Shibo Liu

Department of Mathematics, Shantou University, Shantou 515063, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 May 2009
Available online 10 September 2009
Submitted by V. Radulescu

Keywords:
p-Laplacian
p-Superlinear
Cerami sequences
Lions Lemma
Ground states

We consider superlinear p-Laplacian equations in RN with a potential which is periodic or
has a bounded potential well. Without assuming the Ambrosetti–Rabinowitz type condition
and the monotonicity of the function t �→ f (x,t)

|t|p−1 , we prove the existence of ground states.

Even for the case p = 2, our results extend the recent results of Li, Wang and Zeng [Ann.
Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 829–837].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following p-Laplacian equation (1 < p < N):{−div(|∇u|p−2∇u) + V (x)|u|p−2u = f (x, u),

u ∈ W 1,p(RN ).
(1.1)

We assume that the potential V (x) and the nonlinearity f (x, u) satisfies the following conditions:

(V1) V ∈ C(RN ), and 0 < α � V (x) � β < +∞.

(f1) f ∈ C(RN × R) is 1-periodic in x1, . . . , xN , and

lim|t|→∞
f (x, t)

|t|p∗−1
= 0, lim|t|→∞

F (x, t)

|t|p
= +∞ (1.2)

uniformly in x ∈ RN , where F (x, t) = ∫ t
0 f (x, s)ds; p∗ = Np/(N − p) for N � 3 and an arbitrary real number greater

than p for N = 1,2.
(f2) f (x, t) = o(|t|p−2t) as |t| → 0, uniformly in x ∈ RN .
(f3) There exists θ � 1 such that θ F (x, t) � F (x, st) for (x, t) ∈ RN × R and s ∈ [0,1], where F (x, t) = f (x, t)t − pF (x, t).

Note that if the nonlinearity is subcritical and p-superlinear, that is for some C > 0 and q ∈ (p, p∗),

∣∣ f (x, t)
∣∣ � C

(
1 + |t|q−1), lim|t|→∞

f (x, t)t

|t|p
= +∞, (1.3)
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then (1.2) is satisfied. Our condition (1.2) is slightly weaker. The condition (1.2) was first introduced by Liu and Wang [23]
and then was used in [19].

The study of elliptic problems of the form (1.1) in the semilinear case p = 2, has been motivated in part by searching
standing waves for the nonlinear Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + Ṽ (x)ψ − g(x,ψ), (1.4)

namely, solutions of the form ψ(t, x) = exp(−iEt/h̄)u(x). Where m and h̄ are positive constants and g satisfies

g(x, sξ) = f (x, s)ξ, (x, s) ∈ RN × R, and ξ ∈ C with |ξ | = 1

for some f ∈ C(RN × R). The quasilinear case p ∈ (1, N) also arise in a lot of applications, such as image processing, non-
Newtonian fluids, pseudo–plastic fluids, nonlinear elasticity and reaction–diffusions, see [8] for more details.

By conditions (f1) and (f2), we deduce that there exists a constant C > 0 such that∣∣F (x, t)
∣∣ � C

(|t|p + |t|p∗)
. (1.5)

Consequently, the energy functional Φ : W 1,p(RN ) → R,

Φ(u) = 1

p

∫

RN

(|∇u|p + V (x)|u|p)
dx −

∫

RN

F (x, u)dx (1.6)

is of class C1. The critical points of Φ are weak solutions of (1.1).
In many study on p-superlinear elliptic equations, the following superlinear condition of Ambrosetti and Rabinowitz [3]

is assumed:

(AR) there is μ > p such that 0 < μF (x, t) � t f (x, t) for x ∈ RN and t �= 0.

For the semilinear problem on RN , we refer to the classical works [5,6,17,25], which are concerning standing waves
solutions of the nonlinear Schrödinger equation (1.4) mentioned above. On the other hand, the quasilinear case is usually
considered on a bounded domain, the reader may find some results in this direction in [4,7,9,21,24]. In recent years more
and more attention is paid to the quasilinear elliptic equations setting on RN . To name a few we mention [1,2,11]. We
would also like to mention a recent paper [12] where a quasilinear problem on RN involving a more general differential
operator, namely the so-call p(x)-Laplacian, is considered.

The role of (AR) is to ensure the boundedness of the Palais–Smale (PS) sequences of the functional Φ . This is very
crucial in applying the critical point theory. However, there are many functions which are p-superlinear at infinity, but do
not satisfy the condition (AR) for any μ > p. In fact, (AR) implies that F (x, t) � C |t|μ for some C > 0. Thus, for example the
p-superlinear function

f (x, t) = |t|p−2t log
(
1 + |t|)

does not satisfy (AR). However, it satisfies our condition (f1)–(f3).
The purpose of this paper is to study the problem (1.1) without assuming (AR). Our basic assumptions on the nonlin-

earity are (f1)–(f3). Note that for the semilinear case p = 2, the condition (f3) is due to Jeanjean [14]. To overcome the
difficulty that the (P S) sequences of Φ may be unbounded, he established a variant of Mountain Pass Lemma which asserts
that a sequence of perturbed functionals possesses bounded (P S) sequences. In [16], this condition is also used with a Ce-
rami type argument in singularly perturbed elliptic problems in RN with autonomous nonlinearity. For quasilinear elliptic
problems setting on a bounded domain, the condition (f3) is also used in [22] to obtain infinitely many solutions and in [13]
to compute the critical groups of Φ at infinity and obtain nontrivial solutions via Morse theory. It is also important to note
that if f (x,t)

|t|p−1 is increasing in t , then (f3) is satisfied, see [22, Proposition 2.3] for a proof.

By condition (f2), we have f (x,0) = 0. Therefore the zero function u = 0 is a trivial solution of (1.1). We shall investigate
the existence of nontrivial solutions for the problem (1.1). First, we assume that the potential V satisfies the following
periodic condition.

(V2) V (x) is 1-periodic in x1, . . . , xN .

Then we have the following theorem.

Theorem 1.1. Suppose the conditions (V1), (V2) and (f1)–(f3) hold, then the problem (1.1) has a ground state, i.e. a nontrivial solu-
tion v such that

Φ(v) = inf
{
Φ(u): u �= 0 and Φ ′(u) = 0

}
.
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As in [19], we can also consider the potential well case. We assume that the potential V satisfies the following condition:

V (x) < V∞ := lim|x|→∞ V (x) < ∞, for all x ∈ RN , (V∗
2)

and the nonlinearity f (x, t) = f (t) does not depend on x. That is, the problem is of the form{−div(|∇u|p−2∇u) + V (x)|u|p−2u = f (u),

u ∈ W 1,p(RN ).
(1.7)

Then we have an analogue of Theorem 1.1. For the sake of simplicity, we only consider the case N � 3.

Theorem 1.2. Let N � 3. If the conditions (V1), (V∗
2) and (f1)–(f3) hold with f independent of x, then the problem (1.7) has a ground

state.

For the case p = 2, assuming in addition that f is of class C1 and f (x,t)
|t| is strictly increasing in t , the existence of ground

state has been proved by Li, Wang and Zeng [19]. Since the solution there is obtained as a minimizer of Φ on the Nehari
manifold N , it is crucial to require that f is of class C1. Otherwise N may not be a smooth submanifold of the Sobolev
space and it is not clear that the minimizer on N is a critical point of Φ . Our Theorems 1.1 and 1.2 do not require this
smoothness condition. Therefore, even for the case p = 2 our results extend those of Li, Wang and Zeng [19].

Instead of minimizing the functional Φ on the Nehari manifold N , we will prove our results by an mountain pass
type argument. A crucial step is to prove that some kind of almost critical sequence is bounded. In Lemma 2.3 we adopt
a technique developed in [14,16] and the Lions Lemma [20, Lemma I.1] to show that any Cerami sequence of Φ is bounded.
Then we obtain nontrivial solution by taking advantage of the ZN -invariant of the problem for the periodic case and by
energy comparison method for the potential well case. Finally, we show the existence of ground states by using a technique
of Jeanjean and Tanaka [15, Theorem 4.5], where for the case p = 2, in the potential well case, an asymptotically linear
problem with autonomous nonlinearity is considered.

2. Proof of Theorem 1.1

Let X be a real Banach space, Φ ∈ C1(X,R). Recall that a sequence {un} ⊂ X is called a Palais–Smale sequence of Φ at
the level c, a (P S)c sequence for short, if Φ(un) → c and Φ ′(un) → 0. A sequence {un} ⊂ X is called a Cerami sequence
of Φ at the level c, a (C)c sequence for short, if

Φ(un) → c,
(
1 + ‖un‖

)∥∥Φ ′(un)
∥∥ → 0.

For simplicity, from now on we denote X = W 1,p(RN ). Using condition (V1), we can introduce a new norm ‖ · ‖ on X as
follow

‖u‖ =
( ∫

RN

(|∇u|p + V (x)|u|p)
dx

)1/p

, u ∈ X . (2.1)

It is well known that the new norm ‖ · ‖ is equivalent to the standard norm ‖ · ‖1,p on X . With the norm ‖ · ‖, the
functional Φ can be written as

Φ(u) = 1

p
‖u‖p −

∫

RN

F (x, u)dx.

As an easy consequence of (f1) and (f2), we have the following lemma.

Lemma 2.1. There exists r > 0 and φ ∈ X such that ‖φ‖ > r and

b := inf‖u‖=r
Φ(u) > Φ(0) = 0 � Φ(φ). (2.2)

Remark 2.2. In fact, (f2) implies that as ‖u‖ → 0 we have

〈
Φ ′(u), u

〉 = ‖u‖p + o
(‖u‖p)

, Φ(u) = 1

p
‖u‖p + o

(‖u‖p)
.

Therefore, it is also easy to see that:

(i) There exists ρ0 > 0 such that for any nontrivial critical point u of Φ , there holds ‖u‖ � ρ0.
(ii) For any c > 0, there exists ρc > 0 such that if Φ(un) → c, then ‖un‖ � ρc .
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By Lemma 2.1 we see that Φ has a mountain pass geometry: that is, setting

Γ = {
γ ∈ C

([0,1], X
)
: γ (0) = 0 and Φ

(
γ (1)

)
< 0

}
,

we have Γ �= ∅. By a special version of the Mountain Pass Lemma (see [10]), for the mountain pass level

c = inf
γ ∈Γ

max
t∈[0,1]Φ

(
γ (t)

)
, (2.3)

there exists a (C)c sequence {un} for Φ . Moreover, by (2.2) we see that c > 0.
Next, we show that this (C)c sequence is bounded. Before that, we deduce from (f3) that

f (x, t)t − pF (x, t) � 0, for all (x, t) ∈ RN × R.

Let t > 0. For x ∈ RN , we have

∂

∂t

(
F (x, t)

t p

)
= t p f (x, t) − pt p−1 F (x, t)

t2p
� 0. (2.4)

By (f2),

lim
t→0+

F (x, t)

t p
= 0. (2.5)

From (2.4) and (2.5) we conclude that F (x, t) � 0 for all x ∈ RN and t � 0. Arguing similarly for the case t � 0, eventually
we obtain

F (x, t) � 0, for all (x, t) ∈ RN × R. (2.6)

Now we are ready to prove the following lemma, which is inspired by [16, §3], where the boundedness of Cerami
sequences for the modified functional related to a singular perturbed elliptic problem is considered. The potential V (x)
there is different from ours, the nonlinearity there is autonomous and satisfies the stronger condition (1.3) with p = 2.

Lemma 2.3. Suppose that (V1), (f1), (f2) and (f3) hold, c ∈ R, then any (C)c sequence of Φ is bounded.

Proof. Let {un} be a (C)c sequence of Φ . If {un} is unbounded, up to a subsequence we may assume that

Φ(un) → c, ‖un‖ → ∞,
∥∥Φ ′(un)

∥∥‖un‖ → 0.

In particular,

lim
n→∞

∫

RN

(
1

p
f (x, un)un − F (x, un)

)
dx = lim

n→∞

{
Φ(un) − 1

p

〈
Φ ′(un), un

〉} = c. (2.7)

Let vn = ‖un‖−1un , then {vn} is bounded in X . We claim that

lim
n→∞ sup

y∈RN

∫
B2(y)

|vn|p dx = 0. (2.8)

Otherwise, for some δ > 0, up to a subsequence we have

sup
y∈RN

∫
B2(y)

|vn|p dx � δ > 0.

We can choose {zn} ⊂ RN such that∫
B2(zn)

|vn|p dx � δ

2
.

It is easy to see that the number of points in ZN ∩ B2(zn) is less than 4N . So there exists yn ∈ ZN ∩ B2(zn), such that∫
B2(yn)

|vn|p dx � κ := δ

2 × 4N
> 0. (2.9)

Let ṽn = vn(· + yn). Using condition (V1) and (2.1), we have
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‖ṽn‖p =
∫

RN

(|∇ ṽn|p + V (x)|ṽn|p)
dx

�
∫

RN

(|∇ ṽn|p + β|ṽn|p)
dx =

∫

RN

(|∇vn|p + β|vn|p)
dx

� β

α

∫

RN

(|∇vn|p + α|vn|p)
dx

� β

α

∫

RN

(|∇vn|p + V (x)|vn|p)
dx = β

α
.

That is, {ṽn} is also bounded in X . Passing to a subsequence we have

ṽn → ṽ in Lp
loc(R

N ), ṽn(x) → ṽ(x) a.e. x ∈ RN .

Since ∫
B2(0)

|ṽn|p dx =
∫

B2(yn)

|vn|p dx � κ > 0, (2.10)

we see that ṽ �= 0. Let ũn = ‖un‖ṽn . If ṽ(x) �= 0 we have |ũn(x)| → +∞, and using (1.2) we obtain

F (x, ũn(x))

|ũn(x)|p

∣∣ṽn(x)
∣∣p → +∞. (2.11)

Since f (x, u) is 1-periodic with respect to x, we have∫

RN

F (x, un)dx =
∫

RN

F (x, ũn)dx. (2.12)

Since the set Θ = {x ∈ RN : ṽ(x) �= 0} has positive Lebesgue measure, using (2.11) we have

1

p
− c + o(1)

‖un‖p
=

∫

RN

F (x, un)

‖un‖p
dx

=
∫

RN

F (x, ũn)

‖un‖p
dx

�
∫

ṽ �=0

F (x, ũn)

|ũn|p
|ṽn|p dx → +∞. (2.13)

This is impossible. Therefore we have proved (2.8). Now applying the Lions Lemma [20, Lemma I.1] we obtain

vn → 0 in Lq(RN)
, ∀q ∈ (p, p∗). (2.14)

Next, we shall derive a contradiction as follow. Given a real number R > 0, by (f1) and (f2), for any ε > 0, there exists
Cε > 0 such that∣∣F (x, Rt)

∣∣ � ε
(|t|p + |t|p∗) + Cε|t|q. (2.15)

Since ‖vn‖ = 1, there exists a constant C1 > 0 such that

|vn|p
p + |vn|p∗

p∗ � C1.

Therefore, by (2.14) and (2.15),

lim sup
n→∞

∫

RN

∣∣F (x, R vn)
∣∣ dx � lim sup

n→∞
{
ε
(|vn|p

p + |vn|p∗
p∗

) + Cε|vn|qq
}

� εC1.

Since ε > 0 is arbitrary, we deduce

lim
n→∞

∫
N

F (x, R vn)dx = 0. (2.16)
R
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As in [14,28], we choose a sequence {tn} ⊂ [0,1] such that

Φ(tnun) = max
t∈[0,1]Φ(tun). (2.17)

Given m > 0. Since for n large enough we have p
√

2pm‖un‖−1 ∈ (0,1), using (2.16) with R = p
√

2pm, we obtain

Φ(tnun) � Φ
(
(2pm)1/p vn

) = 2m −
∫

RN

F (x, (2pm)1/p vn)dx � m.

That is, Φ(tnun) → +∞. But Φ(0) = 0, Φ(un) → c, using (2.17) we see that tn ∈ (0,1), and∫

RN

(∣∣∇(tnun)
∣∣p + V (x)|tnun|p)

dx −
∫

RN

f (x, tnun)tnun dx = 〈
Φ ′(tnun), tnun

〉

= tn
d

dt

∣∣∣∣
t=tn

Φ(tun) = 0.

Now, by assumption (f3),
∫

RN

(
1

p
f (x, un)un − F (x, un)

)
dx � 1

θ

∫

RN

(
1

p
f (x, tnun)tnun − F (x, tnun)

)
dx

= 1

θ

(
1

p

∫

RN

(∣∣∇(tnun)
∣∣p + V (x)|tnun|p)

dx −
∫

RN

F (x, tnun)dx

)

= 1

θ
Φ(tnun) → +∞.

This contradicts with (2.7). Therefore we have proved that {un} is bounded. �
Remark 2.4. In the proof of Lemma 2.3, instead of (2.12), the existence of μ > 0 such that∫

RN

F (x, un)dx � μ

∫

RN

F (x, ũn)dx

is sufficient for deriving the contradiction (2.13). Therefore, it is not necessary to require f (x, t) to be periodic in x. For
example, the conclusion of Lemma 2.3 remains valid if we replace f (x, t) with b(x) f (t), where b ∈ C(RN ), 0 < b0 � b(x) �
b1 < +∞ for all x ∈ RN .

Proof of Theorem 1.1. The proof consists of two steps.
Step 1. We use the standard argument (see e.g. [27, p. 106] for the case that (AR) holds and p = 2) to show that (1.1) has

a nontrivial solution ṽ . For c > 0 given in (2.3), there exists a (C)c sequence {un} for the functional Φ . Using Lemma 2.3,
the sequence {un} is bounded in X . Let

δ = lim
n→∞ sup

y∈RN

∫
B2(y)

|un|p dx. (2.18)

If δ = 0, applying the Lions Lemma [20, Lemma I.1] again,

un → 0 in Lq(RN)
, ∀q ∈ (p, p∗).

Thus, similar to (2.16), we have

lim
n→∞

∫

RN

F (x, un)dx = 0, lim
n→∞

∫

RN

f (x, un)un dx = 0. (2.19)

Hence using (2.7) we have c = 0, a contradiction. Therefore δ > 0. Similar to (2.10), we can find a sequence {yn} ⊂ ZN and
a real number κ > 0 such that∫

|vn|p dx =
∫

|un|p dx > κ, (2.20)
B2(0) B2(yn)
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where vn = un(· + yn). Note that ‖vn‖ = ‖un‖, we see that {vn} is bounded. Going if necessary to a subsequence, we obtain

vn ⇀ ṽ in X, vn → ṽ in Lp
loc

(
RN);

and, by (2.20) we see that ṽ �= 0. Moreover, by the ZN invariance of the problem, {vn} is also a (C)c sequence of Φ . Thus
for every φ ∈ C∞

0 (RN ), we have

〈
Φ ′(ṽ),φ

〉 = lim
n→∞

〈
Φ ′(vn),φ

〉 = 0.

So Φ ′(ṽ) = 0 and ṽ is a nontrivial solution of (1.1).
Step 2. Using the technique in the proof of [15, Theorem 4.5], where in the potential well case, an asymptotically linear

problem with autonomous nonlinearity is considered, we show that the problem (1.1) has a ground state. Let

m = inf
{
Φ(u): u �= 0 and Φ ′(u) = 0

}
. (2.21)

Assume that u is an arbitrary critical point of Φ . Since (f3) implies

F (x, t) � 0, for all (x, t) ∈ RN × R, (2.22)

we deduce

Φ(u) = Φ(u) − 1

p

〈
Φ ′(u), u

〉 = 1

p

∫

RN

F (x, u)dx � 0 (2.23)

and thus m � 0. Therefore 0 � m � Φ(ṽ) < +∞. Let {un} be a sequence of nontrivial critical points of Φ such that
Φ(un) → m. According to Remark 2.2(i) we see that

‖un‖ � ρ0 (2.24)

for some ρ0 > 0. Since un is critical we also have(
1 + ‖un‖

)∥∥Φ ′(un)
∥∥ → 0.

Thus {un} is a Cerami sequence at the level m. By Lemma 2.3, {un} is bounded in X . For this sequence {un}, we denote δ as
in (2.18). If δ = 0, similar to (2.19) we obtain

lim
n→∞

∫

RN

f (x, un)un dx = 0,

and hence

‖un‖p = 〈
Φ ′(un), un

〉 +
∫

RN

f (x, un)un dx → 0. (2.25)

This contradicts with (2.24). Hence δ > 0. Now by the ZN invariance of the problem, the same argument of Step 1 shows
that a suitable translation of {un}, denoted by {vn}, satisfies

Φ ′(vn) = 0, Φ(vn) = Φ(un) → m,

and {vn} converges weakly to some v �= 0, a nonzero critical point of Φ . Moreover, because of (2.22), using Fatou’s lemma
we deduce

Φ(v) = Φ(v) − 1

p

〈
Φ ′(v), v

〉 = 1

p

∫

RN

F (x, v)dx

� lim inf
n→∞

1

p

∫

RN

F (x, vn)dx

= lim inf
n→∞

(
Φ(vn) − 1

p

〈
Φ ′(vn), vn

〉) = m. (2.26)

Therefore, v is a nontrivial critical point of Φ with Φ(v) = m, and Theorem 1.1 is proved. �
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Remark 2.5.

(i) Although v is a nontrivial solution, it is possible that m = Φ(v) = 0. To obtain ground states with positive energy, in
view of (2.23), it suffices to assume in addition that

F (x, t) > 0, for x ∈ RN , t �= 0.

This is the case if f (x,t)
|t|p−1 is strictly increasing in t .

(ii) In general we only have 0 � m � c. To guarantee m = c, we have to assume that f (x,t)
|t|p−1 is strictly increasing in t . Then

we can follow the standard argument (see e.g. [25,27]) to show that

m = c = inf
{
Φ(u): u �= 0,

〈
Φ ′(u), u

〉 = 0
}
,

except that instead of Palais–Smale sequences we should use the Cerami sequences which are bounded by Lemma 2.3.
Here we don’t need the condition (AR).

(iii) Observe that the truncated nonlinearity

f+(x, u) =
{

f (x, u), u � 0,

0, u < 0

satisfies (f1)–(f3) except that the limits in (1.2) are now taken as t → ∞. Thus, a parallel argument shows that the
truncated problem{−div(|∇u|p−2∇u) + V (x)|u|p−2u = f+(x, u),

u ∈ W 1,p(RN)

has a ground state v+ . By the strong maximum principle v+ is a positive solution of (1.1) with least energy among all
positive solutions.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 goes as [15], where for the case p = 2, an asymptotically linear problem is considered. Recall
that if g ∈ C(RN ),∣∣g(t)

∣∣ � C
(|t|p−1 + |t|p∗−1),

and u ∈ W 1,p(RN ) is a nontrivial solution of

−div
(|∇u|p−2∇u

) = g(u), (3.1)

then we have the Pohozaev identity

N − p

Np

∫

RN

|∇u|p dx =
∫

RN

G(u)dx, (3.2)

where G(t) = ∫ t
0 g(s)ds. The identity (3.2) follows from

d

dλ

∣∣∣∣
λ=1

ϕ
(
uλ

) = 0

with uλ(x) = u(λx), λ > 0, and ϕ ∈ C1(X,R) given by

ϕ(u) = 1

p

∫

RN

|∇u|p dx −
∫

RN

G(u)dx.

For a nontrivial critical point v ∈ X of ϕ , as in [15, §5] we set

vt(x) = v
(
t−1x

)
(3.3)

for t > 0. By a direct calculation it is easy to see that vt has the following properties:

|∇vt |p
p = tN−p|∇v|p

p,

|vt |qq = tN |v|qq for all q ∈ [p, p∗],∫

RN

G(vt)dx = tN
∫

RN

G(v)dx.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

Using these properties, we can prove the following analogue of [15, Proposition 4.2].
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Proposition 3.1. If v ∈ X is a nontrivial critical point of ϕ , then there exists γ ∈ C([0,1], X) such that γ (0) = 0, ϕ(γ (1)) < 0,
v ∈ γ ([0,1]) and

max
t∈[0,1]ϕ

(
γ (t)

) = ϕ(v).

Proof. The proof is similar to that of [15, Proposition 4.2]. Let vt be given as in (3.3). By (3.4) and the Pohozaev identity
(3.2) we have

ϕ(vt) = tN−p

p
|∇v|p

p − tN
∫

RN

G(v)dx =
(

1

p
tN−p − N − p

Np
tN

)
|∇v|22.

We see that:

(i) maxt>0 ϕ(vt) = ϕ(v);
(ii) ϕ(vt) → −∞ as t → ∞;

(iii) ‖vt‖p
1,p = |∇vt |p

p + |vt |p
p = tN−2|∇v|p

p + tN |v|p
p → 0, as t → 0.

Choose α > 1 such that ϕ(vα) < 0 and set γ (t) = vαt for t ∈ (0,1] and γ (0) = 0, we obtain the desired γ . �
Proof of Theorem 1.2. We can now follow the approach presented in [15] to give the proof of Theorem 1.2. Since the
nonlinearity does not depend on x, the functional Φ is now written as

Φ(u) = 1

p

∫

RN

(|∇u|p + V (x)|u|p)
dx −

∫

RN

F (u)dx.

We also need to consider the functional Φ∞ : X → R,

Φ∞(u) = 1

p

∫

RN

(|∇u|p + V∞|u|p)
dx −

∫

RN

F (u)dx.

Note that by condition (V∗
2), if u ∈ X \ {0}, then

Φ(u) < Φ∞(u). (3.5)

Step 1. We show that Φ has a nontrivial critical point. As before, for the mountain pass level c > 0, Φ has a (C)c sequence
{un}. By Lemma 2.3, {un} is bounded in X . Hence un ⇀ u in X , and u is a critical point of Φ . Assume that u = 0. Using
condition (V∗

2) and the fact that un → u in L p
loc(R

N ), we see that

∣∣Φ∞(un) − Φ(un)
∣∣ =

∫

RN

(
V∞ − V (x)

)|un|p dx → 0,

∥∥Φ ′∞(un) − Φ ′(un)
∥∥ = sup

φ∈X,‖φ‖=1

∣∣∣∣
∫

RN

(
V∞ − V (x)

)
unφ dx

∣∣∣∣ → 0.

That is, the bounded sequence {un} is also a (P S)c sequence of Φ∞ . Let

δ = lim
n→∞ sup

y∈RN

∫
B2(y)

|un|p dx. (3.6)

If δ = 0, similar to (2.25) we have ‖un‖p → 0. This is a contradiction with Remark 2.2(ii). Therefore, δ > 0 and there exists
a sequence {yn} ⊂ RN such that∫

B2(yn)

|un|p dx � δ

2
> 0. (3.7)

Let vn = un(· + yn). Since

‖vn‖ = ‖un‖, Φ∞(vn) = Φ∞(un), Φ ′∞(vn) = Φ ′∞(un),

we see that {vn} is also a bounded (P S)c sequence of Φ∞ . As in Step 1 in the proof of Theorem 1.1, using (3.7) we see that
vn ⇀ v in X , v �= 0 and v is a critical point of Φ∞ . Moreover, estimating as (2.26) we have

Φ∞(v) � c.
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Now applying Proposition 3.1 to Φ∞ , with

g(t) = f (t) − V∞t,

we see that there exists γ ∈ C([0,1], X) such that γ (0) = 0, Φ∞(γ (1)) < 0, v ∈ γ ([0,1]) and

max
t∈[0,1]Φ∞

(
γ (t)

) = Φ∞(v).

By the construction of γ in the proof of Proposition 3.1, we also know that 0 /∈ γ ((0,1]). Therefore according to (3.5) we
have

Φ
(
γ (t)

)
< Φ∞

(
γ (t)

)
(3.8)

for all t ∈ (0,1]. In particular Φ(γ (1)) � Φ∞(γ (1)) < 0 and hence γ ∈ Γ . Note that Φ(0) = Φ∞(0) = 0 and c > 0, we
deduce

c � max
t∈[0,1]Φ

(
γ (t)

)
< max

t∈[0,1]Φ∞
(
γ (t)

) = Φ∞(v) � c. (3.9)

This is a contradiction. Thus u �= 0 and u is a nontrivial solution of problem (1.7). Note that since {un} is a (C)c sequence of
Φ and un ⇀ u in X , estimating as in (2.26) we have Φ(u) � c.

Step 2. We show that the problem (1.7) has a ground state. Denote m as in (2.21). As before,

0 � m � Φ(u) � c. (3.10)

Now let {un} be a sequence of nontrivial critical points of Φ such that Φ(un) → m. As in the proof of Theorem 1.1, {un} is
bounded and δ > 0, where δ is defined via (3.6). Moreover, up to a subsequence un ⇀ ũ in X , and ũ is a critical point of Φ ,
with Φ(ũ) � m. If ũ = 0, as in Step 1 the bounded sequence {un} is also a (P S)m sequence of Φ∞ . Since δ > 0, a suitable
translation of {un}, denoted by {vn}, converges weakly to a nonzero critical point v of Φ∞ , with Φ∞(v) � m. Similar to (3.9),
using Proposition 3.1, we can find a path γ ∈ Γ such that

c � max
t∈[0,1]Φ

(
γ (t)

)
< max

t∈[0,1]Φ∞
(
γ (t)

) = Φ∞(v) � m.

This is a contradiction with (3.10). Therefore ũ �= 0 is a nontrivial critical point of Φ with Φ(ũ) = m. The proof is com-
plete. �
Remark 3.2. In the proof of Theorem 1.2, the strict inequality (3.8) is crucial. For its validity, since we don’t know whether
the nontrivial critical point v of Φ∞ can vanish on some set with positive Lebesgue measure, we have to assume V (x) < V∞
for all x ∈ RN .

If we are intended to find positive solutions of (1.7), then we are led to the truncated problem as described in Re-
mark 2.5(iii). In this case the nontrivial critical point v of the truncated Φ∞ is positive everywhere, thus we only need
to assume V (x) � V∞ for all x ∈ RN , because this condition is sufficient for (3.8) in the case V (x) �≡ V∞ , while the case
V (x) ≡ V∞ is simpler.

In view of Remark 2.4, if we replace f (t) with b(x) f (t), where b ∈ C(RN ),

0 < b0 := lim|t|→∞ b(x) � b(x) � b1 < +∞ (3.11)

for all x ∈ RN , the Cerami sequences are still bounded. Working with the limiting functional

Φ∞(u) = 1

p

∫

RN

(|∇u|p + V∞|u|p)
dx −

∫

RN

b0 F (u)dx,

with little changes, we see that The conclusion of Theorem 1.2 remains valid.

4. Summary

The purpose of this paper is to investigate the existence of nontrivial solutions for superlinear p-Laplacian equations
in RN in the case that the nonlinearity may not satisfy the standard Ambrosetti–Rabinowitz condition (AR). Our results
are new and improve some recent results in the literature even for the semilinear case p = 2, see the paragraph after
Theorem 1.2.

The main ingredient of this work is Lemma 2.3. For the semilinear case p = 2 the boundedness of Cerami sequences has
been proved in [15, §3], for the modified functional related to an autonomous problem. To deal with the nonautonomous
case considered here, in the proof of Lemma 2.3 we have employed the argument between (2.9) and (2.13).

To conclude this paper, we state some further problems related to this work.
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Problem 4.1. In (3.11), if b0 = 0, then the limiting functional becomes

Φ∞(u) = 1

p

∫

RN

(|∇u|p + V∞|u|p)
dx.

This functional does not have nonzero critical points. Therefore the energy comparison method does not work. Thus it seems
interesting to investigate the existence of solutions for this case.

Problem 4.2. For the semilinear case p = 2. It is well known that if V ∈ C(RN ) is periodic, then the Schrödinger operator
S : H2(RN ) → L2(RN ),

u �→ −�u + V (x)u

has purely continuous spectrum which is bounded below and consists of closed disjoint intervals, see e.g. [26, Theo-
rem XIII.100]. Under the assumption of Theorem 1.1, except that V is now allowed to take negative values. If 0 lies in
a spectral gap of S , then the corresponding function Φ is strongly indefinite and the mountain pass lemma is not applica-
ble. Naturally one may try to apply the generalized linking theorem [18, Theorem 2.1] to produce a Cerami sequence {un} for
Φ . Unfortunately the proof of Lemma 2.3 is not sufficient to obtain the boundedness of {un}: in the later part we cannot
deduce Φ(tnun) → +∞ because Φ is strongly indefinite. Therefore, it is interesting and challenging to prove the existence
of nontrivial solutions for this case.
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