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In this paper, we use the potential analysis to study the properties
of the positive solutions of a γ -Laplace system in Rn

−div
(|∇u|γ −2∇u

) = up vq,

−div
(|∇v|γ −2∇v

) = v puq.

Here 1 < γ � 2, p,q > 0 satisfy the critical condition p + q =
γ ∗ − 1. First, the positive solutions u and v satisfy an integral
system involving the Wolff potentials. We then use the method of
regularity lifting to obtain an optimal integrability for this Wolff
type integral system. Different from the case of γ = 2, it is more
difficult to handle the asymptotics since u and v have not radial
structures. We overcome this difficulty by a new method and
obtain the decay rates of u and v as |x| → ∞. We believe that this
new method is appropriate to deal with the asymptotics of other
decaying solutions without the radial structures.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In [27], Li and Ma studied a stationary Schrödinger system with critical exponents for the Bose–
Einstein condensate (cf. [2,29,30])

−�u = up vq, in Rn,

−�v = v puq, in Rn. (1.1)
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Here p,q > 0 satisfy p +q = n+2
n−2 . Clearly, this system is equivalent to an integral system involving the

Newton potentials

u(x) =
∫
Rn

up(y)vq(y)dy

|x − y|n−2
,

v(x) =
∫
Rn

uq(y)v p(y)dy

|x − y|n−2
. (1.2)

The authors used the method of moving planes of integral forms (cf. [8]) to obtain that the positive
solutions are radially symmetric.

If we replace the Newton potentials by the Riesz potentials, (1.2) becomes

u(x) =
∫
Rn

up(y)vq(y)dy

|x − y|n−α
,

v(x) =
∫
Rn

uq(y)v p(y)dy

|x − y|n−α
. (1.3)

Here α ∈ (0,n), p,q > 0 and p + q = n+α
n−α . By the ideas in [17], we can also obtain the integrability

result:
(R1) If u, v ∈ L

2n
n−α (Rn), then u, v ∈ Ls(Rn) for all s > n

n−α .
Based on this integrability and the radial symmetry, one can estimate the decay rate (cf. [24]):
(R2) u, v = O (|x|α−n) when |x| → ∞.
Naturally, we conjecture that the positive solutions of a γ -Laplace system

−div
(|∇u|γ −2∇u

) = up vq, in Rn,

−div
(|∇v|γ −2∇v

) = v puq, in Rn, (1.4)

should have the analogous integrability and asymptotics. Here 1 < γ � 2, n > 2, p,q > 0 and p+q � 1.
When u = v in (1.4), the system reduces to a single equation

−div
(|∇u|γ −2∇u

) = up+q, in Rn. (1.5)

Let p + q be equal to the critical exponent nγ
n−γ − 1. According to the existence results of Serrin and

Zou, (1.5) has bounded classical positive solutions (cf. [36]). For a radial solution of (1.5), [14] obtained
the estimates of the decay rates when |x| → ∞.

However, different from the result of (1.1), not all solutions of (1.4) have the radial structure. Let
Ω ⊂ Rn be a radially symmetric and bounded domain. The paper [1] shows that the positive solu-
tions of (1.4) in Ω are radially symmetric by using the ideas of Damascelli, Pacella and Ramaswamy
(cf. [12] and [13]). When Ω = Rn , it is unknown whether there exists a non-radial solution or not.
In [3], Byeon, Jeanjean and Maris proved that a class of important solutions, the least energy solutions,
are radially symmetric and monotony decreasing about some point x0 ∈ Rn . Besides the radial sym-
metry, there is another distinction between the two systems (1.1) and (1.4). Eq. (1.1) has an equivalent
integral system (1.2), and (1.4) has not.
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Fortunately, the positive solutions of (1.4) satisfy another integral system involving the Wolff po-
tentials. The Wolff potential of a positive function f ∈ L1

loc(Rn) is defined as (cf. [16])

Wβ,γ ( f )(x) =
∞∫

0

[∫
Bt (x) f (y)dy

tn−βγ

] 1
γ −1 dt

t
,

where 1 < γ < ∞, β > 0, βγ < n, and Bt(x) is a ball of radius t centered at x. It is not difficult to see
that W1,2( f ) is Newton’s potential, and W α

2 ,2( f ) is Reisz’s potential.
The Wolff potentials are helpful to well understand the nonlinear PDEs (cf. [18–20,22,34]), and

other nonlinear problems (cf. [10] and [33]). For example, W1,γ (ω) can be used to estimate the
solutions u of γ -Laplace equation

−div
(|∇u|γ −2∇u

) = ω.

If infRn u = 0, then there exist positive constants C1 and C2 such that (cf. [19])

C1W1,γ (ω)(x) � u(x) � C2W1,γ (ω)(x), x ∈ Rn. (1.6)

Now, we introduce the integral system involving the Wolff potentials

u(x) = R1(x)Wβ,γ

(
up vq)(x),

v(x) = R2(x)Wβ,γ

(
v puq)(x). (1.7)

Here x ∈ Rn and there exist c and C such that

0 < c � R1(x), R2(x) � C . (1.8)

The corresponding critical case is

p + q = γ ∗ − 1 := nγ

n − βγ
− 1. (1.9)

To investigate the integrability and the regularity of positive solutions of (1.7), we consider w =
u + v . It is not difficult to see that w satisfies

w(x) = R(x)Wβ,γ

(
wγ ∗−1)(x) in Rn, (1.10)

where 0 < R(x) � C (see Proposition 2.1). We use a regularity lifting lemma (Lemma 2.1 in [17]) to
obtain an integrability interval of positive solutions. Based on this, we can extend the interval to an
optimal one by means of the Hardy–Littlewood–Sobolev inequality and the Wolff type inequality (cf.
[31] and [32]).

Recently, Li, Chen and Ma consider a pair of positive solutions (u, v) ∈ Lq1+γ −1(Rn) × Lq2+γ −1(Rn)

of another Wolff type system (cf. [7] and [32])

u(x) = Wβ,γ

(
vq2

)
(x),

v(x) = Wβ,γ

(
uq1

)
(x). (1.11)
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The critical condition is

γ − 1

q1 + γ − 1
+ γ − 1

q2 + γ − 1
= 1 − βγ

n
. (1.12)

The system (1.11) is a generalization of Hardy–Littlewood–Sobolev type integral system. Namely, when
γ = 2 and β = α/2 in (1.11), then

u(x) =
∫
Rn

v(y)q2

|x − y|n−α
dy,

v(x) =
∫
Rn

u(y)q1

|x − y|n−α
dy. (1.13)

The pair of solutions (u, v) = (λ1 f r−1, λ2 gs−1) is a critical point of the functional

J ( f , g) =
∫
Rn

∫
Rn

f (x)g(y)dx dy

|x − y|n−α

with the constraint ‖ f ‖r = ‖g‖s = 1, where r = q1+1
q1

and s = q2+1
q2

. One can maximize this functional
to find the best constant C(n, s,α) in the following Hardy–Littlewood–Sobolev inequality (cf. [37])

∫
Rn

∫
Rn

f (x)g(y)dx dy

|x − y|n−α
� C(n, s,α)‖ f ‖r‖g‖s,

where s, r > 1, 1
r + 1

s = n+α
n , f ∈ Lr(Rn), g ∈ Ls(Rn) (cf. [9] and [28]). The classification of positive

solutions of (1.13) and its corresponding PDEs were studied rather thoroughly (cf. [4–6,8,11,15,25,35]
and the references therein).

The integrability for positive solutions of the integral system (1.13) was well studied by Jin and Li
(cf. [17]). Following those ideas, Chen, Li and Ma obtained the integrability intervals and the regularity
results for the Wolff type system (1.11) (cf. [32]). Afterwards, the asymptotic behavior of positive
solutions is estimated (cf. [21]).

It should be pointed out that the system (1.11) with the critical condition (1.12) is not appropriate
to study γ -Laplace equations without ratio coefficients. For simplicity, we consider (1.11) with q1 = q2
and u ≡ v , i.e.

u = Wβ,γ

(
uq1

)
, (1.14)

then (1.12) implies

q1 = n + βγ

n − βγ
(γ − 1). (1.15)

Clearly, when γ 
= 2, this is different from the critical condition (1.9).
For the γ -Laplace equation (1.5), the critical condition (1.9) makes sense and (1.12) does not. In

fact, Corollary II in [36] shows that

−div
(|∇u|γ −2∇u

) = uq1 (1.16)
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has positive solutions if and only if

q1 � nγ

n − γ
− 1.

Thus, (1.9) with β = 1 is the critical condition. On the contrary, q1 = q2 in (1.12) with β = 1 implies

q1 = n + γ

n − γ
(γ − 1) < γ ∗ − 1.

Now, (1.16) has no positive solution.
In the following, we state the main results in this paper. For the solution of (1.7), we have

Theorem 1.1. Assume u, v ∈ Lγ ∗
(Rn) solve (1.7) with (1.8) and (1.9). Then,

i) u and v belong to Ls(Rn) for any s ∈ (
n(γ −1)
n−βγ ,∞). The left end point n(γ −1)

n−βγ is optimal. In addition, u and

v are bounded in Rn.

ii) u(x) and v(x) are equal to O (|x| βγ −n
γ −1 ) when |x| → ∞.

Remark 1.1. (i) When β = α/2, γ = 2, i) and ii) of Theorem 1.1 are the same as (R1) and (R2).
(ii) For the system (1.14) with another critical condition (1.15), the results of the integrability and

asymptotics in [32] and [21] are the same as i) and ii) of Theorem 1.1 (cf. §5).

Remark 1.2. Papers [21,23,24,26] studied the asymptotics of the Wolff type and the weighted Hardy–
Littlewood–Sobolev type systems. Papers [21] and [24] used the radial symmetry of the positive
solutions to estimate the decay rates. Papers [23] and [26] investigated the singularity of the pos-
itive solutions near the origin for the weighted Hardy–Littlewood–Sobolev type systems, and then
obtained the decay rates when |x| → ∞ by means of the Kelvin transform. However, (1.7) has nei-
ther radial structures nor the invariability under the Kelvin transform. Therefore, the techniques in
those papers cannot be used in this paper. We have to find a new method to obtain the asymptotic
estimates.

For the solution of (1.4), we have

Corollary 1.2. Let u, v ∈ Lγ ∗
(Rn) be a pair of positive solutions of (1.4) and (1.9) with β = 1. Then

i) u and v belong to Ls(Rn) for any s ∈ (
n(γ −1)

n−γ ,∞). The left end point n(γ −1)
n−γ is optimal. In addition, u and

v are bounded in Rn.

ii) u(x) and v(x) are equal to O (|x| γ −n
γ −1 ) when |x| → ∞.

Remark 1.3. Result ii) of Corollary 1.2 shows that the decay rate of those positive solutions is the same
as the fast decay rate in [14] even if the solutions have not radial structures. Another slow decay rate

O (|x|
γ

γ −γ ∗ ) in [14] is the asymptotic behavior of the singular solutions instead of the regular solutions,
since such a rate shows that the solutions do not belong to Lγ ∗

(Rn).

2. Integrability interval

In this section, we prove conclusion i) in Theorem 1.1.

Proposition 2.1. Assume u, v ∈ Lγ ∗
(Rn) solve (1.7) with (1.8) and (1.9). Then we can find a positive bounded

function R(x) such that w = u + v satisfies (1.10).
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Proof. First there exists a constant C > 0 such that

up vq � C wγ ∗−1, v puq � C wγ ∗−1.

Hence,

w(x) � C Wβ,γ

(
wγ ∗−1)(x).

Thus, R(x) := w(x)
Wβ,γ (wγ ∗−1)(x)

satisfies

0 < R(x) � C, for x ∈ Rn. (2.1)

Then w satisfies (1.10). Proposition 2.1 is proved. �
Theorem 2.2. Assume w ∈ Lγ ∗

(Rn) solves (1.10) with (1.9) and (2.1). Then

w ∈ Ls(Rn), ∀1

s
∈

(
0,

n − βγ

n(γ − 1)

)
. (2.2)

Proof. Step 1. For A > 0, set

w A(x) = w(x), if w(x) > A or |x| > A;
w A(x) = 0, otherwise,

and w B(x) = w(x) − w A(x). Let σ satisfy

2 − γ

γ ∗ <
1

σ
<

2 − γ

γ ∗ + n − βγ

n
. (2.3)

For g ∈ Lσ (Rn), define operators T and S ,

T g := R(x)

∞∫
0

(∫
Bt (x) wγ ∗−1(y)dy

tn−βγ

) 2−γ
γ −1

∫
Bt (x) wγ ∗−2

A (y)g(y)dy

tn−βγ

dt

t
,

Sg :=
∞∫

0

(∫
Bt (x) wγ ∗−2

A (y)g(y)dy

tn−βγ

) 1
γ −1 dt

t

and write

F := R(x)

∞∫
0

(∫
Bt (x) wγ ∗−1(y)dy

tn−βγ

) 2−γ
γ −1

∫
Bt (x) wγ ∗−1

B (y)dy

tn−βγ

dt

t
.

Clearly, w is a solution of the following equation

g = T g + F .
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Step 2. T is a contraction map from Lσ (rn) into itself.
In fact, by the Hölder inequality and (2.1), there holds

|T g| � C w2−γ |Sg|γ −1.

Using the Hölder inequality, we get

‖T g‖σ � C‖w‖2−γ
γ ∗ ‖Sg‖γ −1

t (2.4)

where t > 0 satisfies

1

σ
= 2 − γ

γ ∗ + γ − 1

t
. (2.5)

By (2.3) and (2.5),

0 <
γ − 1

t
< 1 − βγ

n
. (2.6)

Therefore, we can use the Hardy–Littlewood–Sobolev inequality and the Wolff type inequality to ob-
tain

‖Sg‖t � C
∥∥wγ ∗−2

A g
∥∥ 1

γ −1
nt

n(γ −1)+tβγ

. (2.7)

Since (2.5) leads to

γ − 1

t
− 1

σ
= γ ∗ − 2

γ ∗ − βγ

n
,

it follows from (2.7) and the Hölder inequality that

‖Sg‖γ −1
t � C‖w A‖γ ∗−2

γ ∗ ‖g‖σ .

Inserting this into (2.4) yields

‖T g‖σ � C‖w‖2−γ
γ ∗ ‖w A‖γ ∗−2

γ ∗ ‖g‖σ . (2.8)

By virtue of w ∈ Lγ ∗
(Rn),

C‖w‖2−γ
γ ∗ ‖w A‖γ ∗−2

γ ∗ � 1

2

when A is sufficiently large. Then T is a shrinking operator. Noticing that T is linear, we know that T
is a contraction map from Lσ (Rn) to itself as long as σ satisfies (2.3).

Step 3. Estimating F to lift the regularity.
Similarly to (2.4) and (2.7), for all σ satisfying (2.3), there holds

‖F‖σ � C‖w‖2−γ
γ ∗

∥∥wγ ∗−1
B

∥∥
nt
n(γ −1)+tβγ



2746 Y. Lei, C. Li / J. Differential Equations 252 (2012) 2739–2758
where t satisfies (2.6). Noting w ∈ Lγ ∗
(Rn) and the definition of w B , we see that

F ∈ Lσ
(

Rn)
as long as σ satisfies (2.3). Taking X = Lγ ∗

(Rn), Y = Lσ (Rn) and Z = Lγ ∗
(Rn) ∩ Lσ (Rn) in Lemma 2.1

of [17], we have

w ∈ Lσ
(

Rn),
for all σ satisfying (2.3).

Step 4. Extend the interval from (2.3).
Let

1

s
∈

(
0,

n − βγ

n(γ − 1)

)
. (2.9)

Thus, we can use the Hardy–Littlewood–Sobolev inequality and the Wolff type inequality to deduce
that

‖w‖s � C
∥∥wγ ∗−1

∥∥ 1
γ −1

ns
n(γ −1)+sβγ

� C‖w‖
γ ∗−1
γ −1
ns(γ ∗−1)

n(γ −1)+sβγ

. (2.10)

Noting (2.3), from (2.10) we see that

‖w‖s < ∞

as long as s satisfies

2 − γ

γ ∗ <
n(γ − 1) + sβγ

ns(γ ∗ − 1)
<

2 − γ

γ ∗ + n − βγ

n
. (2.11)

Next, we will prove that (2.11) is true as long as (2.9) holds.
In fact, 1

γ ∗ = n−βγ
nγ leads to 2−γ

γ ∗ = n−βγ
n ( 2

γ − 1). Then (2.11) is equivalent to

n − βγ

n

(
2

γ
− 1

)
<

γ − 1

s(γ ∗ − 1)
+ βγ

n(γ ∗ − 1)
<

2(n − βγ )

nγ

or

γ ∗ − 1

γ − 1

[
n − βγ

n

(
2

γ
− 1

)
− βγ

n(γ ∗ − 1)

]
<

1

s
<

γ ∗ − 1

γ − 1

[
2(n − βγ )

nγ
− βγ

n(γ ∗ − 1)

]
.

Thus, we need to verify two conclusions:

n − βγ

n

(
2

γ
− 1

)
− βγ

n(γ ∗ − 1)
� 0 (2.12)

and

γ ∗ − 1

γ − 1

[
2(n − βγ )

nγ
− βγ

n(γ ∗ − 1)

]
� n − βγ

n(γ − 1)
. (2.13)
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Verify (2.12). By p + q � 1, we have γ � 2n
n+2β

, which implies (n + 2β)γ 2 − (3n + 2β)γ + 2n � 0. So

(γ ∗ − 1)(n − βγ )(2 − γ ) � βγ 2, and hence

(n − βγ )(2 − γ )

nγ
− βγ

n(γ ∗ − 1)
� 0.

Verify (2.13). By γ � 2n
n+2β

, we have 2nγ − 2n + 2βγ − βγ 2 � nγ − βγ 2. This means

2nγ − 2n + 2βγ − βγ 2

nγ (γ − 1)
� n − βγ

n(γ − 1)
,

which implies (2.13).
Eqs. (2.12) and (2.13) show that the integrability interval is (2.9). Theorem 2.2 is proved. �

Theorem 2.3. Assume u, v ∈ Lγ ∗
(Rn) solve (1.7) with (1.8) and (1.9). Then

u ∈ Ls(Rn), v ∈ Ls(Rn), ∀1

s
∈

(
0,

n − βγ

n(γ − 1)

)
. (2.14)

In addition, the right end point n−βγ
n(γ −1)

of the integrability interval is optimal.

Proof. As a direct corollary of Proposition 2.1 and Theorem 2.2, (2.14) is easy to be obtained. Next,
we prove that n−βγ

n(γ −1)
is optimal. In fact, for sufficiently large |x|, from (1.8) we deduce that

u(x) � c

4|x|∫
2|x|

(∫
B1(0)

up(y)vq(y)dy

tn−βγ

) 1
γ −1 dt

t

� c

4|x|∫
2|x|

(
1

tn−βγ

) 1
γ −1 dt

t
� c|x| βγ −n

γ −1 . (2.15)

If 1
s � n−βγ

n(γ −1)
, then for some large constant d > 0,

‖u‖s
Ls(Rn\Bd(0)) � c

∞∫
d

rn−s n−βγ
γ −1

dr

r
= ∞.

For v , we have the same conclusion. Theorem 2.3 is proved. �
Theorem 2.4. Assume u, v ∈ Lγ ∗

(Rn) solve (1.7) with (1.8) and (1.9). Then u and v are bounded in Rn.

Proof. In view of (1.8),

u(x) � C

( 1∫
0

[∫
Bt (x) up(y)vq(y)dy

tn−βγ

] 1
γ −1 dt

t
+

∞∫
1

[∫
Bt (x) up(y)vq(y)dy

tn−βγ

] 1
γ −1 dt

t

)

:= C(H1 + H2).



2748 Y. Lei, C. Li / J. Differential Equations 252 (2012) 2739–2758
By Hölder’s inequality, for any l > 1,∫
Bt (x)

up(y)vq(y)dy � C
∥∥wγ ∗−1

∥∥
l

∣∣Bt(x)
∣∣1−1/l

.

Take l sufficiently large such that 1
(γ ∗−1)l = ε ∈ (0,min{ βγ

n(γ ∗−1)
,

n−βγ
n(γ −1)

}) sufficiently small. According

to Theorem 2.2, ‖wγ ∗−1‖l < ∞. Therefore,

H1 � C

1∫
0

( |Bt(x)|1−(γ ∗−1)ε

tn−βγ

) 1
γ −1 dt

t
� C

1∫
0

t
βγ −n(γ ∗−1)ε

γ −1
dt

t
� C .

If z ∈ Bδ(x), then Bt(x) ⊂ Bt+δ(z). For δ ∈ (0,1) and z ∈ Bδ(x), by (1.8),

H2 =
∞∫

1

[∫
Bt (x) up(y)vq(y)dy

tn−βγ

] 1
γ −1 dt

t

�
∞∫

1

(∫
Bt+δ(z) up(y)vq(y)dy

(t + δ)n−βγ

) 1
γ −1

(
t + δ

t

) n−βγ
γ −1 +1 d(t + δ)

t + δ

� (1 + δ)
n−βγ
γ −1 +1

∞∫
1+δ

(∫
Bt (z) up(y)vq(y)dy

tn−βγ

) 1
γ −1 dt

t
� Cu(z). (2.16)

Combining the estimates of H1 and H2, we have

u(x) � C + Cu(z), for z ∈ Bδ(x),

where δ ∈ (0,1). Integrating on Bδ(x), we get

∣∣Bδ(x)
∣∣u(x) � C + C

∫
Bδ(x)

u(z)dz

� C + C‖u‖γ ∗
∣∣Bδ(x)

∣∣1− 1
γ ∗ � C .

This shows u is bounded in Rn . Similarly, v is also bounded. Theorem 2.4 is proved. �
3. Decay rates

Consider a special case at first. Let R(x) ≡ 1 in (1.10). Then

w(x) = Wβ,γ

(
wγ ∗−1)(x), in Rn. (3.1)

Theorem 1.3 in [31] shows that w is radially symmetric and decreasing about some x0 ∈ Rn . Then we
can write

w(x) = ω(r), where r = |x − x0|.
Furthermore, we have



Y. Lei, C. Li / J. Differential Equations 252 (2012) 2739–2758 2749
Proposition 3.1. Assume w ∈ Lγ ∗
(Rn) solves (3.1) with (1.9). Then w(x) = O (|x| βγ −n

γ −1 ) as |x| → ∞.

Proof. Step 1. For any 1
s ∈ (0,

n−βγ
n(γ −1)

), there exists C > 0, such that for any R > 0,

ω(R) � C R−n/s. (3.2)

In fact, according to Theorem 2.2, we know w ∈ Ls(Rn) when 1
s is in the integrability interval

of (2.2). Thus, we can denote
∫

Rn ws(y)dy by a constant Cs . In view of the monotonicity of ω(r), we
deduce that

∣∣Sn−1
∣∣ωs(R)

(
R

2

)n

ln 2 �
∣∣Sn−1

∣∣ R∫
R/2

ωs(r)rn dr

r

=
∫

B R (x0)\B R/2(x0)

ws(y)dy � Cs.

Thus, (3.2) is verified.

Step 2. There exists c > 0 such that for large |x|, w(x) � c|x|− n−βγ
γ −1 .

In fact, if |y − x0| < 1, then for large |x| and t ∈ (2|x|,4|x|), we have |y − x| � |y − x0| + |x − x0| <
1 + |x0| + |x| < t . This means B1(x0) ⊂ Bt(x). Therefore, by the monotonicity of ω(r),

∫
Bt (x)

wγ ∗−1(y)dy �
∫

B1(x0)

wγ ∗−1(y)dy � ωγ ∗−1(1)
∣∣B1(x0)

∣∣,

when t ∈ (2|x|,4|x|). Thus,

w(x) �
4|x|∫

2|x|

[∫
Bt (x) wγ ∗−1(y)dy

tn−βγ

] 1
γ −1 dt

t
� c

4|x|∫
2|x|

1

t
n−βγ
γ −1

dt

t
� c

|x| n−βγ
γ −1

.

Step 3. Next, we estimate the upper bound of w(x) for large |x|.
Clearly, we have

w(x) � C

( |x|
2∫

0

[∫
Bt (x) wγ ∗−1(y)dy

tn−βγ

] 1
γ −1 dt

t
+

∞∫
|x|
2

[∫
Bt (x) wγ ∗−1(y)dy

tn−βγ

] 1
γ −1 dt

t

)

:= C(I1 + I2).

Claim 1. There exists C > 0 such that for large |x|, I1 � C |x|− n−βγ
γ −1 .

In fact, |x|
2 � |y| � 3|x|

2 when y ∈ Bt(x) ⊂ B |x|
2
(x). By virtue of the monotonicity of ω(r), for large |x|

there holds w(y) = ω(|y − x0|) � Cω(
|x|
3 ). Therefore, by (3.2) we can deduce that
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|x| n−βγ
γ −1 I1 � C |x| n−βγ

γ −1

|x|
2∫

0

[∫ t
0 ωγ ∗−1(|x|/3)rn−1dr

tn−βγ

] 1
γ −1 dt

t

� C |x| n−βγ
γ −1 − n(γ ∗−1)

s(γ −1)

|x|
2∫

0

t
βγ
γ −1

dt

t
� C |x| n

γ −1 − n(γ ∗−1)
s(γ −1) . (3.3)

We choose 1
s approaching the right end points of the intervals of (2.2) such that

1 − γ ∗ − 1

s
< 0. (3.4)

Inserting it into (3.3), we can prove the claim.

Claim 2. There exists C > 0 such that for large |x|, I2 � C |x|− n−βγ
γ −1 .

In fact, by 1
γ −1 � 1 and the Jensen inequality, we get

I2 � C

( ∞∫
|x|
2

[∫
B2|x0 |(0)∩Bt (x) wγ ∗−1(y)dy

tn−βγ

] 1
γ −1 dt

t
+

∞∫
|x|
2

[∫
Bt (x)\B2|x0 |(0)

wγ ∗−1(y)dy

tn−βγ

] 1
γ −1 dt

t

)

:= C(I21 + I22).

By virtue of
∫

B2|x0 |(0)
wγ ∗−1(y)dy � C , we have

|x| n−βγ
γ −1 I21 � C |x| n−βγ

γ −1

∞∫
|x|
2

[
1

tn−βγ

] 1
γ −1 dt

t
� C .

On the other hand, when |y| � 2|x0|, there holds |y − x0| � |y| − |x0| � |y|
2 . Applying the mono-

tonicity of ω(r) and (3.2), we get

wγ ∗−1(y) = ωγ ∗−1(|y − x0|
)
� ωγ ∗−1

( |y|
2

)
� C

( |y|
2

)−n(γ ∗−1)/s

.

Thus

∫
Bt (x)\B2|x0 |(0)

wγ ∗−1(y)dy � C

|x|+t∫
2|x0|

rn− n(γ ∗−1)
s

dr

r
.

Eq. (3.4) implies n − n(γ ∗−1)
s < 0, so

∫
Bt (x)\B2|x |(0)

wγ ∗−1(y)dy � C .
0



Y. Lei, C. Li / J. Differential Equations 252 (2012) 2739–2758 2751
Inserting this into I22 yields

|x| n−βγ
γ −1 I22 � C |x| n−βγ

γ −1

∞∫
|x|
2

t− n−βγ
γ −1

dt

t
� C .

Claim 2 is complete and Proposition 3.1 is proved. �
Next, we prove conclusion ii) in Theorem 1.1. Now, R(x) 
≡ 1 and hence the radial symmetry is lost.

The estimate (3.2) seems difficult to be deduced. We have to find another way to estimate the decay
rate.

Theorem 3.2. Assume u, v ∈ Lγ ∗
(Rn) solve (1.7) with (1.8) and (1.9). Then, u(x), v(x) = O (|x| βγ −n

γ −1 ) when
|x| → ∞.

Proof. Step 1. There exists a positive constant c, such that for large |x|,

u(x), v(x) � c|x|− n−βγ
γ −1 . (3.5)

In fact, similarly to the derivation of (2.15), from
∫

B1(0)
up(y)vq(y)dy � c > 0 and (1.8), it follows

that

u(x) � c

∞∫
|x|+1

[∫
B1(0)

up(y)vq(y)dy

tn−βγ

] 1
γ −1 dt

t

� c

∞∫
|x|+1

t− n−βγ
γ −1

dt

t
� c|x|− n−βγ

γ −1 .

Similarly, v has the same lower estimate.
Write w = u + v . In the following, we prove that for large |x|,

w(x) � C |x|− n−βγ
γ −1 . (3.6)

Step 2. We claim that u, v are decaying. Namely,

lim|x|→∞ u(x) = 0, lim|x|→∞ v(x) = 0. (3.7)

Take x0 ∈ Rn . By Theorem 2.4, ‖w‖∞ < ∞. Thus, ∀ε > 0, there exists δ ∈ (0,1) such that

δ∫
0

[∫
Bt (x0)

up(z)vq(z)dz

tn−βγ

] 1
γ −1 dt

t
� C‖w‖

γ ∗−1
γ −1∞

δ∫
0

t
βγ
γ −1

dt

t
< ε.

On the other hand, similarly to the derivation of (2.16), as |x − x0| < δ,
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∞∫
δ

[∫
Bt (x0)

up(z)vq(z)dz

tn−βγ

] 1
γ −1 dt

t
�

∞∫
δ

[∫
Bt+δ(x) up(z)vq(z)dz

(t + δ)n−βγ

] 1
γ −1

(
t + δ

t

) n−βγ
γ −1 +1 d(t + δ)

t + δ

� C

∞∫
0

[∫
Bt (x) uq(z)vq(z)dz

tn−βγ

] 1
γ −1 dt

t

� Cu(x).

Combining these estimates with (1.8), we get

u(x0) < ε + Cu(x), for |x − x0| < δ.

Since u ∈ Lγ ∗
(Rn), there holds lim|x0|→∞

∫
Bδ (x0)

uγ ∗
(x)dx = 0. Thus, we have

uγ ∗
(x0) = ∣∣Bδ(x0)

∣∣−1
∫

Bδ(x0)

uγ ∗
(x0)dx

� Cεγ ∗ + C
∣∣Bδ(x0)

∣∣−1
∫

Bδ(x0)

uγ ∗
(x)dx → 0 (3.8)

when |x0| → ∞ and ε → 0. Similarly, v has the same result. Thus, (3.7) holds.
Step 3. Take a cutting-off function ψ(x) ∈ C∞

0 (B2 \ B1) satisfying

0 � ψ(x) � 1, for 1 � |x| � 2;

ψ(x) = 1, for
5

4
� |x| � 7

4
.

For any ρ > 0, set ψρ(x) = ψ( x
ρ ). Define

h(x) = w(x)|x|n/(γ ∗−1)ψρ(x).

Then, one of the following two cases must be true:
(1) There exists a positive constant C (independent of ρ) such that

h(x) � C, ∀x; (3.9)

(2) There exists an increasing sequence {ρ j}∞j=1 satisfying lim j→∞ ρ j = ∞, such that as xρ j ∈
B2ρ j \ Bρ j ,

lim
j→∞

h(xρ j ) = ∞. (3.10)

If (3.9) is true, then for large |x|,

w(x) � C |x|−n/(γ ∗−1). (3.11)
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When t ∈ (0, |x|/2), y ∈ Bt(x) implies |x|/2 � |y| � 3|x|/2. Then by (2.1) and (3.11), we have

R(x)

|x|
2∫

0

(∫
Bt (x) wγ ∗−1(y)dy

tn−βγ

) 1
γ −1 dt

t
� C

|x| n
γ −1

|x|
2∫

0

t
βγ
γ −1

dt

t
� C

|x| n−βγ
γ −1

. (3.12)

On the other hand, Theorem 2.2 shows w ∈ Lγ ∗−1(Rn). Then

R(x)

∞∫
|x|/2

(∫
Bt (x) wγ ∗−1(y)dy

tn−βγ

) 1
γ −1 dt

t
� C

∞∫
|x|/2

t
βγ −n
γ −1

dt

t
� C |x|− n−βγ

γ −1 .

Combining this result with (3.12), we obtain

w(x) = R(x)Wβ,γ

(
wγ ∗−1)(x) � C |x|− n−βγ

γ −1 .

This is (3.6).
Next, we prove case (2) does not happen.
Step 4. Let xρ be the maximum point of h(x) in B2ρ \ Bρ . It follows from (3.10) that

w(xρ j ) = h(xρ j )

ψρ j (xρ j )|xρ j |n/(γ ∗−1)
� c

ρ
n/(γ ∗−1)

j

. (3.13)

For convenience, we denote ρ j by ρ .
We claim that

ψρ(xρ) > δ (3.14)

for some δ > 0 (independent of ρ). Otherwise, for any δ > 0, there exists R0 > 0 such that as ρ > R0,

ψρ(xρ) � δ. (3.15)

Let x̄ρ be the maximum point of w(x) in B2ρ \ Bρ . Namely,

M(ρ) := w(x̄ρ) = sup
{

w(x); x ∈ B2ρ \ Bρ

}
.

Take ρ̄ > R0 such that ρ̄ = 2
3 |x̄ρ |. By (3.15), we deduce that

M(ρ)|x̄ρ |n/(γ ∗−1) = w(x̄ρ)|x̄ρ |n/(γ ∗−1) � h(xρ̄ )

� δw(xρ̄ )|xρ̄ |n/(γ ∗−1) � CδM
(|xρ̄ |)|x̄ρ |n/(γ ∗−1).

Denote Cδ by δ̄, then

M(ρ) � δ̄M
(|xρ̄ |) � δ̄ sup

{
M(l); ρ

2
� l � 2ρ

}

� δ̄ sup

{
M(l); ρ

2
� l < ∞

}
:= δ̄M̄

(
ρ

2

)
.
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Taking the supremum to both sides of the inequality above, we have

M̄(ρ) � δ̄M̄

(
ρ

2

)
.

Let δ̄ � 2−2n/(γ ∗−1) . By induction we obtain

M̄
(
2k R∗

) = δ̄k M̄(R∗) � 2−2kn/(γ ∗−1)M̄(R∗)

for some fixed R∗ > 0. Therefore,

M̄(r) � Cr−2n/(γ ∗−1).

This result contradicts (3.13). Thus, (3.14) is true.
Step 5. Using (3.14) and the smoothness of ψ , we can find a suitably small positive constant σ ,

such that ψρ(y) > δ/2 for |y − xρ | < σ |xρ |. Hence, by h(y) � h(xρ), we get

w(y) � C
w(xρ)

ψρ(y)
� C(δ)w(xρ), as |y − xρ | < σ |xρ |. (3.16)

In view of (1.10) and (2.1), there holds

w(xρ) � C

[ σ |xρ |∫
0

(∫
Bt (xρ)

wγ ∗−1(y)dy

tn−βγ

) 1
γ −1 dt

t
+

∞∫
σ |xρ |

(∫
Bt (xρ)

wγ ∗−1(y)dy

tn−βγ

) 1
γ −1 dt

t

]

:= C( J1 + J2). (3.17)

Clearly, from w ∈ Lγ ∗−1(Rn) it follows

J2 � C

∞∫
σ |xρ |

t− n−βγ
γ −1

dt

t
� C |xρ |− n−βγ

γ −1 . (3.18)

Using (3.16), we obtain that, for r ∈ (0, σ |xρ |),

J1 � C w(xρ)

[ r∫
0

(∫
Bt (xρ)

wγ ∗−γ (y)dy

tn−βγ

) 1
γ −1 dt

t
+

σ |xρ |∫
r

(∫
Bt (xρ)

wγ ∗−γ (y)dy

tn−βγ

) 1
γ −1 dt

t

]

:= C w(xρ)( J11 + J12). (3.19)

By (3.7), for any ε ∈ (0,1), there holds

J11 � ‖w‖
γ ∗−γ
γ −1

L∞(Bσ |xρ |(xρ))

r∫
t

βγ
γ −1

dt

t
� ε
0
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as long as ρ is sufficiently large. On the other hand, by Hölder’s inequality and Theorem 2.4,

∫
Bt (xρ)

wγ ∗−γ (y)dy � ‖w‖γ ∗−γ
s

∣∣Bt(xρ)
∣∣1− γ ∗−γ

s � Ctn−n(γ ∗−γ )/s

for any 1
s ∈ (0,

n−βγ
n(γ −1)

). Hence,

J12 � C

σ |xρ |∫
r

t
βγ −n(γ ∗−γ )/s

γ −1
dt

t
.

Taking 1
s close to n−βγ

n(γ −1)
, we get βγ − n(γ ∗ − γ )/s < 0. Therefore, if ρ is sufficiently large and r is

chosen suitably large, then

J12 � ε.

Substituting the estimates of J11 and J12 into (3.19), we obtain

J1 � Cεw(xρ)

when ρ is sufficiently large. Inserting this result and (3.18) into (3.17), and choosing ε sufficiently
small, we get

w(xρ) � C |xρ |− n−βγ
γ −1 .

By (3.16), we obtain that as |x − xρ | < σ |xρ |,

w(x) � C w(xρ) � C |xρ |− n−βγ
γ −1 � C |x|− n−βγ

γ −1 .

Since ρ is arbitrary, the result above still holds for all x as long as |x| is large. This result contra-
dicts (3.10). Thus case (2) does not happen. �
4. Proof of Corollary 1.2

Proposition 4.1. Let u, v ∈ Lγ ∗
(Rn) be a pair of positive solutions of (1.4). Then there exist two functions

R1(x) and R2(x), such that

u(x) = R1(x)W1,γ

(
up vq)(x), in Rn;

v(x) = R2(x)W1,γ

(
v puq)(x), in Rn. (4.1)

Moreover, we can find positive constants C1 and C2 such that

C1 � R1(x), R2(x) � C2. (4.2)

Proof. By virtue of u, v ∈ Lγ ∗
(Rn), we get infRn u = infRn v = 0. By Corollary 4.13 in [19], there exist

C1, C2 > 0 such that
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C1W1,γ

(
up vq)(x) � u(x) � C2W1,γ

(
up vq)(x), x ∈ Rn;

C1W1,γ

(
uq v p)

(x) � v(x) � C2W1,γ

(
uq v p)

(x), x ∈ Rn. (4.3)

Set

R1(x) = u(x)

W1,γ (up vq)(x)
, R2(x) = v(x)

W1,γ (uq v p)(x)
. (4.4)

Then the solutions u and v of γ -Laplace system (1.4) satisfy (4.1). At the same time, (4.3) leads
to (4.2). Proposition 4.1 is proved. �
Proof of Corollary 1.2. As a direct corollary of Theorem 1.1 and Proposition 4.1, we can see conclu-
sions i) and ii) of Corollary 1.2. �
5. Remarks on integrability intervals

Theorem 2.2 shows that the solution w of (1.10) belongs to Ls(Rn) for all s ∈ (
n(γ −1)
n−βγ ,∞). Accord-

ing to Theorem 1 in [32], if u ∈ Lq1+γ −1(Rn) solves (1.14) with (1.15), we also have u ∈ Ls(Rn) for all
s ∈ (

n(γ −1)
n−βγ ,∞).

In this section, we explain briefly why the integrability intervals of the positive solutions of (1.7)
and (1.14) are concordant under the different critical conditions (1.9) and (1.15).

To do this, we recall the derivation the integrability of (1.11) in [32]. Different from u, v ∈ Lγ ∗
(Rn)

for (1.7), for (1.11)

(u, v) ∈ Lq1+γ −1(Rn) × Lq2+γ −1(Rn). (5.1)

We write a more general initial integrability assumption: (u, v) ∈ Lr0(Rn)× Ls0 (Rn). The most essential
idea in [32] is obtaining a contraction map by means of inequalities of the Wolff type and the Hardy–
Littlewood–Sobolev type. In order to use those inequalities, it is sufficient to take r, s > 1 satisfying

1

r
− 1

s
= 2 − γ

r0
+ q2 − 1

s0
− βγ

n
, (5.2)

1

s
− 1

r
= 2 − γ

s0
+ q1 − 1

r0
− βγ

n
, (5.3)

and

1

r
− 1

s
= 1

r0
− 1

s0
. (5.4)

(These are (32), (35) and (39) in [32].)
Adding (5.2) and (5.3) together, and subtracting each other, we respectively obtain that

q1 − γ + 1

r0
+ q2 − γ + 1

s0
= 2βγ

n
, (5.5)

and

1 − 1 = 3 − q1 − γ + q2 + γ − 3
. (5.6)
r s 2r0 2s0
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Combining (5.4) with (5.6), we see that r0 and s0 satisfy

r0 − q1 − (γ − 1)

r0
= s0 − q2 − (γ − 1)

s0
. (5.7)

To understand well the relation between (1.9) and (1.12), we particularly take

r0 = q1 + t, s0 = q2 + t,

where t > 0 will be determined later. Therefore, from (5.5) and (5.7) we deduce that

q1 − (γ − 1)

q1 + t
+ q2 − (γ − 1)

q2 + t
= 2βγ

n
, (5.8)

and

[
t − (γ − 1)

]( 1

q1 + t
− 1

q2 + t

)
= 0, (5.9)

respectively. Clearly, (5.9) is true if and only if

t = γ − 1, (5.10)

or

q1 = q2. (5.11)

Case I. If (5.10) holds, then

r0 = q1 + γ − 1, s0 = q2 + γ − 1.

This is (5.1). At the same time, (5.8) is equivalent to the critical condition (1.12). It is the natural gen-
eralization of the Hardy–Littlewood–Sobolev type integral equations which are helpful to understand
the best constant of the Hardy–Littlewood–Sobolev inequality.

Case II. If (5.11) is true, then (1.11) is reduced to a single equation. By Proposition 2.1, the single
equation is similar to the system (1.7) with the homogeneous exponents. Since the positive solutions
of (1.7) belong to Lγ ∗

(Rn), it follows r0 = s0 = q1 +t = q2 +t = γ ∗ . This implies that (5.8) is equivalent
to the critical condition (1.9).

Thus, the Wolff and the Hardy–Littlewood–Sobolev inequalities work in both cases I and II. We
can also obtain the contraction map, and the rest proof makes sense if we argue by the same way as
in [32].
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