
Procedia Engineering 29 (2012) 1253 – 1258

1877-7058 © 2011 Published by Elsevier Ltd.
doi:10.1016/j.proeng.2012.01.122

Available online at www.sciencedirect.com
Available online at www.sciencedirect.com

 Procedia Engineering 00 (2011) 000–000

Procedia
Engineering

www.elsevier.com/locate/procedia

2012 International Workshop on Information and Electronics Engineering (IWIEE)

A Probability Model of Covering Key Trace during Capturing
Volatile Memory

Lianhai Wang, Hengjian Li∗, Zhen Su
Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, jinan, 250014,China

Abstract

In this paper, we give a clear description of the running memory acquiring tool on a target system, especially for
possibility covering the key trace during capturing volatile memory. Some key trace of offender may still in the
running memory after the scene of a crime and have critical role in court and security applications. However, some
key trace, such as rootkits in the memory, memory occupied by their corresponding process will probably be covered/
reallocated during the procedure of obtaining evidence of the crime. Therefore, the covered ratio (lost data) should be
evaluated and investigated after the forensic tools run. Firstly, we model the distribution of key trace exacted in the
unallocated memory space, then form a formula to evaluate the coverage rate of the key trace in which the
corresponding process has just been killed. At last, we give some cases to analyze the evidence coverage ratio which
can be estimated by the new allocated memory space.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Harbin University
of Science and Technology

Keywords: Computer forensics; key trace; memory capturing; Microsoft Windows XP SP2

1. Introduction

Physical memory forensics has gained a lot of attention over the past years[1], and various methods
have been investigated for capturing and examining the volatile storage of a target machine. Memory
analysis has proven its efficacy during incident response and more traditional forensic investigations. And,
we can extract useful information from the physical memory, such as extracting the content of windows
clipboard from physical memory[2], command lines in the DOSKEY[3] and registry information [4,5].
There are two existed memory acquired methods, one is based on hardware, and the other is based on
software[1]. The hardware method needs installing the related device before, which is not useful in the

∗ Corresponding author. Tel.: +0-86-13515319380
E-mail address: lihengj@keylab.net

RETRACTED

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82620494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1254 	 Lianhai Wang et al. / Procedia Engineering 29 (2012) 1253 – 12582 Author name / Procedia Engineering 00 (2011) 000–000

real cases. Therefore, the software-based acquired memory tools are actually employed in digital
investigation. However, when running the software-based acquired memory tools, uploading the related
driver files would probability alter the content of target memory.

On one hand, the volatility memory changes as the OS is running in a natural way. On the other hand,
the memory content is varied by the uploading drivers when capturing the target machine memory.
During a live forensics-investigation one rule of best practice is to minimize the impact on the target
system, and it is an unavoidable action. And this leads to the trustable of acquired memory, that is,
whether the evidence information is changed or covered because of running a memory acquired process.
At present, the main research in memory forensics is how to extract information from memory as much as
possible, such as network connection state, registry and login password. However, the effect of memory
captured tool on the system has not well been investigated yet. In [6], Aaron Waters discuss the content of
memory changes over time. On the basis of a comprehensive summarizing and reviewing of existing
results, Wang proposed a novel Model of Computer Live Forensics [7], and firstly took the credibility of
digital evidence as a starting point, the issue of credibility of live forensic is then put forward for study.

Memory analysis is a key element of digital forensics. Leveraging memory to determine the state of
the machine at the time of the incident is often critical to success. While there has been significant
research into memory forensics, to date there has not been research into covering the key trace during
capturing memory. The memory content of a process is not lost immediately when the process is killed.
The acquired memory tool may cover or disturb this part of memory. In this paper, we estimate the cover
possibility for the loading acquired tool.

The remainder of the paper is organized as follows. In Section 2, we briefly describe the memory
management process and give an overview of the most important data structures that are required for this
task. Modeling the Covering key trace of evidence is proposed in section 3. And the probability
computation algorithm of covering on key trace memory zone is also described in detail in this section.
Experimental results and analysis is presented in section 4. We conclude with a summary of our work and
indicate opportunities for future research in this area in Section 5.

2. Process and virtual address to physical address in memory

Based on Kernel Processor Control Region(KPCR),Zhang propose an effective process analysis
method which uses a combination of scanning and list traversing techniques[8]. Brendan Dolan-Gavitt
proposed that the Virtual Address Descriptor (VAD) tree, can provide such an abstraction layer over the
page directory and page tables by describing the memory ranges allocated by a process as they might be
seen by the process – as mapped files, loaded DLLs, or privately allocated regions[9]. VADs are data
structures linked to each process’ EPROCESS block that the memory manager uses to keep track of
which virtual addresses have been reserved for each process. Programs usually operate on virtual memory
regions only, therefore, to manipulate the respective physical data, the Memory Manager must
continuously translate (map) virtual into physical addresses[10].

This virtual into physical addresses procedure works as follows: At the hardware level, volatile
storage is organized into units called pages. A common size of such pages is 4kB on x86-platform. To
reference a page, the operating system implements a two-level approach: For every process, the operating
system maintains a page directory that saves pointers (Page Directory Entries PDEs 4 bytes each,
containing a pointer and several flags) to 1024 links (Page Table Entries, 4 bytes each) to the
corresponding page in the main memory. Thus, in order to translate a virtual to a physical address, the
memory manager first needs to recover the base address of the page directory. It is stored in the CR3
registry of the processor and is reloaded from the _KPROCESS block of the process at every context
switch. The first 10 bits of the virtual address can then be used as an index into the page directory to
retrieve the desired PDE. With the help of the PDE and the page table index, i.e, the subsequent 10 bits of
the virtual address, the page table and PTE in question are identified in the next step. To find the

RETRACTED

1255Lianhai Wang et al. / Procedia Engineering 29 (2012) 1253 – 1258 Author name / Procedia Engineering 00 (2011) 000–000 3

approximate page and data in RAM eventually, the PTE and the 12-bit byte index of the virtual address
are parsed.

The Virtual Address Descriptor tree is used by the Windows memory manager to describe memory
ranges used by a process as they are allocated. When a process allocates memory with VirutalAlloc, the
memory manager creates an entry in the VAD tree. A node in the tree is associated with a pool tag and is
of type _MMVD_SHORT(“VadS”), _MMVAD(“Vad”), or _MMVAD_LONG(“VadL”). The latter two
store a pointer to a _Control_Area structure that, in turn, points to a _File_Object that holds the unique
file name. Consequently, the entire list of loaded modules can be retrieved by traversing the VAD tree
from top to bottom and following the corresponding _Control_Area and _File_Object references.

3. Model and Evaluation the Covering key trace of evidence

3.1. Model and Evaluation the influence of the key trace caused by acquiring memory tools

When performing memory analysis, there are two primary components: a) kernel memory and
b)userland memory. In a Windows environment, kernel memory is comprised primarily of device drivers,
the NT operating system executable, and HAL.DLL. The majority of userland memory is compromised of
individual process, and the process’ address primarily consists of files loaded from disk that contain code
or data needed for process execution, typically Portable Executables (EXEs) and Dynamic Link
Libraries(DLLs). Most of the virtual address in kernel memory is global regardless of the process context,
whereas the other virtual address space is generally specific to each particular process.

 Fig.1 Effect on the target system memory while running acquiring tool

Techniques used in live forensics will inevitably change the system under investigation because
they must be conducted by running tools on the system. And as such any findings may be problematic as
evidence at court. Effects of live forensics to collected evidence included the probability of covering key
trace by forensic tool kit and affecting region in digital evidence. As showed in Fig.1, with the running
acquiring tools, some of the unallocated memory will be allocated for the new process. And, some
memory data may be transferred into the pagefile.sys.

Walking the VAD tree is simply a matter of identifying the _EPROCESS structure for the process of
interest, locating the VadRoot member (0x11c in all versions of XP), and then following each link to the
left and right subtrees until the entire tree is traversed. All addresses are virtual, so the page directory for
the process is also needed in order to successfully read the tree. For affecting region, it can be obtained by
finding physical memory occupied by forensic tool through its VadRoot. The probability of covering key
trace can be calculated by probability statistics, which can be inferred in the following section as follows.

(1) Supposed the key traces distributed uniformly in the unallocated memory pages. The number of

the unallocated memory page is m, and the symbol of these pages noted as 1 2{ , , , }m mB B BΩ = ⋅⋅ ⋅ 。
RETRACTED

1256 	 Lianhai Wang et al. / Procedia Engineering 29 (2012) 1253 – 12584 Author name / Procedia Engineering 00 (2011) 000–000

(2) The pages of the unallocated memory increased as running the forensic tools. After the memory
acquired tool, supposed the number of novel unallocated page is n (of course, n<m). We noted these

pages as 1 2{ , , , }n nB B B′ ′ ′Ω = ⋅⋅ ⋅ (n mΩ ⊂ Ω). Then, we can simply treat the r m nΩ = Ω −Ω as the

forensics tools occupied pages. And we noted the number of the containing the key traces memory pages

as e, of course e rΩ ⊆ Ω .

(3) Suppose the event xA′ = “the key trace contained in rΩ ”. Therefore, it can be inferred as

()x

e
P A

m n
′ =

−
.This formulation approximate the key trace probability of the arbitrarily memory pages

contained in nΩ . That is,

() ()x x

e
P A P A

e m n
′= =

+ −
 (1)

(4)The probability of covering the key traces in unallocated memory can be computed as：

1 2 1 2

1 2 1 2

1 1
1 2

1 1 11

() () () (1) () (1) ()
k

k

n n
k n

i i i i i i i n
i i i n i i i ni

p A P A P A A P AA A P AA A− −

= ≤ ≤ ≤ ≤=

= − +⋅⋅⋅+ − ⋅⋅⋅ +⋅⋅⋅+ − ⋅⋅⋅∑ ∑ ∑
p p p

U (2)

()x

e
P A

m n
=

−
 is replaced with above formula and it can be simplified as :

1

11

() (1) () 1 (1)
n n

i i i n
i n

ii

e e
P A C

m n m n
−

==

= − = − −
− −∑U (3)

3.2. The flow char of the computing the key trace covering probability

Virtual address physical address size, Virtual address physical address size

Fig.2 A part of memory map of the process “hedef100.exe” and “user_load.exe”

The VAD tree describes memory ranges is used by a process and enables reconstruction of a
process virtual address space. A node in this tree can have a number of different pool tags, depending on
the type of Virtual Address Descriptor. Common tags are VadS, Vad and VadL. The latter two objects
contain pointers to Control Areas, which are described below. This object contains, among other things,

RETRACTED

1257Lianhai Wang et al. / Procedia Engineering 29 (2012) 1253 – 1258 Author name / Procedia Engineering 00 (2011) 000–000 5

the file size of the mapped file. Fig. 2 illustrates the virtual address, physical address and the page size. In
each process, An essential part of the operating system on the suspect machine and distinguishing
legitimate components from suspicious and potentially malicious applications.

Fig.3 The flow char of the computing the key trace covering probability

During the process, we employ volatility framework 2.0 to analyze the memory[12]. Fig.3 illustrates
the flow chart of the computing the key trace covering probability. Firstly, we capture the whole memory
of the target system. Later, we search the rootkit process, and find the Pid. According to the pid, we find
out the virtual address using VAD tools. Then, we translate the virtual address into physical address and
record them. At last, we compare the physical address employed in the rootkit with that of employed in
the memory acquired tool. In the real running system, there are some rootkits, such as hxdef100.exe.
Usually, we kill the process using icesword tool, and capture the system memory once again.

4. Experiments and results

In order to make clear which part of memory content has been changed during the evidence acquired
process. And which part of memory content would be covered because of loading the memory acquired
tool, we make some experiments using the following Environment. The experiments are performed
using a Windows XP Service Pack 2 VMware® Workstation 7.1.4 build-385536 on a Windows 7 host.
The host OS is Windows 7 Ultimate, 32-bit (Build 7600) 6.1.7600, with 3G RAM. The live response
toolkit used in our experiments is the user_load.exe, which is developed by ourselves and based on the
absolute driver file (MemDump.sys).

The comparing files function of the WinHex is using to analysis the impact on progress and drive of
the key traces, by comparing the front and back memory image files of running forensics tools. A txt file
will be generated if they are different. In this trial no difference was found, so forensics tools have no
effect on the progress and drive the Hacker Defender(hxdef100.exe).

The size of the Hxdef100.exe occupied 292KB on disk. However, the pages of hxdef100.exe
occupied 136 in memory. Running x nt! Mmavailablepages command using Windbg to find the basic
addresses of the unallocated memory pages, moreover operating MemoryAnalyzer to obtain the offset
address. Finally, get the physical address of the undistributed memory pages by adding the above two
addresses. We make different experiments using different rootkits, such as hack defender. Running
rookits also needs some shared Dlls, and this Dlls memory is shared. Here, we only consider the part
of .exe memory.

Tab.1 the probability of covering key trace
e m n m-n P(Ai)Hxdef100.exe

136 0x015ad2(88786) 0x0159ef(88559) 227 0.5991

Before acquiring the system memory, the unallocated pages are 88786, and after acquiring the
memory, the unallocated pages are 88559. Therefore, the new allocated memory page is 88786-
88559=227. The pages of the Hxdef100 process occupied 136. In theory, the probability of covering key
trace is 0.5991. From formula (3) in section 3.2, we can compute the covering probability 1-(1-
0.5991)^136 is nearly to 1. That is, the integrity of the process hxdef100.exe is destroyed.

RETRACTED

1258 	 Lianhai Wang et al. / Procedia Engineering 29 (2012) 1253 – 12586 Author name / Procedia Engineering 00 (2011) 000–000

From the process physical memory, about 49 in 134 pages are the same, that is, 49 pages are reused in
the process of the memory acquired tool. It can be noted that the hxdef100.exe contains 136pages, but
134 pages can be located in the physical memory. The results of Tab.1 show that part of the key trace is
covered by loading the memory acquired tool. That is, the integrality of the original data using in the
malware possibility in the memory can be destroyed. Some of physical memory employed in the original
process may be allocated for running the new process.

5. Conclusions and future work

When the process has just been killed, not all the physical memory related the process would be
allocated for other process. In this paper, we analyze the allocated physical memory of the key trace.
Then, we kill the process and count the covering pages. Considering the relation between usage rate of
memory and model of the key trace, we computed the covering probability in the captured memory. Some
of the data in process can not be very important in court. Therefore, we need further to investigate that the
key data in the process would be covered or not in detail. In the future work, we will solve this problem.

Acknowledgements

This work is supported by grants by National Natural Science Foundation of China (Grant No.
61070163), by the Shandong Province Outstanding Research Award Fund for Young Scientists of China
(Grant No. BS2011DX034) and by the Natural Science Foundation of Shandong Province, China(Grant
No.ZR2009GM036).

References

[1] Stefan V, Felix C. Freiling, A survey of main memory acquisition and analysis techniques for the windows operating

system , digital investigation 8(2011)3-22.

[2] James Okolica, Gilbert L. Peterson, Extracting the windows clipboard from physical memory, digital investigation

8(2011)S118-S124

[3] Stevens R, Casey E. Extracting Windows command line Details from Physical memory. In: Proceedings of the 2010

digital forensic research Workshop (DFRWS); 2010. p. 57e63.

[4] Brendan Dolan-Gavitt, Forensic analysis of the Windows registry in memory, Digital Investigation 5 (2008)S26-S32

[5] Shuhui Z, Lianhai W, Lei Z, Extracting windows registry information from physical memory, 2011 3rd International

Conference on Computer Research and Development (ICCRD),Issue Date: 11-13 March 2011 On page(s): 85 - 89.

[6] Walters A, Petroni ,Jr NL. Volatools: integrating volatile memory forensics into the digital investigation process. In:

Black Hat DC 2007; 2007.

[7] Lianhai W, Ruichao Z, Shuhui Z, A Model of Computer Live Forensics Based on Physical Memory Analysis. The 1st

International Conference on Information Science and Engineering, pp. 4647-4649

[8] Ruichao Z, Lianhai W, Shuhui Z, Windows Memory Analysis Based on KPCR, ias, vol. 2, pp.677-680, 2009 Fifth

International Conference on Information Assurance and Security, 2009

[9] Brendan Dolan-Gavitt， The VAD tree: A process-eye view of physical memory, digital investigation 4(2007)S62-S64

[10] van R.B., Baar, Alink W, van A.R. Ballegooij, Forensic memory analysis: Files mapped in memory, digital investigation

5(2008)S52-S57.

[11] Russinovich ME, Solomon DA, Ionescu A. Microsoft windows internals. 5th ed. Microsoft Press; June 2009.

[12] The Volatility Framework: Volatile memory artifact extraction utility framework

www.volatilesystems.com/default/volatilty,
RETRACTED

