Generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type I operators on non-compact sets

Mohammad S.R. Chowdhury, Kok-Keong Tan

Department of Mathematics, University of Engineering and Technology (UET), Lahore - 54890, Pakistan
Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5

ARTICLE INFO
Article history:
Received 4 December 2009
Received in revised form 20 April 2010
Accepted 20 April 2010

Keywords:
Generalized bi-quasi-variational inequalities
Quasi-pseudo-monotone type I operators
Strongly quasi-pseudo-monotone type I operators
Locally convex Hausdorff topological vector spaces

ABSTRACT
In this paper, the authors prove some existence results for solutions for a new class of generalized bi-quasi-variational inequalities (GBQVI) for quasi-pseudo-monotone type I and strongly quasi-pseudo-monotone type I operators defined on non-compact sets in locally convex Hausdorff topological vector spaces. In obtaining these results on GBQVI for quasi-pseudo-monotone type I and strongly quasi-pseudo-monotone type I operators, we shall use Chowdhury and Tan’s generalized version of Ky Fan’s minimax inequality as the main tool.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The generalized bi-quasi-variational inequality problem was first introduced by Shih and Tan [1] in 1989. Since Shih and Tan’s work, some authors have obtained many results on generalized (quasi-)variational inequalities, generalized (quasi-) variational-like inequalities and generalized bi-quasi-variational inequalities (see [2–17] and [18]).

The following is the definition due to Shih and Tan [1]:

Let E and F be vector spaces over Φ, $\langle \cdot, \cdot \rangle : F \times E \rightarrow \Phi$ be a bilinear functional and X be a non-empty subset of E. If $S : X \rightarrow 2^X$ and $M, T : X \rightarrow 2^F$, the **generalized bi-quasi-variational inequality problem** (GBQVI) for the triple (S, M, T) is to find $\hat{y} \in X$ satisfying the following properties:

1. $\hat{y} \in S(\hat{y})$,
2. $\inf_{w \in T(\hat{y})} \Re \langle f - w, \hat{y} - x \rangle \leq 0$ for any $x \in S(\hat{y})$ and $f \in M(\hat{y})$.

 Corresponding author.
 E-mail address: msrchowdhury@yahoo.com.au (M.S.R. Chowdhury).

 © 2010 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.camwa.2010.04.036
We shall now give some very basic notation, definitions and concepts which will be used throughout this paper.

Let X be a non-empty set, 2^X be the family of all non-empty subsets of X, and $\mathcal{F}(X)$ denote the family of all non-empty finite subsets of X. If X and Y are topological spaces and $T : X \rightarrow 2^Y$, then the graph of T is the set $G(T) := \{(x, y) \in X \times Y : y \in T(x)\}$. Throughout this paper, Φ will denote either the real field \mathbb{R} or the complex field \mathbb{C}.

Let E be a topological vector space over Φ, F be a vector space over Φ and $\langle , \rangle : F \times E \rightarrow \Phi$ be a bilinear functional.

For each $x_0 \in E$, each non-empty subset A of E and each $\epsilon > 0$, let $W(x_0; \epsilon) := \{y \in F : \|y, x_0\| < \epsilon\}$ and $U(A; \epsilon) := \{y \in F : \sup_{x \in A} |\langle y, x \rangle| < \epsilon\}$. Let $\sigma(F, E)$ be the (weak) topology on F generated by the family $\{W(x; \epsilon) : x \in E$ and $\epsilon > 0\}$ as a subbase for the neighbourhood system at 0 and $\delta(F, E)$ be the (strong) topology on F generated by the family $\{U(A; \epsilon) : A$ is a non-empty bounded subset of E and $\epsilon > 0\}$ as a base for the neighbourhood system at 0. We note then that F, when equipped with the (weak) topology $\sigma(F, E)$ or the (strong) topology $\delta(F, E)$, becomes a locally convex topological vector space which is not necessarily Hausdorff. But if the bilinear functional $\langle , \rangle : F \times E \rightarrow \Phi$ separates points in F, i.e., for each $y \in F$ with $y \neq 0$, there exists $x \in E$ such that $\langle y, x \rangle \neq 0$, then F also becomes Hausdorff.

Then, we have the following three maps:

(i) $h : X \rightarrow \mathbb{R}$
(ii) $M : X \rightarrow 2^E$ and
(iii) $T : X \rightarrow 2^F$.

Then T is said to be an h-quasi-pseudo-monotone (respectively, strongly h-quasi-pseudo-monotone) type I operator if for each $y \in X$ and every net $\{y_\alpha\}_{\alpha \in \Gamma}$ in X converging to y (respectively, weakly to y) with

$$\limsup_{\alpha} \left[\inf_{f \in M(y)} \inf_{u \in T(y_\alpha)} \Re\langle f - u, y_\alpha - y \rangle + h(y_\alpha) - h(y) \right] \leq 0$$

we have

$$\limsup_{\alpha} \left[\inf_{f \in M(x)} \inf_{u \in T(y_\alpha)} \Re\langle f - u, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right]$$

$$\geq \inf_{f \in M(x)} \inf_{x \in T(y_\alpha)} \Re\langle f - u, y \rangle + h(y) - h(x) \quad \text{for all } x \in X.$$

T is said to be a quasi-pseudo-monotone (respectively, strongly quasi-pseudo-monotone) type I operator if T is an h-quasi-pseudo-monotone (respectively, strongly h-quasi-pseudo-monotone) type I operator with $h \equiv 0$.

Note that when $M \equiv 0$, and T is replaced by $-T$, an h-quasi-pseudo-monotone type I operator is reduced to an h-pseudo-monotone (or an h-demi-monotone) operator defined in [5]. The h-pseudo-monotone (or h-demi-monotone) operators defined in [5] are slightly more general than the h-pseudo-monotone operators with the definition given in [6].

Later, in the year 2000, the first author (M.S.R. Chowdhury) renamed the above h-pseudo-monotone (or h-demi-monotone) operators as pseudo-monotone type I operators [19]. The pseudo-monotone type I operators are a set-valued generalization of the classical (single-valued) pseudo-monotone operators with slight variations. The classical definition of a single-valued pseudo-monotone operator was introduced by Brézis et al. in [20]. We first introduced quasi-pseudo-monotone type I operators in [9, Definition 1.1], as a generalization of pseudo-monotone type I operators.

We shall establish the following result:

Proposition 1.1. Let X be a non-empty subset of a topological vector space E. Let $T : X \rightarrow E^*$ and $M : X \rightarrow E^*$ be two single-valued maps. Suppose that the operator T is monotone, and both M and T are continuous maps from the relatively weak topology on X to the weak* topology on E^*. Then T is both quasi-pseudo-monotone type I and strongly quasi-pseudo-monotone type I operator.

Proof. Suppose that $\{y_\alpha\}_{\alpha \in \Gamma}$ is a net in X and $y \in X$ with $y_\alpha \rightarrow y$ (respectively, $y_\alpha \rightarrow y$ weakly) and that $\limsup_{\alpha} \Re\langle M(y) - T(y_\alpha), y_\alpha - y \rangle \leq 0$.

Now, for any $x \in X$,

$$\Re\langle M(x) - T(y_\alpha), y_\alpha - x \rangle = \Re\langle M(x) - T(y_\alpha), y_\alpha - y \rangle + \Re\langle M(x) - T(y_\alpha), y - x \rangle$$

$$\geq \Re\langle M(x) - T(y), y_\alpha - y \rangle + \Re\langle M(x) - T(y), y - x \rangle$$

$$= \Re\langle M(x) - T(y), y_\alpha - y \rangle + \Re\langle M(x) - T(y), y - x \rangle - (M(x) - T(y), y - x) + \Re\langle M(x) - T(y), y - x \rangle.$$

\(\ast\)
Then given $\epsilon > 0$, there exists $\beta_1 \in \Gamma$ such that
\[
|\Re\langle M(x) - T(y), y_\alpha - y \rangle| < \epsilon/2 \quad \text{for all } \alpha \geq \beta_1;
\]
i.e., $-\epsilon/2 < \Re\langle M(x) - T(y), y_\alpha - y \rangle < \epsilon/2$ for all $\alpha \geq \beta_1$.
Again, for the same $\epsilon > 0$, there exists $\beta_2 \in \Gamma$ such that
\[
|\Re\langle M(x) - T(y_\alpha) - \langle M(x) - T(y)\rangle, y - x \rangle| < \epsilon/2 \quad \text{for all } \alpha \geq \beta_2.
\]
Let us choose $\beta_0 \in \Gamma$ with $\beta_0 \geq \beta_1$ and $\beta_0 \geq \beta_2$. Thus (\#) becomes
\[
\Re\langle M(x) - T(y_\alpha), y_\alpha - x \rangle > -\epsilon/2 - \epsilon/2 + \Re\langle M(x) - T(y)\rangle, y - x \rangle
\]
for all $\alpha \geq \beta$. Hence,
\[
\limsup_{\alpha \in \Gamma} \Re\langle M(x) - T(y_\alpha), y_\alpha - x \rangle \geq -\epsilon + \Re\langle M(x) - T(y)\rangle, y - x \rangle.
\]
As $\epsilon > 0$ is arbitrary, we have
\[
\limsup_{\alpha \in \Gamma} \Re\langle M(x) - T(y_\alpha), y_\alpha - x \rangle \geq \Re\langle M(x) - T(y)\rangle, y - x \rangle \quad \forall x \in X.
\]
Consequently, T is both a quasi-pseudo-monotone type I and strongly quasi-pseudo-monotone type I operator.

Note that the above Proposition 1.1 is a slight modification and or extension of Proposition 1.1 in [9]. Moreover, with our modified Definition 1.1 above, the operator T in Proposition 1.1 is now both a quasi-pseudo-monotone type I and strongly quasi-pseudo-monotone type I operator.

In this paper we shall obtain some general theorems on solutions for a new class of generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type I and strongly quasi-pseudo-monotone type I operators defined on non-compact sets in topological vector spaces. In obtaining these results we shall mainly use the following generalized version of Ky Fan’s minimax inequality [21] due to Chowdhury and Tan [5].

Theorem 1.1. Let E be a topological vector space, X be a non-empty convex subset of E, $\mathcal{F}(X)$ denote the family of all non-empty finite subsets of X and $f : X \times X \to \mathbb{R} \cup \{-\infty, +\infty\}$ be such that

(a) for each $A \in \mathcal{F}(X)$ and each fixed $x \in \text{co}(A)$, $y \mapsto f(x, y)$ is lower semi-continuous on $\text{co}(A)$;

(b) for each $A \in \mathcal{F}(X)$ and each $y \in \text{co}(A)$, $\min_{x \in A} f(x, y) \leq 0$;

(c) for each $A \in \mathcal{F}(X)$ and each $x, y \in \text{co}(A)$, every net $\{y_\alpha\}_{\alpha \in \Gamma}$ in X converging to y with $f(tx + (1-t)y, y_\alpha) \leq 0$ for all $\alpha \in \Gamma$ and all $t \in [0, 1]$, we have $f(x, y) \leq 0$;

(d) there exist a non-empty closed and compact subset K of X and $x_0 \in K$ such that $f(x_0, y) > 0$ for all $y \in X \setminus K$.

Then there exists $\hat{y} \in K$ such that $f(x, \hat{y}) \leq 0$ for all $x \in X$.

2. Preliminaries

We shall first state the following result which is Lemma 1 of Shih and Tan in [22, pp. 334–335]:

Lemma 2.1. Let X be a non-empty subset of a Hausdorff topological vector space E and $S : X \to 2^E$ be an upper semi-continuous map such that $S(x)$ is a bounded subset of E for each $x \in X$. Then for each continuous linear functional p on E, the functional $f_p : X \to \mathbb{R}$ defined by $f_p(y) = \sup_{x \in S(y)} \Re(p, x)$ is upper semi-continuous; i.e., for each $\lambda \in \mathbb{R}$, the set $\{y \in X : f_p(y) = \sup_{x \in S(y)} \Re(p, x) < \lambda\}$ is open in X.

The following result is Lemma 3 of Takahashi in [23, p. 177] (see also Lemma 3 in [1, pp. 71–72]):

Lemma 2.2. Let X and Y be topological spaces, $f : X \to \mathbb{R}$ be non-negative and continuous and $g : Y \to \mathbb{R}$ be lower semi-continuous. Then the functional $F : X \times Y \to \mathbb{R}$, defined by $F(x, y) = f(x)g(y)$ for all $(x, y) \in X \times Y$, is lower semi-continuous.

The following result is Lemma 1 in [7]:

Lemma 2.3. Let E be a topological vector space over Φ, X be a non-empty compact subset of E and F be a Hausdorff topological vector space over Φ. Let $(\cdot, \cdot) : F \times E \to \Phi$ be a bilinear functional and $T : X \to 2^X$ be an upper semi-continuous map such that each $T(x)$ is compact. Let M be a non-empty compact subset of F, $x_0 \in X$ and $h : X \to \mathbb{R}$ be continuous. Define $g : X \to \mathbb{R}$ by $g(y) = \inf_{f \in M} \inf_{w \in T(y)} \Re(f - w, y - x_0) + h(y)$ for each $y \in X$. Suppose that (\cdot, \cdot) is continuous on the (compact) subset $[M - \cup_{y \in X} T(y)] \times X$ of $F \times E$. Then g is lower semi-continuous on X.

When $h \equiv 0$ and $M = \{0\}$, replacing T by $-T$, Lemma 2.3 reduces to Lemma 2 of Shih and Tan from [1, pp. 70–71].

The following result is a slight modification of Lemma 4 in [1]:

[Note: The rest of the text has been truncated for brevity. For the full context, please refer to the original document.]
Lemma 2.4. Let E be a topological vector space over Φ, F be a vector space over Φ and X be a non-empty convex subset of E. Let $\langle , \rangle : F \times E \to \Phi$ be a bilinear functional. Equip F with the $\sigma (F, E)$-topology.

Let $h : X \to \mathbb{R}$ be convex and $M : X \to 2^F$ be lower semi-continuous along line segments in X to the $\sigma (F, E)$-topology on F. Let $S : X \to 2^\mathbb{R}$ and $T : X \to 2^F$ be two maps. Suppose that there exists $\hat{y} \in X$ such that $\hat{y} \in S(\hat{y})$, $S(\hat{y})$ is convex and $\inf_{f \in M(x, y) \in T(\hat{y})} \inf_{w \in T(y)} \Re\langle f - w, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$ for all $x \in S(\hat{y})$. Then

$$\inf_{f \in M(x, y) \in T(\hat{y})} \inf_{w \in T(y)} \Re\langle f - w, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$$

for all $x \in S(\hat{y})$.

We shall need the following Kneser’s minimax theorem from [24, pp. 2418–2420] (see also Aubin [25, pp. 40–41]):

Theorem 2.1. Let X be a non-empty compact convex subset of a vector space and Y be a non-empty compact convex subset of a Hausdorff topological vector space. Suppose that f is a real-valued function on $X \times Y$ such that for each fixed $x \in X$, the map $y \mapsto f(x, y)$, i.e., $f(x, \cdot)$ is lower semi-continuous and convex on Y and for each fixed $y \in Y$, the map $x \mapsto f(x, y)$, i.e., $f(\cdot, y)$ is concave on X. Then

$$\min_{y \in Y} \sup_{x \in X} f(x, y) = \sup_{x \in X} \min_{y \in Y} f(x, y).$$

3. Existence theorems for generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type I operators

In this section, we shall obtain and prove some existence theorems for the solutions to the generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type I and strongly quasi-pseudo-monotone type I operators T with non-compact domain in locally convex Hausdorff topological vector spaces. Our results extend and/or generalize the corresponding results in [1].

We shall first establish the following result:

Theorem 3.1. Let E be a locally convex Hausdorff topological vector space over Φ, X be a non-empty para-compact convex and bounded subset of E and F be a Hausdorff topological vector space over Φ. Let $\langle , \rangle : F \times E \to \Phi$ be a bilinear functional which is continuous on compact subsets of $F \times X$. Suppose that:

(a) $S : X \to 2^X$ is upper semi-continuous such that each $S(x)$ is compact and convex;
(b) $h : E \to (0, \infty)$ is convex and $h(X)$ is bounded;
(c) $T : X \to 2^F$ is an h-quasi-pseudo-monotone type I (respectively, strongly h-quasi-pseudo-monotone type I) operator and is upper semi-continuous such that each $T(x)$ is compact (respectively, weakly compact) and convex and $T(X)$ is strongly bounded;
(d) $M : X \to 2^F$ is a linear map in X (and is therefore single-valued for each $x \in X$);
(e) the set $\Sigma = \{ y \in X : \sup_{x \in S(y)} (\inf_{w \in T(y)} \Re\langle M(x) - w, y - x \rangle + h(y) - h(x)) > 0 \}$ is open in X.

Suppose further that there exist a non-empty open and compact (respectively, weakly closed and weakly compact) subset K of X and a point $x_0 \in X$ such that $x_0 \in K \cap S(y)$ and $\inf_{w \in T(y)} \Re\langle M(x_0) - w, y - x_0 \rangle + h(y) - h(x_0) > 0$ for all $y \in X \setminus K$.

Then there exists a point \hat{y} such that

(i) $\hat{y} \in S(\hat{y})$ and
(ii) there exists a point $\hat{w} \in T(\hat{y})$ with $\Re\langle M(\hat{y}) - \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$ for all $x \in S(\hat{y})$.

Moreover, if $S(x) = X$ for all $x \in X$, E is not required to be locally convex and if $T \equiv 0$, the continuity assumption on \langle , \rangle can be weakened to the assumption that for each $f \in F$, the map $x \mapsto f(x, y)$ is continuous (respectively, weakly continuous) on X.

Proof. We divide the proof into three steps:

Step 1. There exists a point $\hat{y} \in X$ such that $\hat{y} \in S(\hat{y})$ and

$$\sup_{x \in S(\hat{y})} \left[\inf_{\hat{w} \in T(\hat{y})} \Re\langle M(x) - w, \hat{y} - x \rangle + h(\hat{y}) - h(x) \right] \leq 0.$$

Suppose the contrary. Then for each $y \in X$, either $y \notin S(\hat{y})$ or there exists $x \in S(\hat{y})$ such that $\inf_{w \in T(y)} \Re\langle M(x) - w, y - x \rangle + h(y) - h(x) > 0$; that is, for each $y \in X$, either $y \notin S(\hat{y})$ or $y \in \Sigma$. If $y \notin S(\hat{y})$, then by a separation theorem for convex sets in locally convex Hausdorff topological vector spaces, there exists $p \in E^*$ such that $\Re\langle p, y \rangle - \sup_{x \in S(\hat{y})} \Re\langle p, x \rangle > 0$. Let $\gamma(y) = \sup_{x \in S(\hat{y})} \inf_{w \in T(y)} \Re\langle M(x) - w, y - x \rangle + h(y) - h(x)$ and let

$$V_0 := \{ y \in X : \gamma(y) > 0 \} = \Sigma$$

and for each $p \in E^*$, set

$$V_p := \left\{ y \in X : \Re\langle p, y \rangle - \sup_{x \in S(\hat{y})} \Re\langle p, x \rangle > 0 \right\}.$$
Then \(X = V_0 \cup \bigcup_{p \in E^*} V_p \). Since each \(V_p \) is open in \(X \) by Lemma 2.1 and \(V_0 \) is open in \(X \) by hypothesis, \(\{V_0, V_p : p \in E^*\} \) is an open covering for \(X \). Since \(X \) is para-compact, there is a continuous partition of unity \(\{\beta_0, \beta_p : p \in E^*\} \) for \(X \) subordinated to the open cover \(\{V_0, V_p : p \in E^*\} \) (see, e.g., Theorem VIII.4.2 of Dugundji in [26]); that is for each \(p \in E^* \), \(\beta_0 : X \to [0, 1] \) and \(\beta_0 : X \to [0, 1] \) are continuous functions such that for each \(p \in E^*, \beta_p(y) = 0 \) for all \(y \in X \setminus V_p \) and \(\beta_0(y) = 0 \) for all \(y \in X \setminus V_0 \) and \{support \(\beta_0 \), support \(\beta_p : p \in E^* \} \) is locally finite and \(\beta_0(y) + \sum_{p \in E^*} \beta_p(y) = 1 \) for each \(y \in X \). Note that for each \(A \in \mathcal{F}(X), h \) is continuous on \(co(A) \) (see e.g. [27], Corollary 10.1.1, p. 83).

Define \(\phi : X \times X \to \mathbb{R} \) by

\[
\phi(x, y) = \beta_0(y) \left[\inf_{w \in T(y)} \Re(M(x) - w, y - x) + h(y) - h(x) \right] + \sum_{p \in E^*} \beta_p(y) \Re(p, y - x)
\]

for each \(x, y \in X \). Then we have the following:

1. Since \(E \) is Hausdorff, for each \(A \in \mathcal{F}(X) \) and each fixed \(x \in co(A) \), the map

\[
y \mapsto \inf_{w \in T(y)} \Re(M(x) - w, y - x) + h(y) - h(x)
\]

is lower semi-continuous (respectively, weakly lower semi-continuous) on \(co(A) \) by Lemma 2.3 and the fact that \(h \) is continuous on \(co(A) \) and therefore the map

\[
y \mapsto \sum_{p \in E^*} \beta_p(y) \Re(p, y - x)
\]

is continuous on \(X \). Hence, for each \(A \in \mathcal{F}(X) \) and each fixed \(x \in co(A) \), the map \(y \mapsto \phi(x, y) \) is lower semi-continuous (respectively, weakly lower semi-continuous) on \(co(A) \).

2. For each \(A \in \mathcal{F}(X) \) and for each \(y \in co(A) \), \(\min_{x \in A} \phi(x, y) \leq 0 \). Indeed, if this were false, then for some \(A = \{x_1, x_2, \ldots, x_n\} \in \mathcal{F}(X) \) and some \(y \in co(A) \) (say \(y = \sum_{i=1}^n \lambda_i x_i \) where \(\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0 \) with \(\sum_{i=1}^n \lambda_i = 1 \)), we have \(\min_{1 \leq i \leq n} \phi(x_i, y) > 0 \). Then for each \(i = 1, 2, \ldots, n \),

\[
\beta_0(y) \left[\inf_{w \in T(y)} \Re(M(x_i) - w, y - x_i) + h(y) - h(x_i) \right] + \sum_{p \in E^*} \beta_p(y) \Re(p, y - x_i) > 0
\]

and so

\[
0 = \phi(y, y) = \beta_0(y) \left[\inf_{w \in T(y)} \Re(M \left(\sum_{i=1}^n \lambda_i x_i \right) - w, y - \sum_{i=1}^n \lambda_i x_i) + h(y) - h \left(\sum_{i=1}^n \lambda_i x_i \right) \right]
\]

\[
+ \sum_{p \in E^*} \beta_p(y) \Re(p, y - \sum_{i=1}^n \lambda_i x_i)
\]

\[
= \beta_0(y) \left[\inf_{w \in T(y)} \Re \left(\sum_{i=1}^n \lambda_i (M(x_i) - w, y - \sum_{i=1}^n \lambda_i x_i) + h(y) - h \left(\sum_{i=1}^n \lambda_i x_i \right) \right) \right] + \sum_{p \in E^*} \beta_p(y) \Re(p, y - \sum_{i=1}^n \lambda_i x_i)
\]

\[
\geq \sum_{i=1}^n \lambda_i \left(\beta_0(y) \left[\inf_{w \in T(y)} \Re(M(x_i) - w, y - x_i) + h(y) - h(x_i) \right] + \sum_{p \in E^*} \beta_p(y) \Re(p, y - x_i) \right) > 0,
\]

which is a contradiction.

3. Suppose that \(A \in \mathcal{F}(X), x, y \in co(A) \) and \(\{y_\alpha\}_{\alpha \in \Gamma} \) is a net in \(X \) converging to \(y \) (respectively, weakly to \(y \)) with \(\phi(tx + (1 - t)y, y_\alpha) \leq 0 \) for all \(\alpha \in \Gamma \) and all \(t \in [0, 1] \).

Case 1: \(\beta_0(y_\alpha) = 0 \).

Note that \(\beta_0(y_\alpha) \geq 0 \) for each \(\alpha \in \Gamma \) and \(\beta_0(y_\alpha) \to 0 \). Since \(T(X) \) is strongly bounded and \(\{y_\alpha\}_{\alpha \in \Gamma} \) is a bounded net, it follows that

\[
\limsup_{\alpha} \left[\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} \Re(M(x) - w, y_\alpha - x) + h(y_\alpha) - h(x) \right) \right] = 0.
\]

Also

\[
\beta_0(y) \left[\min_{w \in T(y)} \Re(M(x) - w, y - x) + h(y) - h(x) \right] = 0.
\]
Thus
\[
\limsup_{\alpha} \left[\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} \text{Re}(M(x) - w, y_\alpha - x) + h(y_\alpha) - h(x) \right) \right] + \sum_{p \in E^*} \beta_p(y) \text{Re}(p, y - x) \\
= \sum_{p \in E^*} \beta_p(y) \text{Re}(p, y - x) \quad \text{by (3.1)}
\]
\[
= \beta_0(y) \left[\min_{w \in T(y)} \text{Re}(M(x) - w, y - x) + h(y) - h(x) \right] + \sum_{p \in E^*} \beta_p(y) \text{Re}(p, y - x).
\]
(3.2)

When \(t = 1 \) we have \(\phi(x, y_\alpha) \leq 0 \) for all \(\alpha \in \Gamma' \), i.e.,
\[
\beta_0(y_\alpha) \left[\min_{w \in T(y_\alpha)} \text{Re}(M(x) - w, y_\alpha - x) + h(y_\alpha) - h(x) \right] + \sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - x) \leq 0 \quad \forall \alpha \in \Gamma'.
\]
(3.3)

Therefore
\[
\limsup_{\alpha} \left[\beta_0(y_\alpha) \min_{w \in T(y_\alpha)} \text{Re}(M(x) - w, y_\alpha - x) + h(y_\alpha) - h(x) \right] + \liminf_{\alpha} \left[\sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - x) \right]
\]
\[
\leq \limsup_{\alpha} \left[\beta_0(y_\alpha) \min_{w \in T(y_\alpha)} \text{Re}(M(x) - w, y_\alpha - x) + h(y_\alpha) - h(x) + \sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - x) \right]
\]
\[
\leq 0 \quad \text{(by (3.3)).}
\]

Thus
\[
\limsup_{\alpha} \left[\beta_0(y_\alpha) \min_{w \in T(y_\alpha)} \text{Re}(M(x) - w, y_\alpha - x) + h(y_\alpha) - h(x) \right] + \sum_{p \in E^*} \beta_p(y) \text{Re}(p, y - x) \leq 0.
\]
(3.4)

Hence by (3.2) and (3.4), we have \(\phi(x, y) \leq 0 \).

Case 2: \(\beta_0(y) > 0 \).

Since \(\beta_0(y_\alpha) \to \beta_0(y) \), there exists \(\lambda \in \Gamma' \) such that \(\beta_0(y_\alpha) > 0 \) for all \(\alpha \geq \lambda \). When \(t = 0 \), we have \(\phi(y, y_\alpha) \leq 0 \forall \alpha \in \Gamma' \), i.e.,
\[
\beta_0(y_\alpha) \left[\inf_{w \in T(y_\alpha)} \text{Re}(M(y) - w, y_\alpha - y) + h(y_\alpha) - h(y) \right] + \sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - y) \leq 0 \quad \forall \alpha \in \Gamma'.
\]

Thus
\[
\limsup_{\alpha} \left[\beta_0(y_\alpha) \left(\inf_{w \in T(y_\alpha)} \text{Re}(M(y) - w, y_\alpha - y) + h(y_\alpha) - h(y) \right) + \sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - y) \right] \leq 0.
\]
(3.5)

Hence
\[
\limsup_{\alpha} \left[\beta_0(y_\alpha) \left(\inf_{w \in T(y_\alpha)} \text{Re}(M(y) - w, y_\alpha - y) + h(y_\alpha) - h(y) \right) \right] + \liminf_{\alpha} \left[\sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - y) \right]
\]
\[
\leq \limsup_{\alpha} \left[\beta_0(y_\alpha) \left(\inf_{w \in T(y_\alpha)} \text{Re}(M(y) - w, y_\alpha - y) + h(y_\alpha) - h(y) \right) + \sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - y) \right]
\]
\[
\leq 0 \quad \text{(by (3.5)).}
\]

Since \(\liminf_{\alpha} \left[\sum_{p \in E^*} \beta_p(y_\alpha) \text{Re}(p, y_\alpha - y) \right] = 0 \), we have
\[
\limsup_{\alpha} \left[\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} \text{Re}(M(y) - w, y_\alpha - y) + h(y_\alpha) - h(y) \right) \right] \leq 0.
\]
(3.6)

Since \(\beta_0(y_\alpha) > 0 \) for all \(\alpha \geq \lambda \), it follows that
\[
\beta_0(y) \limsup_{\alpha} \left[\left(\min_{w \in T(y_\alpha)} \text{Re}(M(y) - w, y_\alpha - y) + h(y_\alpha) - h(y) \right) \right]
\]
\[
= \limsup_{\alpha} \left[\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} \text{Re}(M(y) - w, y_\alpha - y) + h(y_\alpha) - h(y) \right) \right].
\]
(3.7)
Since $\beta_0(y) > 0$, by (3.6) and (3.7) we have

$$\limsup_{\alpha} \left[\min_{w \in T(y)} \operatorname{Re}(M(y) - w, y_a - y) + h(y_a) - h(y) \right] \leq 0.$$

Since T is an h-quasi-pseudo-monotone type I (respectively, strongly h-quasi-pseudo-monotone type I) operator, we have

$$\limsup_{\alpha} \left[\min_{w \in T(y)} \operatorname{Re}(M(x) - w, y_a - x) + h(y_a) - h(x) \right] \geq \min_{w \in T(y)} \operatorname{Re}(M(x) - w, y - x) + h(y) - h(x)$$

for all $x \in X$. Since $\beta_0(y) > 0$, we have

$$\beta_0(y) \left[\limsup_{\alpha} \left(\min_{w \in T(y)} \operatorname{Re}(M(x) - w, y_a - x) + h(y_a) - h(x) \right) \right] \geq \beta_0(y) \left[\min_{w \in T(y)} \operatorname{Re}(M(x) - w, y - x) + h(y) - h(x) \right].$$

Thus

$$\beta_0(y) \left[\limsup_{\alpha} \left(\min_{w \in T(y)} \operatorname{Re}(M(x) - w, y_a - x) + h(y_a) - h(x) \right) \right] + \sum_{p \in E^*} \beta_p(y) \operatorname{Re}(p, y - x) \geq \beta_0(y) \left[\min_{w \in T(y)} \operatorname{Re}(M(x) - w, y - x) + h(y) - h(x) \right] + \sum_{p \in E^*} \beta_p(y) \operatorname{Re}(p, y - x).$$

(4) By hypothesis, there exist a non-empty compact and therefore closed (respectively, weakly closed and weakly compact) subset K of X and a point $x_0 \in X$ such that $x_0 \in K \cap S(y)$ and $\inf_{w \in T(y)}[\operatorname{Re}(M(x_0) - w, y - x_0) + h(y) - h(x_0)] > 0$ for all $y \in X \setminus K$. Thus, for all $y \in X \setminus K$, $\beta_0(y)[\inf_{w \in T(y)} \operatorname{Re}(M(x_0) - w, y - x_0) + h(y) - h(x_0)] > 0$ whenever $\beta_0(y) > 0$, and $\operatorname{Re}(p, y - x_0) > 0$ whenever $\beta_p(y) > 0$ for $p \in E^*$. Consequently,

$$\phi(x_0, y) = \beta_0(y) \left[\inf_{w \in T(y)} \operatorname{Re}(M(x_0) - w, y - x_0) + h(y) - h(x_0) \right] + \sum_{p \in E^*} \beta_p(y) \operatorname{Re}(p, y - x_0) > 0 \quad \forall y \in X \setminus K.$$

(If T is a strongly h-quasi-pseudo-monotone type I operator, we equip E with the weak topology.) Thus ϕ satisfies all the hypotheses of Theorem 1.1. Hence by Theorem 1.1, there exists a point $\hat{y} \in K$ such that $\phi(x, \hat{y}) \leq 0$ for all $x \in X$; i.e.,

$$\beta_0(\hat{y}) \left[\inf_{w \in T(\hat{y})} \operatorname{Re}(M(x) - w, \hat{y} - x) + h(\hat{y}) - h(x) \right] + \sum_{p \in E^*} \beta_p(\hat{y}) \operatorname{Re}(p, \hat{y} - x) \leq 0 \quad \forall x \in X.$$

(3.10)

Now the rest of the proof of Step 1 is similar to the proof in Step 1 of Theorem 1 in [7]. Hence Step 1 is proved.

Step 2. $\inf_{w \in T(\hat{y})} \operatorname{Re}(M(\hat{y}) - w, \hat{y} - x) \leq h(x) - h(\hat{y})$ for all $x \in S(\hat{y})$.

From Step 1 we have $\hat{y} \in S(\hat{y})$ and
\[\inf_{w \in T(y)} \text{Re}(M(x) - w, \hat{y} - x) \leq h(x) - h(\hat{y}) \]

for all \(x \in S(\hat{y}) \). Since \(S(\hat{y}) \) is a convex subset of \(X \), and \(M \) is linear and therefore continuous along line segments in \(X \), by Lemma 2.4 we have
\[\inf_{w \in T(y)} \text{Re}(M(\hat{y}) - w, \hat{y} - x) \leq h(x) - h(\hat{y}) \]

for all \(x \in S(\hat{y}) \).

Step 3. There exists a point \(\hat{w} \in T(\hat{y}) \) with \(\text{Re}(M(\hat{y}) - \hat{w}, \hat{y} - x) \leq h(x) - h(\hat{y}) \) for all \(x \in S(\hat{y}) \).

By Step 2 above and applying Theorem 2.1, as we proved in Step 3 of Theorem 1 in [7], we can show that there exists a point \(\hat{w} \in T(\hat{y}) \) such that \(\text{Re}(M(\hat{y}) - \hat{w}, \hat{y} - x) \leq h(x) - h(\hat{y}) \) for all \(x \in S(\hat{y}) \).

We observe from the above proof that the requirement that \(E \) needs to be locally convex is needed when and only when the separation theorem is applied to the case \(y \not\in S(y) \). Thus if \(S : X \rightarrow 2^X \) is the constant map \(S(x) = X \) for all \(x \in E \), \(E \) is not required to be locally convex.

Finally, if \(T \equiv 0 \), in order to show that for each \(x \in X \), \(y \mapsto \phi(x, y) \) is lower semi-continuous (respectively, weakly lower semi-continuous), Lemma 2.3 is no longer needed and the weaker continuity assumption on \(\langle \cdot, \cdot \rangle \) that for each \(f \in F \), the map \(x \mapsto \langle f, x \rangle \) is continuous (respectively, weakly continuous) on \(X \) is sufficient. This completes the proof. \(\square \)

We shall now establish our last result of this section:

Theorem 3.2. Let \(E \) be a locally convex Hausdorff topological vector space over \(\Phi \), \(X \) be a non-empty para-compact convex and bounded subset of \(E \) and \(F \) be a vector space over \(\Phi \). Let \(\langle \cdot, \cdot \rangle : F \times E \rightarrow \Phi \) be a bilinear functional such that \(\langle \cdot, \cdot \rangle \) separates points in \(F \) and for each \(f \in F \), the map \(x \mapsto \langle f, x \rangle \) is continuous on \(X \). Equip \(F \) with the strong topology \(\delta(F, E) \) . Suppose that

(a) \(S : X \rightarrow 2^X \) is a continuous map such that each \(S(x) \) is compact and convex;

(b) \(h : E \mapsto \mathbb{R} \) is convex and \(h(X) \) is bounded;

(c) \(T : X \rightarrow 2^X \) is a quasi-pseudo-monotone type I (respectively, strongly \(h \)-quasi-pseudo-monotone type \(I \))-operator and is upper semi-continuous such that each \(T(x) \) is strongly, i.e., \(\delta(F, E) \)-compact and convex (respectively, weakly, i.e., \(\sigma(F, E) \)-compact and convex);

(d) \(M : X \rightarrow 2^F \) is a continuous linear map in \(X \) and for each \(y \in \Sigma = \{ y \in X : \sup_{x \in S(\hat{y})} \text{Re}(M(x) - w, y - x) + h(y) - h(x) > 0 \} \), \(\inf_{w \in T(y)} \text{Re}(M(x) - w, y - x) + h(y) - h(x) > 0 \) for some point \(x \in S(\hat{y}) \).

Suppose further that there exist a non-empty closed and compact (respectively, weakly closed and weakly compact) subset \(K \) of \(X \) and a point \(x_0 \in X \) such that \(x_0 \in K \cap S(\hat{y}) \) and \(\inf_{w \in T(y)} \text{Re}(M(x_0) - w, y - x_0) + h(y) - h(x_0) > 0 \) for all \(y \in X \setminus K \).

Then there exists a point \(\hat{y} \in X \) such that

(i) \(\hat{y} \in S(\hat{y}) \) and

(ii) there exists a point \(\hat{w} \in T(\hat{y}) \) with \(\text{Re}(M(\hat{y}) - \hat{w}, \hat{y} - x) \leq h(x) - h(\hat{y}) \) for all \(x \in S(\hat{y}) \).

Moreover, if \(S(x) = X \) for all \(x \in X \), \(E \) is not required to be locally convex.

Proof. The proof is similar to the proof of Theorem 2 in [7]. Hence the proof is omitted here. \(\square \)

Remark 3.1. (1) Theorems 3.1 and 3.2 of this paper are generalizations of Theorems 3.2 and 3.3 in [9], respectively, on non-compact sets. In Theorems 3.1 and 3.2 of this paper, \(X \) is considered to be a para-compact convex and bounded subset of locally convex Hausdorff topological vector space \(E \) whereas, in [9], \(X \) is just a compact and convex subset of \(E \). Hence our results generalize the corresponding results from [9].

(2) The first paper on generalized bi-quasi-variational inequalities was written by Shih and Tan in 1989 in [1] and the results were obtained on compact sets where the set-valued mappings were either lower semi-continuous or upper semi-continuous. Our present paper is another extension of the original work from [1] using quasi-pseudo-monotone type I operators on non-compact sets. The quasi-pseudo-monotone type I operators are generalizations of pseudo-monotone type I operators introduced first in [5].

(3) In all of our results on generalized bi-quasi-variational inequalities, if the operators \(M \equiv 0 \) and the operator \(T \) is replaced by \(-T\), then we obtain results on generalized quasi-variational inequalities which generalize the corresponding results given in the literature (see [28]).

(4) The results on generalized bi-quasi-variational inequalities given in [2] were obtained for set-valued quasi-semi-monotone and bi-quasi-semi-monotone operators and the corresponding results in [17] were obtained for set-valued upper hemi-continuous operators introduced in [14]. Our results in this paper are also further extensions of the corresponding results given in [2,17] using set-valued quasi-pseudo-monotone type I operators on non-compact sets.

Acknowledgements

The first author’s project was completed partially during the author’s last visit to Dalhousie University. But the final revised version of this paper was completed at the author’s present workplace at the University of Engineering and Technology (UET) in Lahore, Pakistan. The second author’s project was partially supported by NSERC of Canada under Grant A-8096.
References